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Notations. As usual, Z is the ring of rational integers, Z>0 the set of
positive integers, C the field of complex numbers. We denote by h the upper
half-plane, and by Γ the full modular group PSL2(Z). For a complex vari-
able s, we put e(s) = e2πis, ΓR(s) = π−s/2Γ (s/2) and ΓC(s) = 2(2π)−sΓ (s).
We denote by ζ(s) and ζ∗(s) = ΓR(s)ζ(s) the Riemann zeta-function and
the completed Riemann zeta-function, respectively, and denote by σν(n) =∑

d|n d
ν the divisor function. Throughout the paper, z = x + iy (x ∈ R,

y > 0) is a variable on h, and s = σ + it (σ, t ∈ R) is a complex variable.
A sum over the empty set is meant to be zero.

1. Introduction. Let C(s) be the trigonometric function

C(s) := 2 cos(i(s− 1/2)) = es−1/2 + e−(s−1/2).

It satisfies the (trivial) functional equation C(s) = C(1 − s). A well-known
but remarkable fact about C(s) is that it satisfies the Riemann hypothesis:
all zeros of C(s) lie on the central line σ = 1/2 of its functional equation.
We indicate how to prove the Riemann hypothesis for C(s). First, we note
the (trivial) decomposition

C(s) = ϕ(s) + ϕ(1− s), ϕ(s) = es−1/2.

Then we have

C(s) = ϕ(s)
(

1 +
ϕ(1− s)
ϕ(s)

)
,

and find that

(A) ϕ(s) 6= 0 for σ > 1/2,

(B)
∣∣∣∣ϕ(1− s)

ϕ(s)

∣∣∣∣ < 1 for σ > 1/2.
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Property (B) implies that

(C) 1 +
ϕ(1− s)
ϕ(s)

6= 0 for σ > 1/2.

Therefore, C(s) 6= 0 for σ > 1/2 by (A) and (C). The functional equation
gives C(s) 6= 0 if σ 6= 1/2. Hence we obtain the Riemann hypothesis for the
function C(s). Note that C(s) has at least one zero.

Now let L(s) be an entire function satisfying the functional equation

L(s) = L(1− s).
The above argument implies that if L(s) has the decomposition

(1.1) L(s) = ϕ(s) + ϕ(1− s)
such that ϕ(s) satisfies (A) and (B), then the Riemann hypothesis holds for
L(s).

The study of zeros of entire functions along this line has a long history.
The decomposition (1.1) with the function ϕ(s) satisfying (A) and (B) is
possible in several interesting cases.

Consider the case of the Riemann zeta function. Let

φ(x) = 4
∞∑
n=1

(2π2n4x9/2 − 3πn2x5/2)e−πn
2x2
.

Then we have

ξ(s) = s(s− 1)ζ∗(s) =
∞�

1

φ(x)(xs−1/2 + x−s+1/2)
dx

x
.

Replacing φ(x) by

φ∗(x) = π2(x9/2 + x−9/2)e−π(x2+x−2),

which is asymptotically equivalent to φ(x), we obtain

ξ∗(s) =
∞�

1

φ∗(x)(xs−1/2 + x−s+1/2)
dx

x
.

The function ξ∗(s) is similar to ξ(s) in a suitable sense, and has the de-
composition (1.1) such that the corresponding ϕ(s) satisfies (A) and (B) as
well as C(s) [27, pp. 254–291]. For the decomposition of ξ(s) as in (1.1) see
Gonek [4] and Egorov [3].

Other interesting cases are the difference of two zeta functions, the constant
term of the nonholomorphic Eisenstein series, Weng’s zeta functions and a
finite truncation of the Chowla–Selberg formula of Epstein zeta-functions etc.
They were studied by several authors, e.g., Pólya [17], Taylor [26], Stark [20],
Hejhal [6], Ki [9], Lagarias–Suzuki [10], Weng [31–33], Suzuki [22–24],
Hayashi [5], Bauer [1], Müller [13], Velásquez [28] and Suzuki-Weng [25].
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Can we find new examples of zeta- and L-functions L(s) having (1.1)
and satisfying (A) and (B)? In this paper, we show that the Rankin–Selberg
L-function is one of such examples. More precisely, we derive a new formula
(Theorem 1) for the Rankin–Selberg L-function attached to a pair of cusp
forms on the full modular group by using the holomorphic projection of
Sturm [21]. Then the well-known relation between the Rankin–Selberg L-
function and the symmetric square L-function gives a new formula for the
symmetric square L-function (Corollary 1). Using Theorem 1, we define a
function which approximates the Rankin–Selberg L-function. We show that
such an approximate function has a wide zero-free region (Theorem 2), and
this uses the fact that it has the decomposition (1.1) with two properties
similar to (A) and (B).

As a special case of Corollary 1, we obtain Noda’s identity in [14] which
relates the Fourier coefficients of the holomorphic cusp form f and the ze-
ros of the Riemann zeta-function or the zeros of the symmetric square L-
function of f . In addition, Theorem 1 gives an analytic series expansion of
the central value L(1/2, f × g). Note that Mizumoto [12] showed that for
every normalized Hecke eigen cusp form f ∈ Sk1 and every even integer k2

satisfying k2 ≥ k1 and k2 6= 14, there exists a normalized Hecke eigen cusp
form g ∈ Sk2 such that L(1/2, f × g) 6= 0.

There are nice results of Hoffstein–Lockhart [7], Hoffstein–Ramakrish-
nan [8] and Ramakrishnan–Wang [18] about the real zeros of the Rankin–
Selberg L-function. They established the nonexistence of the Siegel zero of
the Rankin–Selberg L-function attached to a pair of cusp forms on GL(2)
and the symmetric square L-function of a cusp form on GL(2). Their results
contain fairly good zero-free regions of the Rankin–Selberg L-function com-
pared with the classical one. We expect that Theorem 1 and improving our
proof of Theorem 2, should imply nice results on the distribution of complex
zeros of the Rankin–Selberg L-function.

This paper is organized as follows. In Section 2, we state main results,
Theorems 1 and 2. In Section 3, we apply the results of Section 2 to S12 and
S24. In Section 4, we review the theory of the Poincaré series, Eisenstein
series, C∞-modular forms and the Rankin–Selberg L-function as prelimi-
naries for the proof of Theorems 1 and 2. In Section 5, we give a proof of
Theorem 1. In Section 6, we prove Theorem 2. In Section 7, we interpret the
argument in Section 5 from the viewpoint of the holomorphic projection of
Sturm. In the Appendix, we give an asymptotic expansion of the associated
Legendre function of the first kind according to Watson [29].

2. Statements of results. Let k be an even integer ≥ 12 and 6= 14.
Let Sk be the vector space of all holomorphic cusp forms of weight k on Γ .
We denote by d = dk the dimension of Sk. For two cusp forms f(z) =
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n=1 af (n)n(k−1)/2e(nz) and g(z) =

∑∞
n=1 ag(n)n(k−1)/2e(nz), the Rankin–

Selberg L-function L(s, f ⊗ g) is defined by

(2.1) L(s, f ⊗ g) =
∞∑
n=1

af (n) ag(n)n−s,

where bar means complex conjugation. The series on the right-hand side
converges absolutely if the real part of s is sufficiently large. In addition, we
define

L(s, f × g) = ζ(2s)L(s, f ⊗ g)

and the completed function

L∗(s, f × g) = 2−k−1ΓC(s+ k − 1)ΓC(s)L(s, f × g )
= π−s(4π)−s−k−1Γ (s)Γ (s+ k − 1)L(s, f × g).

Let F = {f1, . . . , fd} be an orthonormal basis of Sk and let fj(z) =∑∞
n=1 aj(n)n(k−1)/2e(nz) be the Fourier expansion of fj (1 ≤ j ≤ d) at

the cusp i∞. Let m = (m1, . . . ,md) ∈ Zd>0 with 0 < m1 < · · · < md. Define

(2.2) AF ,m =


a1(m1) · · · ad(m1)

...
. . .

...
a1(md) · · · ad(md)

 .

In general, the matrix AF ,m is not invertible. However, if the set of Poincaré
series {Pm1 , . . . , Pmd

} ⊂ Sk is a basis of Sk, then AF ,m is invertible. In
particular, for the vector m0 = (1, . . . , d), the matrix AF ,m0 is invertible by
the classical result of Petersson [15, 16] about the basis problem for elliptic
modular forms. Thus we can always choose a vector m such that AF ,m is
invertible.

Theorem 1. Let k be an even integer ≥12 and 6=14. Let F={f1, . . . , fd}
be an orthonormal basis of Sk and let fj(z) =

∑∞
n=1 aj(n)n(k−1)/2e(nz) be

the Fourier expansion of fj (1 ≤ j ≤ d) at the cusp i∞. Choose m ∈ Zd>0

such that the matrix AF ,m defined by (2.2) is invertible (detAF ,m 6= 0).
Define the set of numbers (αij)1≤i,j≤d by

(2.3) A−1
F ,m = (αij)1≤i,j≤d.

Then

(2.4) (4π)−k+1Γ (k − 1)L∗(s, fi × f j)
= (4π)−s−k+1Γ (s+ k − 1) ζ∗(2s)Dm,ij(s)

+ (4π)s−kΓ (k − s) ζ∗(2s− 1)Dm,ij(1− s)
+ (4π)−k+1Γ (s+ k − 1)Γ (k − s){W+

m,ij(s) +W−m,ij(s)}
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for all 1 ≤ i ≤ j ≤ d in the vertical strip

(2.5) |σ − 1/2| < k/2− 1

except for the point s = 1/2. Here

Dm,ij(s) =
d∑

h=1

αjh ai(mh)m−sh ,(2.6)

W+
m,ij(s) =

d∑
h=1

∞∑
n=1

αjhai(mh + n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2mh + n

n

)
,(2.7)

W−m,ij(s) =
d∑

h=1

mh−1∑
n=1

αjh ai(mh − n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2mh − n

n

)
,(2.8)

with τν(n) = nνσ−2ν(n), and Pµν (z) is the associated Legendre function of
the first kind (see Appendix ). Further , at the point s = 1/2,

(4π)−k+1Γ (k − 1)L∗(1/2, fi × f j)

= (4π)−k+1/2Γ

(
k − 1

2

) d∑
h=1

αjhai(mh)
√
mh

{
Γ ′

Γ

(
k − 1

2

)
+ log

eγ

16π2mh

}

+ (4π)−k+1Γ

(
k − 1

2

)2

{W+
m,ij(1/2) +W−m,ij(1/2)}.

The series W+
m,ij(s) converges absolutely and uniformly on every compact

subset K in (2.5), and has the asymptotic expansion

W+
m,ij(s) =

d∑
h=1

N−1∑
n=1

αjhai(mh + n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2mh + n

n

)
+O(N |σ−1/2|−k/2+1+ε),

where the implied constant depends on F , m and K.

Remark 1. By definition of αij , we have

Dm,ij(0) =
d∑

h=1

αjhai(mh) = δij .

Hence the poles of the first two terms of (2.4) at s = 0, 1 cancel out whenever
i 6= j. This agrees with the fact that the residue of L(s, fi × f j) at s = 1 is
a multiple of the Petersson inner product (fi, fj).
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Let f(z) = 1 +
∑∞

n=2 af (n)n(k−1)/2e(nz) ∈ Sk be a normalized Hecke
eigen cusp form. The symmetric square L-function L(s, sym2f) is defined
by the Euler product

L(s, sym2f) =
∏
p

(1− α2
pp
−s)−1(1− αpβpp−s)−1(1− β2

pp
−s)−1,

where αp and βp are determined by αp + βp = af (p) and αpβp = 1. The
right-hand side converges absolutely if the real part of s is sufficiently large.
The completed L-function L∗(s, sym2f) is defined by

L∗(s, sym2f) = π−3s/2Γ

(
s+ 1

2

)
Γ

(
s+ k − 1

2

)
Γ

(
s+ k

2

)
L(s, sym2f)

= πkΓC(s+ k − 1)ΓC(s)ΓR(s)−1L(s, sym2f).

It is known that L(s, sym2f) and L(s, f × f) are related via

ζ(s)L(s, sym2f) = L(s, f × f).

Therefore we have the equality

2−1(2π)−kζ∗(s)L∗(s, sym2f) = L∗(s, f × f).

Corollary 1. Let F = {f1, . . . , fd} be the orthogonal basis of Sk con-
sisting of normalized Hecke eigen cusp forms. Put f∗j = fj/(fj , fj)1/2 and
F∗ = {f∗1 , . . . , f∗d}. Choose m ∈ Zd>0 such that AF∗,m is invertible. Then

(2.9) 2−k(2π)−2k+1 Γ (k − 1)
(fj , fj)

ζ∗(s)L∗(s, sym2fj)

= (4π)−s−k+1Γ (s+ k − 1)ζ∗(2s)Dm,jj(s)

+ (4π)s−kΓ (k − s)ζ∗(2s− 1)Dm,jj(1− s)
+ (4π)−k+1Γ (s+ k − 1)Γ (k − s){W+

m,jj(s) +W−m,jj(s)}

for all 1 ≤ j ≤ d and all s 6= 1/2 in the vertical strip (2.5), where Dm,jj(s),
W+

m,jj(s) and W−m,jj(s) are defined by (2.6)–(2.8) for the basis F∗ and the
vector m.

Remark 2. In the case Sk = C∆k (k = 12, 16, 18, 20, 22 and 26),
D(m),11(s) is just m−s. Hence, by taking s to be a zero of ζ(s) or a zero
of L(s, sym2∆k), we obtain a new proof of the result of Noda [14, Theo-
rem]. His result is an equality which relates the zeros of the Riemann zeta
function or the zeros of the symmetric square L-functions with the Fourier
coefficients of the holomorphic cusp form ∆k.

Corollary 2. Under the notation of Theorem 1, we have the following
formula for the central value:
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L(1/2, fi × f j) =
(4π)k−1

Γ (k − 1)

d∑
h=1

αjhai(mh)
√
mh

{
Γ ′

Γ

(
k − 1

2

)
+ log

eγ

16π2mh

}
+ 4πk

Γ (2k − 2)
Γ (k − 1)2

{W+
m,ij(1/2) +W−m,ij(1/2)}.

On the right-hand side we have

W+
m,ij(1/2) =

d∑
h=1

N−1∑
n=1

αjhai(mh + n)
σ0(n)√

n
P 1−k
−1/2

(
2mh + n

n

)
+O(N−k/2+1+ε)

for every positive integer N and every positive real number ε.

Considering equations (2.4) and (2.7), we define

(2.10) W+,N
m,ij (s) =

d∑
h=1

N∑
n=1

αjhai(mh + n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2mh + n

n

)
and

LNm,ij(s) = (4π)−s−k+1Γ (s+ k − 1)ζ∗(2s)Dm,ij(s)(2.11)

+ (4π)s−kΓ (k − s)ζ∗(2s− 1)Dm,ij(1− s)
+ (4π)−k+1Γ (s+ k − 1)Γ (k − s){W+,N

m,ij (s) +W−m,ij(s)}

for a positive integer N . In addition, we define

L0
m,ij(s) = (4π)−s−k+1Γ (s+ k − 1)ζ∗(2s)Dm,ij(s)

+ (4π)s−kΓ (k − s)ζ∗(2s− 1)Dm,ij(1− s)

for N = 0. The only difference between LNm,ij(s) and the right-hand side of
(2.4) is in the bracketed expression {· · · }. The functional equations τs−1/2(n)
= τ1/2−s(n) and P 1−k

s−1 (z) = P 1−k
−s (z) imply that LNm,ij(s) satisfies the func-

tional equation

(2.12) LNm,ij(s) = LNm,ij(1− s).

Theorem 2. Let k be an even integer ≥12 and 6= 14. Let F={f1, . . . , fd}
be an orthonormal basis of Sk. Choose m ∈ Zd>0 such that AF ,m is invertible.
Further suppose that there exists δ = δF ,m such that 0 < δ < 1/2, and
Dm,ij(s) has only finitely many zeros in the right half-plane σ ≥ 1/2 − δ.
Then for every nonnegative integer N and every positive real number a there
exists C = Cm,N,a > 0 such that LNm,ij(s) has no zeros in the region

log{C log1/2(|t|+ 1)}
log(|t|+ 1)

<

∣∣∣∣σ − 1
2

∣∣∣∣ < a,
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that is, all zeros of LNm,ij(s) in the strip |σ − 1/2| < a are contained in∣∣∣∣σ − 1
2

∣∣∣∣ ≤ log{C log1/2(|t|+ 1)}
log(|t|+ 1)

.

In particular ,
N(T, σ1, σ2) = Oσ1,σ2(1)

for all 0 < σ1 < σ2, where N(T, σ1, σ2) is the number of zeros of LNm,ij(s)
satisfying σ1 ≤ σ − 1/2 ≤ σ2 and |t| ≤ T counted with multiplicity.

Remark 3. In the case of the Riemann zeta-function, Selberg estab-
lished the estimate

N(T, 1/2 + 4δ)� T 1−δ log T

uniformly for δ ≥ 0 by using his mollification method. Here N(T, a) is
the number of zeros of ζ(s) satisfying σ ≥ a and |t| ≤ T counted with
multiplicity. Hence almost all zeros of ζ(s) lie in the region∣∣∣∣σ − 1

2

∣∣∣∣ ≤ η(t)
log(|t|+ 3)

,

where η(t) is any positive function which increases to infinity. Theorem 2 is
an analogue of this result.

Remark 4. As in Remark 2, D(m),11(s) = m−s if dimSk = 1. Hence the
assumption in Theorem 2 about the location of zeros of Dm,ij(s) is always
satisfied if dimSk = 1. However, in general the location of zeros of Dm,ij(s)
strongly depends on the choice of the vector m (see Section 3).

Remark 5. The existence of the vector m such that LNm,ij(s) has no
zeros in 0 < |σ − 1/2| < 1/2 for all sufficiently large N implies that the
Riemann hypothesis for the Rankin–Selberg L-function L(s, fi×f j) is true.
Therefore such a result is desired for a pair of Hecke eigen cusp forms fi
and fj . However, our proof of Theorem 2 in Section 6 does not need the
condition that fi and fj are Hecke eigen cusp forms. Hence, a new idea
using more precise arithmetic properties of the Fourier coefficients of fi
and fj is needed in order to obtain results in the direction of the Riemann
hypothesis.

3. Examples. In this section, we calculate the central values of L-
functions by applying Corollary 2 to S12 and S24. We calculate the value of
the Petersson inner product according to Rankin [19].

3.1. The case k = 12. In this case dimS12 = 1. As mentioned in
Remark 2, we have D(m),11(s) = m−s by definition (2.6). All members
of S12 are constant multiples of the normalized Hecke eigen cusp form
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Fig. 1. |L0(1/2 + it, ∆×∆)| for 0 ≤ t ≤ 30. Points • are zeros of L(s,∆×∆) on σ = 1/2.

∆(z) = e(z)
∏∞
n=1(1 − e(nz))24 =

∑∞
n=1 τ(n)e(nz). Put f = ∆/(∆,∆)1/2,

and choose m = (m) = (1). Then we have W−(1),11(s) ≡ 0, and

L(1/2, ∆×∆)√
(∆,∆)

=
(4π)11

Γ (11)

{
Γ ′

Γ

(
23
2

)
+ log

eγ

16π2

}
+

4π12Γ (22)
Γ (11)2Γ (12)

∞∑
n=1

τ(n+ 1)
(n+ 1)11

σ0(n)√
n

F

(
1
2
,
1
2
, 12;− 1

n

)
.

Using the value (∆,∆) = 1.03536 . . .× 10−6, we have

L(1/2, ∆×∆) = −7.25563 . . .× 102.

Figure 1 is the graph of the absolute value of

L0(s,∆×∆) =
ω12

√
(∆,∆)

π−s(4π)−s−11Γ (s)Γ (s+ 11)
L0

(1),11(s)

on the critical line σ = 1/2, where ω12 = (4π)11/Γ (11) and

L0
(1),11(s) = (4π)−s−11Γ (s+ 11)ζ∗(2s) + (4π)s−12Γ (12− s) ζ∗(2s− 1).

Figure 2 is the graph of the absolute value of

LN (s,∆×∆) =
ω12

√
(∆,∆)

π−s(4π)−s−11Γ (s)Γ (s+ 11)
LN(1),11(s)

for N = 10 on the critical line σ = 1/2, where

LN(1),11(s) = (4π)−s−11Γ (s+ 11)ζ∗(2s) + (4π)s−12Γ (12− s)ζ∗(2s− 1)

+ (4π)−11Γ (s+ 11)Γ (12− s)
N∑
n=1

τ(n+ 1)
(n+ 1)11/2

ns−1/2σ1−2s(n)√
n

P−11
s−1

(
1 +

2
n

)
.
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Fig. 2. |L10(1/2+ it,∆×∆)| for 0 ≤ t ≤ 30. Points • are zeros of L(s,∆×∆) on σ = 1/2.
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Fig. 3. The thin line is |L0(1/2 + it,∆×∆)| for 0 ≤ t ≤ 30, the line of medium thickness
is |L10(1/2 + it,∆ ×∆)| for 0 ≤ t ≤ 30, and the thick line is |L100(1/2 + it,∆ ×∆)| for
0 ≤ t ≤ 30.

In Figures 1 and 2, dot points • are zeros of L(s,∆×∆) = ζ(s)L(s, sym2∆)
on the critical line ([34, Table 3]). Interestingly, we observe that the lower
zeros of L(s,∆ × ∆) on the critical line are approximated by zeros of the
sum of the Riemann zeta-function L0(s,∆×∆). Needless to say, this is not
true for zeros of L(s,∆×∆) whose imaginary part becomes large. Figure 3
is the comparison of the absolute values |L0(s,∆×∆)|, |L10(s,∆×∆)| and
|L100(s,∆ × ∆)| on the critical line. It shows that to know the value of
L(s,∆×∆) for large |t|, we need many terms in W±m,ij(s) as large as |t|.
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3.2. The case k = 24. This is the first case in which d > 1. We have
dimS24 = 2. Two functions f and g given by

f(z) = E12(z)∆(z) + 12
(

27017
691

+
√

144169
)
∆2(z)

=
∞∑
n=1

Af (n)e(nz),

g(z) = E12(z)∆(z) + 12
(

27017
691

−
√

144169
)
∆2(z)

=
∞∑
n=1

Ag(n)e(nz)

are distinct normalized Hecke eigen cusp forms of S24, where

E12(z) = 1 +
65520
691

∞∑
n=1

σ11(n)e(nz).

Put F = {f/(f, f)1/2, g/(g, g)1/2}. Then F is an orthonormal basis of S24.
Applying Corollary 2 to m = (1, 2), we obtain

L(1/2, f × f)
(f, f)

=
1
D

(4π)23

Γ (23)

{
Γ ′

Γ

(
47
2

)(
Ag(2)−

Af (2)√
2

)
+
(
Ag(2) log

eγ

16π2m
−
Af (2)√

2
log

eγ

32π2m

)}
+

1
D

4π24Γ (46)
Γ (23)2Γ (24)

{ ∞∑
n=1

Ag(2)
Af (n+ 1)
(n+ 1)23

σ0(n)√
n

F

(
1
2
,
1
2
, 24;− 1

n

)

− 223
∞∑
n=1

Af (n+ 2)
(n+ 2)23

σ0(n)√
n

F

(
1
2
,
1
2
, 24;− 2

n

)
− 223F

(
1
2
,
1
2
, 24;−1

)}
,

L(1/2, f × g)√
(f, f)(g, g)

=
Af (2)
D

√
(g, g)√
(f, f)

(4π)23

Γ (23)

{
Γ ′

Γ

(
47
2

)(
1−
√

2√
2

)
+
(

1√
2

log
eγ

32π2m
− log

eγ

16π2m

)}
− 1
D

4π24Γ (46)
Γ (23)2Γ (24)

√
(g, g)√
(f, f)

{ ∞∑
n=1

Af (2)
Af (n+ 1)
(n+ 1)23

σ0(n)√
n

F

(
1
2
,
1
2
, 24;− 1

n

)

− 223
∞∑
n=1

Af (n+ 2)
(n+ 2)23

σ0(n)√
n

F

(
1
2
,
1
2
, 24;− 2

n

)
− 223F

(
1
2
,
1
2
, 24;−1

)}
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and
L(1/2, g × g)

(g, g)
=

1
D

(4π)23

Γ (23)

{
Γ ′

Γ

(
47
2

)(
Ag(2)√

2
−Af (2)

)
+
(
Ag(2)√

2
log

eγ

32π2m
−Af (2) log

eγ

16π2m

)}
− 1
D

4π24Γ (46)
Γ (23)2Γ (24)

{ ∞∑
n=1

Af (2)
Ag(n+ 1)
(n+ 1)23

σ0(n)√
n

F

(
1
2
,
1
2
, 24;− 1

n

)

− 223
∞∑
n=1

Ag(n+ 2)
(n+ 2)23

σ0(n)√
n

F

(
1
2
,
1
2
, 24;− 2

n

)
− 223F

(
1
2
,
1
2
, 24;−1

)}
,

where D=Ag(2)− Af (2). As (f, f)=1.28993× 10−4 and (g, g)=1.07837×
10−4, we obtain the central values

L(1/2, f × f) = −3.07917 . . . ,

L(1/2, f × g) = +9.79843 . . .× 10−3,

L(1/2, g × g) = −2.55952 . . . .
Further, if detAF ,m 6= 0, we have

(3.1)

Dm,11(s) =
1
Dm

{
Af (m1)Ag(m2)

ms
1

−
Af (m2)Ag(m1)

ms
2

}
,

Dm,12(s) =
Af (m1)Af (m2)

Dm

√
(g, g)√
(f, f)

{
1
ms

2

− 1
ms

1

}
,

Dm,21(s) =
Ag(m1)Ag(m2)

Dm

√
(f, f)√
(g, g)

{
1
ms

1

− 1
ms

2

}
,

Dm,22(s) =
1
Dm

{
Af (m1)Ag(m2)

ms
2

−
Af (m2)Ag(m1)

ms
1

}
,

where Dm = Af (m1)Ag(m2)−Af (m2)Ag(m1). We find that AF ,(1,2), AF ,(2,3)

and AF ,(3,5) are invertible by calculating their determinants directly. Using
(3.1), we can determine the location of zeros of Dm,11(s) for a given vector m.
For example, all zeros of Dm,11(s) lie on the line σ = 0.343579 . . . for m =
(1, 2), σ = −5.69519 . . . for m = (2, 3) and σ = 1.72665 . . . for m = (3, 5).
These examples show that the location of zeros of Dm,ij(s) strongly depends
on the choice of the vector m. It is not clear whether we can always choose
a vector m such that Dm,ij(s) satisfies the assumption of Theorem 2 in the
case of large dimension of Sk.

4. Preliminaries

4.1. Poincaré series. Let m be a nonnegative integer. The mth Poincaré
series Pm(z) of weight k on Γ is defined by
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Pm(z) =
∑

γ∈Γ∞\Γ

j(γ, z)−ke(mγz),

where Γ∞ =
{
±
(

1 n
1

)
: n ∈ Z

}
⊂ Γ and j(γ, z) = cz + d for γ =

(
a b
c d

)
. If

k > 2, the series on the right-hand side converges absolutely and uniformly
on every compact subset of h. If m ≥ 1, Pm(z) is a cusp form, or may
vanish identically. In particular, Pm(z) vanishes identically for k ≤ 10 and
k = 14, since a cusp form of weight k on Γ exists only for k = 12 and k ≥ 16.
Petersson [15, 16] showed that a basis of Sk can be chosen from the Poincaré
series Pm(z), and the set {P1(z), . . . , Pd(z)} (d = dimSk) is a basis of Sk.

4.2. Nonholomorphic Eisenstein series. The nonholomorphic Eisenstein
series E(z, s) is defined by

E(z, s) =
∑

γ∈Γ∞\Γ

(Im γz)s =
1
2

∑
(c,d)∈Z2

(c,d)=1

ys

|cz + d|2s
.

The right-hand side converges absolutely for σ > 1. The modified function

E∗(z, s) = ζ∗(2s)E(z, s)

is often called the completed nonholomorphic Eisenstein series. The function
E∗(z, s) is continued meromorphically to the whole s-plane, and is holomor-
phic except for simple poles at s = 0 and 1. It satisfies the functional equa-
tion E∗(z, s) = E∗(z, 1 − s). On the other hand, E((az + b)/(cz + d), s) =
E(z, s) for every

(
a b
c d

)
∈ Γ . Hence, in particular, E∗(z, s) has the Fourier

expansion

E∗(z, s) =
∞∑
n=0

an(y, s) cos(2πnx),

where

(4.1) a0(y, s) =
{
ζ∗(2s)ys + ζ∗(2s− 1)y1−s, s 6= 0, 1/2, 1,
y1/2 log y + (γ − log 4π)y1/2, s = 1/2,

and

(4.2) an(y, s) = 4
√
y
∞∑
n=1

τs−1/2(n)Ks−1/2(2πny)

for n 6= 0. Here γ = 0.57721 . . . is the Euler constant, τν(n) = nνσ−2ν(n),
σν(n) =

∑
d|n d

ν and Kν(t) is the K-Bessel function.

4.3. C∞-modular forms. A smooth function f on h satisfying f(γz) =
j(γ, z)kf(z) for every γ ∈ Γ is called a C∞-modular form of weight k. The
Petersson inner product (f, g) of C∞-modular forms f and g is defined by

(f, g) :=
�

Γ\h

f(z) g(z) yk−2 dx dy,
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if the right-hand side converges. In particular, (f, g) is defined if one of f
and g belongs to Mk, and the other to Sk, where Mk is the space of all
holomorphic modular forms of weight k on Γ . A C∞-modular form f of
weight k is called a C∞-modular form of bounded growth if

(4.3)
∞�

0

1�

0

|f(z)|yk−2e−εy dx dy <∞ for every ε > 0.

4.4. Inner product with Poincaré series. Let f(z) =
∑

n∈Z an(y)e(nx)
be a C∞-modular form of bounded growth. By the unfolding method we
derive

(f, Pm) =
∞�

0

1�

0

f(z)e(−mz)yk−2 dx dy

for all m ≥ 0. Substituting the Fourier expansion of f for the right-hand
side, we obtain

(4.4) (f, Pm) =
∞�

0

am(y)e−2πmyyk−2 dy (m ≥ 0).

Interchanging integration and summation is justified by the growth con-
dition (4.3) ([21, Proposition 1]). Hence, equality (4.4) holds for all C∞-
modular forms of bounded growth. Thus we have

(f, Pm) = af (m)m(k−1)/2
∞�

0

e−4πmyyk−2 dy

= (4π)−k+1Γ (k − 1)af (m)m−(k−1)/2

for every nonnegative integer m, since the holomorphic cusp form f(z) =∑∞
n=1 af (n)n(k−1)/2e(nz) satisfies the condition (4.3).

4.5. Rankin–Selberg L-functions. Let f(z) =
∑∞

n=1 af (n)n(k−1)/2e(nz)
and g(z) =

∑∞
n=0 ag(n)n(k−1)/2e(nz) be modular forms in Sk and Mk, re-

spectively. The Rankin–Selberg L-function L(s, f ⊗ g) is defined by (2.1) if
the real part of s is sufficiently large. The function F (z) = ykf(z) g(z) is a
bounded Γ -invariant function on h with rapid decay as y → +∞. Its Fourier
expansion is

F (x+ iy) = ykf(z) g(z)

= yk
∑
n∈Z

( ∞∑
m=1−n

af (m+n) ag(m) (m+n)(k−1)/2m(k−1)/2e−2π(2m+n)y
)
e(nx).
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Therefore we obtain
�

Γ\h

ykf(z) g(z)E(z, s) dµ(z)

=
∞�

0

( ∞∑
n=1

af (n) ag(n)nk−1e−4πny
)
ys+k−1 dy

y

for σ > 1 by the unfolding method. The right-hand side is equal to

(4π)−s−k+1Γ (s+ k − 1)
∞∑
m=1

af (n) ag(n)n−s

for σ > k/2 + 1, since the series converges absolutely there by the estimates
af (n) = O(n1/2) and ag(n) = O(n(k−1)/2). Hence we obtain

(fE∗s , g) =
�

Γ\h

ykf(z) g(z)E∗(z, s) dµ(z)(4.5)

= π−s(4π)−s−k+1Γ (s)Γ (s+ k − 1)L(s, f × g)

for σ > k/2 + 1, where E∗s (z) = E∗(z, s). The left-hand side is defined for
all s ∈ C except for the poles of E∗(z, s), since f is a cusp form. Therefore
(4.5) gives the meromorphic continuation of L(s, f × g) to C.

5. Proof of Theorem 1. Theorem 1 is a consequence of the following
proposition.

Proposition 1. Let F = {f1, . . . , fd} be an orthonormal basis of Sk,
and let fj(z) =

∑∞
n=1 aj(n)n(k−1)/2e(nz) be the Fourier expansion of fj

at i∞. For every f ∈ Sk,

(5.1) (4π)−k+1Γ (k − 1)
d∑
j=1

aj(m)L∗(s, f × f j)

= af (m)[(4π)−s−k+1Γ (s+ k − 1)ζ∗(2s)m−s

+ (4π)s−kΓ (k − s)ζ∗(2s− 1)ms−1]

+ (4π)−k+1Γ (s+ k − 1)Γ (k − s)

×
m−1∑
n=1

af (m− n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2m− n
n

)
+ (4π)−k+1Γ (s+ k − 1)Γ (k − s)

×
∞∑
n=1

af (m+ n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2m+ n

n

)
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in the strip (2.5) if the first term af (m)[· · · ] in (5.1) is replaced by

af (m)(4π)−k+1/2Γ

(
k − 1

2

){
Γ ′

Γ

(
k − 1

2

)
+ log

eγ

16π2m

}
1√
m

at the point s = 1/2. The series on the right-hand side of (5.1) converges
absolutely and uniformly on every compact subset of the vertical strip (2.5).

Proof. We denote E∗(z, s) by E∗s (z). Calculating the Petersson inner
product (fE∗s , Pm) in two ways, we will obtain Proposition 1.

Let m be a positive integer, and let F = {f1, . . . , fd} be an orthonormal
basis of Sk. Expanding Pm(z) with respect to the basis F , we have

Pm(z) = (4π)−k+1Γ (k − 1)m−(k−1)/2
d∑
j=1

aj(m) fj(z),

where aj(m) is the mth Fourier coefficient of fj . Using this expansion, we
obtain the first formula

(5.2) (fE∗s , Pm) = (4π)−k+1Γ (k − 1)m−(k−1)/2
d∑
j=1

aj(m)L∗(s, f × f j)

for σ > 1. Further (5.2) holds for all s ∈ C, since f is a cusp form. By
Lemma 1 of [14], the product f(z)E(z, s) is a C∞-modular form of bounded
growth for 0 < σ < 1. Hence, by (4.4), we have

(5.3) (fE∗s , Pm) =
∞�

0

( ∞∑
n=1

af (n)am−n(y, s)n(k−1)/2e−2πny
)
e−2πmyyk−2 dy

for 0 < σ < 1, where an(y, s) is the nth Fourier coefficient of E∗(z, s) given
in (4.1) and (4.2). Formally, the right-hand side of (5.3) is equal to

m−1∑
n=0

af (m− n)(m− n)(k−1)/2
∞�

0

an(y, s)e−2π(2m−n)yyk−2 dy

+
∞∑
n=1

af (m+ n)(m+ n)(k−1)/2
∞�

0

an(y, s)e−2π(2m+n)yyk−2 dy.

This formal calculation is justified, since interchanging summation and in-
tegration is allowed by the estimates
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|a0(y, s)| � yσ + y1−σ,

|an(y, s)| � yσ|σ1−2s(n)|e−πny/2 (n 6= 0),

and Fubini’s theorem. For n = 0 and s 6= 0, 1/2, 1, we have

(5.4)
∞�

0

a0(y, s)e−4πmyyk−2 dy

= ζ∗(2s)
∞�

0

e−4πmyyk+s−2 dy + ζ∗(2s− 1)
∞�

0

e−4πmyyk−s−1 dy

= (4πm)−s−k+1Γ (s+ k − 1)ζ∗(2s) + (4πm)s−kΓ (k − s)ζ∗(2s− 1).

For n = 0 and s = 1/2, we have

(5.5)
∞�

0

a0(y, 1/2)e−4πmyyk−2 dy

=
∞�

0

e−4πmyyk−3/2 log y dy + (γ − log 4π)
∞�

0

e−4πmyyk−3/2 dy

= (4πm)−k+1/2Γ

(
k − 1

2

){
Γ ′

Γ

(
k − 1

2

)
+ log

eγ

16π2m

}
.

For n ≥ 1, we have

(5.6)
∞�

0

an(y, s)e−2π(2m±n)yyk−2 dy

= 2τs−1/2(n)
∞�

0

Ks−1/2(2πny)e−2π(2m±n)yyk−3/2 dy

= (4π)−k+1m−k+1Γ (s+ k − 1)Γ (k − s)

×
τs−1/2(n)
√
n

(
m

m± n

)(k−1)/2

P 1−k
s−1

(
2m± n
n

)
by using the formula

∞�

0

Kν(x)e−axxµ−1 dx =
√
π

2
Γ (µ+ ν)Γ (µ− ν)

(a2 − 1)µ/2−1/4
P
−µ+1/2
ν−1/2 (a)

for Re(a) > −1 and Re(µ) > |Re(ν)| ([30, p. 388]). By (5.3), (5.4) and (5.6),
we obtain the second formula
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(fE∗s , Pm) = m−(k−1)/2af (m)[(4π)−s−k+1m−sΓ (s+ k − 1)ζ∗(2s)(5.7)

+ (4π)s−kms−1Γ (k − s)ζ∗(2s− 1)]

+m−(k−1)/2(4π)−k+1Γ (s+ k − 1)Γ (k − s)

×
m−1∑
n=1

af (m− n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2m− n
n

)
+m−(k−1)/2(4π)−k+1Γ (s+ k − 1)Γ (k − s)

×
∞∑
n=1

af (m+ n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2m+ n

n

)
.

Combining (5.2) and (5.7), we obtain (5.1) for 0 < σ < 1 except for s = 1/2.
For s = 1/2, we use (5.5) instead of (5.4).

To complete the proof of Proposition 1, it suffices to show that the series
on the right-hand side of (5.1) converges absolutely in the vertical strip (2.5),
since the left-hand side of (5.1) is defined for all s ∈ C except for the possible
poles at s = 1 and 0. Moreover, it suffices to show that the series

(5.8)
∞∑
n=1

af (m+ n)
τs−1/2(n)
√
n

P k−1
s−1

(
2m+ n

n

)
converges absolutely in the strip (2.5), since

P 1−k
s−1 (z) =

Γ (s− k + 1)
Γ (s+ k − 1)

P k−1
s−1 (z)

for every positive integer k ≥ 2. Suppose that |af (n)| � n1/2−α+ε for some
real number 0 ≤ α ≤ 1/2. Then

∞∑
n=1

|af (m+ n)|
|τs−1/2(n)|
√
n

∣∣∣∣P k−1
s−1

(
2m+ n

n

)∣∣∣∣
�m

∞∑
n=1

n|σ−1/2|−α+ε

∣∣∣∣P k−1
s−1

(
2m+ n

n

)∣∣∣∣,
since |τs−1/2(n)| = |ns−1/2σ1−2s(n)| �ε n

|σ−1/2|+ε. Using the formula

P k−1
s−1 (z) =

Γ (s+ k − 1)(z2 − 1)(k−1)/2

2k−1
√
π Γ (k − 1/2)Γ (s− k + 1)

×
π�

0

(z +
√
z2 − 1 cos θ)s−k sin2k−2 θ dθ

for Re(z) > 0 and k ≥ 1 ([11, p. 199]), we have∣∣∣∣P k−1
s−1

(
2m+ n

n

)∣∣∣∣�m n−(k−1)/2.
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Hence we obtain

|series (5.8)| �m

∞∑
n=1

n|σ−1/2|−(k−1)/2−α+ε.

The right-hand side converges absolutely for 2 − k/2 − α < Re(s) < k/2 +
α − 1. Hence the Ramanujan–Deligne estimate |af (n)| �ε n

ε implies that
the series on the right-hand side of (5.1) converges absolutely in the vertical
strip (2.5).

Proof of Theorem 1. Let F = {f1, . . . , fd}, m = (m1, . . . ,md) ∈ Zd>0

with 0 < m1 < · · · < md and {αij} be as in the statement of the theorem.
By Proposition 1,

(5.9) (4π)−k+1Γ (k − 1)AF ,m LF ,f (s) = Nm,f (s),

where

LF ,f (s) =


L∗(s, f × f1)

...
L∗(s, f × fd)

 , Nm,f (s) =


Nf (s,m1)

...
Nf (s,md)

 ,

and

Nf (s,mh) = af (mh)[(4π)−s−k+1Γ (s+ k − 1)ζ∗(2s)m−sh
+ (4π)s−kΓ (k − s)ζ∗(2s− 1)ms−1

h ]

+ (4π)−k+1Γ (s+ k − 1)Γ (k − s)

×
mh−1∑
n=1

af (mh − n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2mh − n

n

)
+ (4π)−k+1Γ (s+ k − 1)Γ (k − s)

×
∞∑
n=1

af (mh + n)
τs−1/2(n)
√
n

P 1−k
s−1

(
2mh + n

n

)
.

Multiplying (5.9) by the inverse matrix A−1
F ,m, we have

(4π)−k+1Γ (k − 1)LF ,f (s) = A−1
F ,mNm,f (s).

Comparing the jth components of both sides, we obtain

(4π)−k+1Γ (k − 1)L∗(s, f × f j) =
d∑

h=1

αjhNf (s,mh).

Taking f = fi, we obtain equality (2.4) of Theorem 1.

6. Proof of Theorem 2. It suffices to investigate the zeros of LNm,ij(s) in
σ ≥ 1/2, because of the functional equation (2.12) of LNm,ij(s). By definition



38 M. Suzuki

(2.11) of LNm,ij(s), we have

(6.1) LNm,ij(s) = (4π)−s−k+1Γ (s+ k − 1)ζ∗(2s)Dm,ij(s){1 +RNm,ij(s)},

where

RNm,ij(s) = (4π)2s−1 Γ (k − s)ζ∗(2s− 1)
Γ (s+ k − 1)ζ∗(2s)

Dm,ij(1− s)
Dm,ij(s)

+ (4π)s
Γ (k − s){W+,N

m,ij (s) +W−m,ij(s)}
ζ∗(2s)Dm,ij(s)

.

By the assumption on the location of zeros of Dm,ij(s) in Theorem 2, the
factor ζ∗(2s)Dm,ij(s) in (6.1) has only finitely many zeros in σ ≥ 1/2. Hence,
if the inequality

|RNm,ij(s)| < 1

is valid for 1/2 < σ ≤ a and sufficiently large |t|, then LNm,ij(s) 6= 0 in that
region. Now we show that there exists TN,a,ε > 1 such that

(6.2) |RNm,ij(σ + it)| � |t|1−2σ log |t|

for 1/2 ≤ σ ≤ a and |t| ≥ TN,a,ε. We define

Im,ij(s) = (4π)2s−1 Γ (k − s)ζ∗(2s− 1)
Γ (s+ k − 1)ζ∗(2s)

Dm,ij(1− s)
Dm,ij(s)

,(6.3)

JNm,ij(s) = (4π)s
Γ (k − s){W+,N

m,ij (s) +W−m,ij(s)}
ζ∗(2s)Dm,ij(s)

(6.4)

so that

(6.5) RNm,ij(s) = Im,ij(s) + JNm,ij(s).

For Im,ij(s) and JNm,ij(s), we obtain the following estimates.

Lemma 1. There exists T1 > 0 such that

|Im,ij(s)| = O(|t|1−2σ)

for 1/2 ≤ σ ≤ a and |t| ≥ T1, where the implied constant depends on m, i
and j.

Lemma 2. There exists T2 > 0 such that

|JNm,ij(s)| = O(|t|1−2σ log |t|)

for 1/2 ≤ σ ≤ a and |t| ≥ T2, where the implied constant depends on N , m,
i and j.

Lemma 1, Lemma 2 and (6.5) imply (6.2). Hence the proof of Theorem 2
will be completed if we prove Lemmas 1 and 2. To do that, we use the
following lemma.
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Lemma 3. Let g(s) be an exponential polynomial having the form

g(s) =
n∑
j=1

pje
βjs, 0 = β0 < β1 < · · · < βn,

where 0 6= pj ∈ C (0 ≤ j ≤ n). Then |g(s)| is uniformly bounded away from
zero if s is uniformly separated from the zeros of g(s).

Proof. See Theorem 12.6 of [2].

Proof of Lemma 1. Let ξ(s) = s(s− 1)ζ∗(s). We have∣∣∣∣(4π)2s−1 Γ (k − s)ζ∗(2s− 1)
Γ (s+ k − 1)ζ∗(2s)

∣∣∣∣ =
∣∣∣∣ t4π

∣∣∣∣1−2σ 1 +O(|t|−1)
1 +O(|t|−1)

∣∣∣∣ s

s− 1

∣∣∣∣ ∣∣∣∣ξ(2s− 1)
ξ(2s)

∣∣∣∣
for 1/2 ≤ σ ≤ a and |t| ≥ 1 by using Stirling’s formula

|Γ (σ + it)| =
√

2π |t|σ−1/2e−(π/2)|t|(1 +O(|t|−1))

for σ1 ≤ σ ≤ σ2 and |t| ≥ 1. By the proof of Theorem 2 in [10], we have∣∣∣∣ξ(2s− 1)
ξ(2s)

∣∣∣∣ ≤ 1

for σ ≥ 1/2. Hence, we obtain

(6.6)
∣∣∣∣(4π)2s−1 Γ (k − s)ζ∗(2s− 1)

Γ (s+ k − 1)ζ∗(2s)

∣∣∣∣ = O(|t|1−2σ)

for 1/2 ≤ σ ≤ a and |t| ≥ t1 (> 1). By Lemma 3 and the assumption on the
location of zeros of Dm,ij(s), we have

(6.7)
∣∣∣∣Dm,ij(1− s)

Dm,ij(s)

∣∣∣∣ = O(1)

for 1/2 ≤ σ ≤ a and |t| ≥ t2. By (6.3), (6.6) and (6.7), we obtain the
estimate in Lemma 1.

Proof of Lemma 2. The asymptotic formula (A.1) of the Appendix yields

(4π)s
Γ (k − s)
ζ∗(2s)

P 1−k
s−1 (cosh ζ)

=
(2π)2s√

π

Γ (k − s)
Γ (s+ k − 1)

1
ζ(2s)

1
(s− 1)1/2

e−ζ/2√
1− e−2ζ

× [e(s−1/2)ζ + e±πi(k−1/2)e(−s+1/2)ζ +O(|s− 1|−1)],
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where the implied constant depends on ζ > 0. Therefore,∣∣∣∣(4π)s
Γ (k − s)
ζ∗(2s)

P 1−k
s−1 (cosh ζ)

∣∣∣∣
=

(2π)2σ√
π

∣∣∣∣ Γ (k − s)
Γ (s+ k − 1)

∣∣∣∣ 1
|ζ(2s)|

1√
|s− 1|

× e−ζ/2√
1− e−2ζ

[e(σ−1/2)ζ + e(−σ+1/2)ζ +O(|s− 1|−1)].

Using Stirling’s formula, we have∣∣∣∣ Γ (k − s)
Γ (s+ k − 1)

∣∣∣∣ = |t|1−2σ 1 +O(|t|−1)
1 +O(|t|−1)

� |t|1−2σ

for 1/2 ≤ σ < a and |t| ≥ t3. On the other hand,

1
|ζ(s)|

= O(log(|t|+ 2))

for σ ≥ 1−A/log(|t|+ 2) ([27, p. 60]). Hence we have

(6.8)
∣∣∣∣(4π)s

Γ (k − s)
ζ∗(2s)

P 1−k
s−1 (cosh ζ)

∣∣∣∣ = O(|t|1−2σ log |t|)

for 1/2 − A′/log |t| ≤ σ ≤ a and |t| ≥ t4. By Lemma 3 and the assumption
on the location of zeros of Dm,ij(s), we have

(6.9)
∣∣∣∣ 1
Dm,ij(s)

∣∣∣∣ = O(1)

for 1/2 ≤ σ ≤ a and |t| ≥ t5. Here we note that

(6.10)
1 +

2
mh − 1

<
2mh − n

n
< 2mh − 1 (1 ≤ n ≤ mh − 1, 1 ≤ h ≤ d),

1 +
2mh

N
<

2mh + n

n
< 2mh + 1 (1 ≤ n ≤ N, 1 ≤ h ≤ d)

for fixed m = (m1, . . . ,md). Combining (2.10), (6.4), (6.8), (6.9) and (6.10),
we obtain Lemma 2.

7. Relation with the holomorphic projection. In this section, we
reconsider the argument of Section 5 from the viewpoint of the holomorphic
projection of Sturm [21]. Let F = {f1, . . . , fd} be an orthonormal basis
of Sk. Define

(7.1) K(z, w) =
d∑
i=1

fi(z) fi(w).
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Then K(z, w) belongs to Sk as a function of z ∈ h for every fixed w ∈ h,
and has the reproducing property:

(7.2) (g(z),K(z, w)) = g(w) for any g ∈ Sk.
For a C∞-modular form F of bounded growth, we define

π(F )(w) := (F (z),K(z, w)).

Then π(F )(w) belongs to Sk, and is called the holomorphic projection of F .
Using the formula

(7.3) K(z, w) =
∞∑
m=1

(4πm)k−1

Γ (k − 1)
Pm(z)e(−mw)

([21, p. 333]), we obtain

(7.4) π(F )(w) =
∞∑
m=1

(4πm)k−1

Γ (k − 1)
(F, Pm)e(mw),

where the inner product (F, Pm) is given by (4.4). Using (7.2), we have(
(F (z),K(z, w)), g(w)

)
=
(
F (z), (g(w),K(w, z))

)
= (F (z), g(z)).

Hence, we obtain

(7.5) (F, g) = (π(F ), g).

Applying (7.5) to F (z) = (fE∗s )(z) := f(z)E∗(z, s), we have

(7.6) L∗(s, f × g) = (π(fE∗s ), g)

by (4.5) (compare (7.6) with (2.10) of [12]). By (7.3) and (7.5), we have

(7.7) (F, g) = (π(F ), g) =
∞∑
m=1

(4πm)k−1

Γ (k − 1)
φm(g)(F, Pm),

where
φm(g) =

�

Γ\h

g(w) e(mw) dµ(w).

Applying (7.7) to F = fE∗s , we obtain

(7.8) L∗(s, f × g) =
∞∑
m=1

(4πm)k−1

Γ (k − 1)
φm(g)(fE∗s , Pm)

by (7.6). However, this formula for L(s, f × g) is not useful for application,
because each φm(g) depends on a choice of a fundamental domain of Γ .

To improve formula (7.8) of L(s, f × g), we consider the Fourier co-
efficients of π(fE∗s ). Let F = {f1, . . . , fd} be an orthogonal basis of Sk.
Applying (7.4) to F = fE∗s , we have

(7.9) π(fE∗s )(z) =
∞∑
m=1

(4πm)k−1

Γ (k − 1)
(fE∗s , Pm)e(mz).
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Because π(fE∗s ) ∈ Sk, there exist functions Cj(s) of s such that

(7.10) π(fE∗s )(z) =
d∑
j=1

Cj(s)fj(z).

By (7.1) and (7.6), we have

(7.11) Cj(s) =
1

(fj , fj)
(π(fE∗s ), fj) =

1
(fj , fj)

L∗(s, f × f j).

Here we have used the Fourier expansion fj(z) =
∑∞

n=1 aj(n)n(k−1)/2e(nz).
Combining (7.9)–(7.11), and comparing the mth Fourier coefficients of both
sides, we obtain
d∑
j=1

Cj(s)aj(m) =
d∑
j=1

aj(m)
(fj , fj)

L∗(s, f × f j) =
(4πm)k−1

Γ (k − 1)
(fE∗s , Pm)

=
af (m)
(f, f)

{
(4πm)−s

Γ (s+ k − 1)
Γ (k − 1)

ζ∗(2s) + (4πm)s−1 Γ (k − s)
Γ (k − 1)

ζ∗(2s− 1)

+
Γ (s+ k − 1)Γ (k − s)

Γ (k − 1)

m−1∑
n=1

af (m− n)
af (m)

τs(n)√
n
P 1−k
s−1

(
2m− n
n

)

+
Γ (s+ k − 1)Γ (k − s)

Γ (k − 1)

∞∑
n=1

af (m+ n)
af (m)

τs(n)√
n
P 1−k
s−1

(
2m+ n

n

)}
.

This is nothing other than equality (5.1).

Appendix. Asymptotic expansion of Pµν (z). In this section, we
give an asymptotic expansion of the associated Legendre functions Pµν (z)
for large |ν| according to Watson [29], where ν and µ do not have to be
integers. The associated Legendre function Pµν (z) of the first kind is defined
by

Pµν (z) =
1

Γ (1− µ)

(
z + 1
z − 1

)µ/2
F

(
−ν, ν + 1, 1− µ;

1− z
2

)
for z − 1 ∈ C \ (−∞, 0]. We write z = cosh ζ, ζ = ξ + iη (ξ, η ∈ R) for
z − 1 ∈ C \ (−∞, 0], and define the values ωi = ωi(z) (i = 1, 2) by

ω1 = − arctan
(
η − π
ξ

)
, ω2 = arctan

(
η

ξ

)
if η ≥ 0, and by

ω1 = − arctan
(
η

ξ

)
, ω2 = − arctan

(
η + π

ξ

)
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if η ≤ 0. In each case arctan denotes an acute angle, positive or negative.
Define

τ = log
(
t− z
t2 − 1

)
+ log(2eζ).

We define the numbers cn and dn by using the expansion

(1− t)µ(1 + t)−µ(z − t)−1 dt

dτ
= ±C

∞∑
n=0

cnτ
n−1/2 +

∞∑
n=0

dnτ
n,

where C = 2−1(1 − eζ)µ+1/2(1 + eζ)1/2−µ(z − eζ)−1 and multiple-valued
functions are specified by the conventions

|arg(1− eζ)| < π, |arg(1 + eζ)| < π.

In particular,

c0 = 1, c1 =
8µ2 − 3 + 3e2ζ

4(1− e2ζ)
.

We define the numbers c′n from cn by changing the sign of ζ. In particular,

c′0 = 1, c′1 =
8µ2 − 3 + 3e−2ζ

4(1− e−2ζ)
.

Proposition 2 (Watson). Let z be a complex number such that z− 1 ∈
C\(−∞, 0]. In the range of arg ν depending on z and given by

−π
2
− ω2 + δ ≤ arg ν ≤ π

2
+ ω1 + δ,

the associated Legendre function Pµν (z) has the asymptotic expansion

Pµν (z) =
Γ (ν + 1)

Γ (ν − µ+ 1)
e−ζ/2

(νπ)1/2(1− e−2ζ)1/2
(A.1)

×
[
e(ν+1/2)ζ

N−1∑
n=0

Γ (n+ 1/2)
Γ (1/2)

cnν
−n

+ e∓πi(µ−1/2)e−(ν+1/2)ζ
N−1∑
n=0

Γ (n+ 1/2)
Γ (1/2)

c′nν
−n +O(|ν|−N )

]
as |ν| → +∞, where the implied constant depends on z and µ.
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[6] D. A. Hejhal, On a result of G. Pólya concerning the Riemann ξ-function, J. Anal.
Math. 55 (1990), 59–95.

[7] J. Hoffstein and P. Lockhart, Coefficients of Maass forms and the Siegel zero, Ann.
of Math. (2) 140 (1994), 161–181 (with an appendix by D. Goldfeld, J. Hoffstein
and D. Lieman).

[8] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cusp forms, Int. Math. Res.
Notices 1995, no. 6, 279–308.

[9] H. Ki, All but finitely many non-trivial zeros of the approximations of the Epstein
zeta function are simple and on the critical line, Proc. London Math. Soc. (3) 90
(2005), 321–344.

[10] J. C. Lagarias and M. Suzuki, The Riemann hypothesis for certain integrals of
Eisenstein series, J. Number Theory 118 (2006), 98–122.

[11] N. N. Lebedev, Special Functions and Their Applications, Dover Publ., New York,
1972.

[12] S. Mizumoto, Certain L-functions at s = 1/2, Acta Arith. 88 (1999), 51–66.
[13] W. Müller, A spectral interpretation of the zeros of the constant term of certain

Eisenstein series, J. Reine Angew. Math. 620 (2008), 67–84.
[14] T. Noda, An application of the projections of C∞ automorphic forms, Acta Arith.

72 (1995), 229–234.
[15] H. Petersson, Die linearen Relationen zwischen den ganzen Poincaréschen Reihen
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