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On solutions of the equation Xn+Y n = BZn with prime n |BZ
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Preda Mihăilescu (Göttingen)

1. Introduction. We consider the Diophantine equation

(1) Xn + Y n = BZn,

a ternary equation, which generalizes Fermat’s equation. As shown for in-
stance in [BGMP, BBGH], this equation is encountered as a special case in
the solution process of various Diophantine equations.

Cyclotomy approaches were established by Maillet (1901) [Ma], Lubelski
(1935), Dénes (1952), Győry (1966) [G], Inkeri (1980) [I] and others; see also
[G] for further references. The use of Frey curves, which led to the celebrated
proof of Fermat’s Last Theorem by Wiles [Wi], lays at hand, and the papers
[BGMP], [BBGH] apply results on modular curves and Ribet descent to (1).
Typically, modular curves can be used in the case when rad(B) splits in a
fixed set of (small) primes. Since this leads to intricate case studies, some
additional general criteria which may help eliminate some of these are called
for. The purpose of this paper is to prove a new criterion, in the flavor of [G]
and its generalizations mentioned in [BGMP, Section 4].

The existence of a non-trivial solution for an exponent n implies that for
any prime p |n there also exist non-trivial solutions. It suffices to consider
prime exponents; for the rest of this paper, n will thus be an odd prime.

Let K = Q(ζn) be the nth cyclotomic field, h+
n the class number of the

maximal real subfield of K, and Bk the kth Bernoulli number. An assumption
related to the Second Case of Fermat’s Last Theorem is

p - h+
p , p3 - Bpi, i = 2, 4, . . . , p− 3.(2)

The condition (2) was verified by computer [BCEMS] and it holds for all
primes n < 12 · 106.
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Additionally, we shall require that B is such that

ϕ∗(B) := ϕ(rad(B)) and (n, ϕ∗(B)) = 1.(3)

Here rad(B) is the radical of B and the condition implies that B has no
prime factors t ≡ 1 mod n. In particular, none of its prime factors splits
completely in the nth cyclotomic field.

As in the case of Fermat’s equation, the case in which n |BZ is more
difficult for cyclotomic approaches. Theorem 4.2 in [BGMP] addresses, for
instance, this case. It differs from our result by replacing condition (3) with

r∑
i=1

1
fi
≤ n− 3

2(n− 1)
,

where rad(B) = n
∏r
i=1 pi and fi = ordn(pi); additionally, (n− 1)/fi should

be odd. One sees that this condition is more restrictive for the orders and
the number of factors of B than (3). Furthermore, if (n−1)/fi is odd then pi
is a quadratic residue and necessarily non-split. Thus our condition is more
general. However, in Theorem 4.2 of [BGMP], it is possible that vn(BZ) = 2,
which is not possible in our approach, as we shall explain below.

We prove:

Theorem 1. Let n > 3 be a prime and B > 1 an integer satisfying (3).
If (1) has a non-trivial integer solution with n3 |BZ and (X,Y, Z) = 1, then
(2) is false; in particular , n > 12 · 106.

We remark that in the case when n - Z and n |B it can be shown that
n2 |B. Indeed, assuming that (1) has the solution (X,Y, Z), then Xn+Y n ≡
0 mod n, so X+Y ≡ 0 mod n. Thus Xn+Y n = Xn+(nT−X)n ≡ 0 mod n2.
In particular, if (1) has a solution with vn(B) = 1, then n |Z and our
condition applies. The case vn(B) = 2 is not covered by this theorem. The
stronger condition n3 |BZ implies n2 | (X + Y ), which is required for the
descent argument.

The plan of this paper is as follows: in the second section we give an
overview of general facts and notions of cyclotomy which we use subse-
quently. In the third section we derive the adaptation of Kummer descent
to the present case and indicate how further results on the First Case of
Fermat’s Last Theorem fit in our context. The proof of Theorem 1 follows.

2. Generalities. The facts described in this section have been studied
in the context of the cyclotomic investigation of Fermat’s equation. We give
here a more general frame which will be used in our context and sketch the
proofs. The reader may consult [Mi, Ri] for more detail.



Solutions of the equation Xn + Y n = BZn 3

Fact 1. Let n be a positive integer , K ⊃ Q an Abelian field , and a, b ∈
O(K) coprime. Then (

an + bn

a+ b
, (a+ b)

) ∣∣∣∣ (n),

as ideals of O(K). In particular , if n is a prime and C = (an + bn)/(a+ b),
then e = vn(C) ∈ {0, 1}. Here, vn is extended to a local field in which K is
dense.

Proof. The proof of the first statement follows from the substitution
γ = a + b and b = γ − a. For the second, note that vn(C) 6= 0 implies
γ ≡ 0 mod p and we may write a = −b + νk · ψ, with ν ∈ K being a
uniformizer above n and ψ ∈ K with vn(ψ) = 0. This leads to the claimed
fact.

Using the same notations, suppose that n is a prime, ζ is a primitive nth
root of unity, while e = vn(C) is defined in Fact 1. Let K ⊂ L = Q(ζ) and

α =
a+ bζ

(1− ζ)e
∈ O(L) and tc(α) =

a+ bζc

(1− ζc)e
.(4)

In the case when K = Q, we have σc(α) = tc(α). We let

P (α) =
n−1∏
c=1

tc(α) =
an + bn

ne(a+ b)
,

a product which is the norm of α when K = Q. Observe that

(5) D(c) := (α, tc(α)) = (1) for any c ∈ {2, 3, . . . , n− 1}.
This follows from the fact that (1− ζ) is ramified and it does not divide α,
while

(1− ζ)eα− tc((1− ζ)eα) = ζ − ζc ∈ D(c), so D(c) | (1− ζ).

Suppose now that

P (α) =
an + bn

ne(a+ b)
= yn, y ∈ O(K).

We consider the ideals A = (α, y) ⊂ O(K) and tc(A) = (tc(α), y) which
satisfy

n−1∏
c=1

(tc(A)) = y and An = (α).(6)

Both identities follow from the definition, using (5). Note that if for instance
n - h(K), the class number of K, then A is principal and there is a β ∈ O(K)
and a unit ε ∈ O(K)× such that

α = ε · βn.(7)
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The following fact is used in the context of the Second Case of Fermat’s
Last Theorem (see e.g. [Wa, Chapter 9]):

Fact 2. Let K = Q[ζ] be the nth cyclotomic field , n - h+
n , and A ⊂ Z[ζ]

an ideal with An = (α) and α ∈ Z[ζ]. Suppose that γ0 = α/α is not a unit
and γ0 ≡ 1 mod n(1− ζ)2. Then A is principal and γ0 = γn with γ ∈ Q[ζ].

The condition (3) has the following consequence:

Fact 3. Let %,$ ∈ Q[ζ]+, set

µa =
%− ζa$
1− ζa

, C =
%n −$n

n(%−$)
,

and suppose that (µa, µb) = 1 for a 6= b. If %n−$n = β · γn and none of the
prime ideals r |β are totally split , then (β, µa) = 1 for all a ∈ {1, . . . , n−1}.
In particular , β | (%−$).

Proof. Note that µa = µ−a. If r |β is a prime ideal such that r |µa for
some a > 0 which is not totally split, let σ fix r. Then

σr = r |σµa.
But since (µa, σ(µa)) = 1, it follows that r = (1), thus proving the claim.

This fact is important in our proof and requires the use of assumption
(3) for our result.

3. Proof of Theorem 1. The building block of the proof is the fol-
lowing proposition which generalizes the idea of Kummer descent (e.g. [Wa,
Chapter 9]). When n |Z, the presence of the parameter B in (1) distin-
guishes this equation from the Second Case of Fermat’s Last Theorem. The
condition (3) is used in order to show that the factor B is essentially unsplit
during the descent process; this is due to Fact 3.

3.1. Kummer descent

Proposition 1. Let n be a prime, let h+
n be the class number of the

maximal real subfield of the nth cyclotomic extension K = Q(ζ), and assume
that (2) is satisfied for n. Let B ∈ Z be such that (3) holds, and set µ =
(1− ζ)(1− ζ). Suppose there are x, y, z ∈ O(K+) such that (x, y, z) = 1 and

(8) xn + yn = η · µm ·B1 · zn with m ≥ n, η ∈ O(K)×,

and B0 = B/(B,nM ) ∈ Z, for some arbitrarily large M , is the n-free part
of B, while B1 is such that there is an N ≥ 1 with B0 |B1 |BN

0 . Then x, y, z
are not units.

Also, there is a further triple (x′, y′, z′) with the same properties as
(x, y, z), and additionally , z′ | z and the number of prime ideals dividing z′

is strictly smaller than the number of divisors of z.
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Proof. We use the facts from Section 2 and let K = Q(ζ) be the nth
cyclotomic extension. Since n | (x + y), we have e = 1 and may define ac-
cordingly

α =
x+ ζy

1− ζ
and C =

xn + yn

n(x+ y)
.

Note that (3) implies by Fact 3 that (B,C) = 1 and B | (x+ y).
The product C is by definition also coprime to n and (8) implies that

C | zn. From α = −y+(x+ y)/(1− ζ) we deduce (α, x+y) = 1. One verifies
that m′ = vµ(x+y) ≥ (n+ 1)/2 and α/α ≡ 1 mod nµ; it follows from Fact 2
that α/α = γn for a γ ∈ Q[ζ].

There is some ideal I | (z) such that (α) = In and I · I is real and so,
by hypothesis, it is principal. Together with the fact that α/α = γn, this
yields, after some computations which are habitual in this context,

tc(α) =
x+ ζcy

1− ζc
= ηc · %nc , ηc ∈ Z[ζ]×, %c ∈ Z[ζ]+, c ∈ P,(9)

α0 :=
x+ y

B1 · µm−n
= η0 · %n0 , η0 ∈ Z[ζ]×, %0 ∈ Z[ζ]+, c ∈ P.(10)

The second identity uses the fact that B1 is coprime to n, while vn
(xn+yn

x+y

)
= 1. Furthermore, since x, y are real, Fact 3 applies, showing that

(
B1,

xn+yn

x+y

)
= 1.

From (9), α/α = (η/η)(%/%)n, and since α/α ≡ 1 mod nµ, the unit is 1.
We must have % 6∈ Z[ζ]×, since otherwise α = α and this would imply
(x + y)/(x+ y) = (1 − ζ)/(1 − ζ) = −ζ; this is impossible since x, y ∈ R.
But N(%) | z and it follows that z cannot be a unit, as claimed.

Let now φc=%c ·%n−c, so η2
c ·φnc = tc(α)tn−c(α)=−xy+(x+ y)2/|1− ζc|2

and
η2
cφ

n
c − η2

dφ
n
d = ε · µ−1(x+ y)2 = η′ · µm′ ·B2

1 · %2n
0 .

We note that ψ = (ηc/ηd)2 ≡ 1 mod n2 ·µ2. It is shown in [Wa, Theorem 9.4]
that the premises (2) imply that ψ = ξn is an nth power. Thus the previous
equation can be rephrased as

(ξφc)n − φnd = εη2
d · µ−1(x+ y)2 = η′ · µm′ ·B2

1 · %2n
0 .(11)

Letting x′ = ξφc, y′ = −φd and z′ = %2
0, we verify the equation (8): indeed,

m′ ≥ 2m−2, B′1 = B2
1 , the unit η′ and the factor %2

0 | z are defined implicitly
by the previous equation; also (%2

0, E) = 1 and since %2
0 ·E = z and E is not

a unit, it follows indeed that z′ | z is divisible by fewer prime ideals than z.
This completes the proof.

We can now prove Theorem 1:

Proof. We assume that there is a non-trivial solution of (1) and n3 |BZ.
Since vn

(
Xn+Y n

n(X+Y )

)
= 0, it follows that n2 | (X+Y ). Thus the premises of (8)



6 P. Mihăilescu

are fulfilled. We can apply Proposition 1 recursively and by this variant of
Kummer descent, we conclude that (8) must have solutions for a sequence of
triples (xi, yi, zi), i ≥ 0, with zi+1 | zi, in which the number of prime ideals
dividing zi is strictly decreasing. However, since no zi is a unit—a fact
which follows by Proposition 1 always one recursion step after the definition
of zi—this leads to a contradiction showing that (2) is false, thus completing
the proof.
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