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1. Introduction. Suppose that S C ), where p is a prime number.
Let A1,..., A, be the absolute values of the Fourier coefficients of S (to be
made more precise below) arranged as follows:

S0)=A > X > >\,

Then, as is well known, one can work out, as a function of £ > 0 and a den-
sity 6 = |S|/p, an upper bound for the ratio Aa/A; which guarantees that
S+ S covers at least (1 —e)p residue classes modulo p. Put another way, if S
has a large spectral gap, then most elements of I, have the same number of
representations as a sum of two elements of S, thereby making S 4 S large.
What we show in this paper is an extension of this fact, which holds
for spectral gaps between other consecutive Fourier coefficients Ag, Ag+1, s0o
long as k is not too large; in particular, our theorem will work so long as

1<k < [(logp)/log 2].

Furthermore, we develop results for repeated sums S+ S5+ ---+ 5.

It is worth noting that this phenomenon also holds in arbitrary abelian
groups, as can be worked out by applying some results of Lev [4], [5], but
we will not develop this here ().

The property of F,, that we exploit is something we call a “unique dif-
ferences” property, first identified by W. Feit, with first proofs and basic
results found by Straus [7].
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(*) In some of these general groups, the results are rather poor compared with the [,
case. For example, they are poor in the case where one fixes p and works with the additive
group Fj, where one lets n — co. The reason is that if one fixes a large subgroup of this
group, and then lets f be its indicator function, then f will have a large spectral gap, and
yet supp(f * f) will equal that subgroup, meaning supp(f * f) cannot be a 1 — ¢ fraction
of the whole group.
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Before we state the main theorems of our paper, we will need to fix some
notation. First, for a function f : [, — C, we define its normalized Fourier
transform as

f: a— IEZ(f(z)eQm’aZ/p)7

where [E here denotes the expectation operator, which in this context is
defined for a function h : F, — C as

z)=pt Z h(z)
z€lF,
If the function h depends on 7 variables, say z1,..., z., we define
E. . zh(z1,...,2.):=p " Z h(z1, ..., 2r).
21,..,2r€Fp

We will then let A\ denote the kth largest absolute value of a Fourier coef-
ficient of f; in other words, we may write F), := {a1,...,a,}, where upon

letting \; := \f(ai)\, we have

AL > 2> A
We define the convolution of 7 functions f1,..., f, : F, — C to be
(fre-xfr)(n) =Bz s Ji(z1) - froa(zr) fr(n— 20 =0 = 2p).

Finally, for a function f : F, — C, we define the “support of f”, denoted as

supp(f) € Iy
to be the places a € F), where f(a) # 0.
Our main theorem of the paper, from which our results on sumsets S+ S
follows as an easy consequence, is stated as follows:

THEOREM 1. Let p be a prime number and suppose that the function
f :Fp — Rxq does not vanish identically. If , for real € and positive integer
k < [(logp)/log 2] we have A\gy1 < X2, then

lsupp(f * f)| > (1 — 20e®)p, where 6 := E(f?).
REMARK 1. By letting f be the indicator function for S, we see that

= E(f?) = E(f) = |S|/p, which is the density of S relative to F,. Also,
supp(f * f) is just S+ S.

REMARK 2. It is easy to construct functions f which have a large spec-
tral gap as in the hypotheses For example take f to be the function whose
Fourier transform satisfies f( ) =1/2, f( ) = f(— ) = 1/4, and f( ) =
for a # 0,£1. Clearly, we have f : F, — [0,1], and of course f has a large
spectral gap between A3z and Ay (A3 = 1/4, while \y = 0).

REMARK 3. An obvious question that one can ask regarding the above
theorem is whether it is possible to relax the condition Apy; < a)\i. In
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particular, it would be desirable to reduce the exponent below 2. This seems
to be a difficult problem to address, as it is not even known how to improve
the exponent for the case k£ = 1, where a large spectral gap corresponds
to the assertion that the function f is quasirandom. An example indicating
that reducing the exponent near to 1 might be hopeless is given as follows:
Suppose that A is a random subset of F), of size o(,/p); then Ay = e\; with
e ~ |A|"Y2, while A+ A is small as compared to p. However, this is not
quite a counterexample in the sense that in this case |A + A| is still large
compared to |A|.

By considering repeated sums, one can prove similar sorts of results,
but which hold for a much wider range of k. Furthermore, one can derive
conditions guaranteeing that (f*---* f)(n) > 0 for all n € Fp, not just 1 —¢
proportion of [F,,. This new theorem is given as follows:

THEOREM 2. Fix t > 3. Then the following holds for all primes p suf-
ficiently large: Suppose that f : F, — [0,1], f not identically 0, has the
property that for some

1<k < (logp)"~"(5tloglog p) 2,
we have that
Moyt < AL/t0'2 where 0 := E(f).
(Note that 6 was defined differently in Theorem 1.) Then the t-fold convo-
lution f*---x f is positive on all of Fp.

REMARK. It is possible to sharpen this theorem so that t is allowed to
depend on p in some way, though we will not bother to develop this here.

We conjecture that it is possible to prove a lot more:

CONJECTURE. The logarithmic bound on k in Theorem 1 can be replaced
with an exponential bound of the sort k < p® with a constant ¢ > 0.

This would obviously require a different sort of proof than appears in
the present paper.

2. Some lemmas. First, we will require the following standard con-
sequence of Dirichlet’s box principle; its proof is also standard, so we will
omit it:

LEMMA 1. Suppose that

T1,...,7t € Fp.
Then there exists non-zero m € IF,, such that
mr;
p
where ||x|| denotes the distance from x to the nearest integer.

<p fori=1,...,t,
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The following was first proved by Browkin, Divi§ and Schinzel [2] and
is also a consequence of much more robust results due to Bilu, Lev and
Ruzsa [1] and Lev [5] (unlike [1], this last paper of Lev addresses the case
of arbitrary abelian groups) (?).

LEMMA 2. Suppose that
B :={b,...,b} CFp.
If
t < [(logp)/log2],

then there exists d € I, having a unique representation as a difference of
two elements of B.

Finally, we will also need the following lemma, which is a refinement of
one appearing in [6]:

LEMMA 3. Suppose that

(1) By,By CTF,, where 10 < |Bi|<p/2 and |Bi|> |Bs|.
If
(2) 2|Bs|log | B1| < logp,

then there exists d € By — By having a unique representation as d = by — ba,
b; € B;; on the other hand, if

(3) 2| Ba|log | B1| > log p,
then there exists d € By — By having at most

20| Bz|(log | B1|)?/log p
representations as d = by — ba, b; € B;.

Proof. Suppose that (1) and (2) hold. Then, by Lemma 1, there exists
m such that for every z € Cy := m - By we have |z| < p/|B1|?; furthermore,
by the pigeonhole principle there exists an integer interval [ := (u,v) NZ
with u,v € Cy :=m - By, with |I| > p/|Bi| — 1, which contains no elements
of B;. So, v —maxzecc,  has a unique representation as a difference ¢; — c2,
c1 € (1, co € Cy. The same holds for B; — B, and so this part of our lemma
is proved.

Now we suppose that (1) and (3) hold. Let B’ be a random subset of Bs,
where each element b € By lies in B’ with probability

(logp)/ (3| B2log | B1).

(%) Straus [7] proved a weaker form of this lemma, which had the upper bound |B| <
(logp)/log4 in place of |B| < [(logp)/log?2]. He remarked that Feit had first brought
the problem to his attention. The first-named author of the present paper rediscovered a
proof of this result, as appeared in an earlier version of the text. Recently, Jaiiczak [3] has
proved some extensions of Straus’ results to linear combinations of elements of a set B.
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Note that this is where our lower bound 2|Bs|log |B;1| > logp comes in, as
we need this probability to be at most 1.
So long as the B’ we choose satisfies

(4) |B'| < (logp)/(21og | B1]),

which it will with probability at least 1/3 by an easy application of Markov’s
inequality, we claim that there will always exist an element d € B— B’ having
a unique representation as a difference by — bly, by € B, b, € B’: First, note
that it suffices to prove this for the set C; — C’, where

Clzm-Bl, CQZTTL'BQ, C':m-B',

and where m is a dilation constant chosen according to Lemma 1, so that
every element x € C’ (when considered as a subset of (—p/2,p/2]) satisfies

2l < p VI < p)(3IB).
Now, there must exist an integer interval
I:=(u,v)NZ, wu,vedCh,
(which we consider as an interval modulo p) such that
1] > p/|C1| — 1 = p/|Bil — 1,
and such that no element of ' is congruent modulo p to an element of I.

Clearly, then, v — max.¢ccr ¢ has a unique representation as a difference.
Now we define the functions

v(z) :=|{(c1,c2) € C1 x Cy : ¢1 — ca = x}|,

Vi(z) = {(c1,dy) € Ch x C" i ey — ¢y = x}|.
We claim that with probability exceeding 2/3,
(5) every x € F, with v(x) > 20| By|(log | B1])?/log p satisfies v/(z) > 2.
Note that since the sum of v(z) over all x € F, is |B1| - | B2|, the number of
x satisfying this hypothesis on v(x) is at most, for p sufficiently large,
(6) | B1| - | B2 __|Biflogp

20[Bz|(log | Bi1])?/logp  20(log | B1])?
by (3) and the fact that |Bi| > |Bal.

To see that (5) holds, fix € C; — C. Then, v/(x) is the following sum
of independent Bernoulli random variables:

<|Bil,

v(x)
V(x) = ZX]-, where Prob(X; =1) = (logp)/(3|B2|log|Bil).
j=1

The variance of /() is
0% = v(z)Var(X;) < v(z)E(X;).
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We will now need the following well-known theorem of Chernofft:

THEOREM 3 (Chernoff’s inequality). Suppose that Z1,...,Z, are inde-
pendent random variables such that EB(Z;) = 0 and |Z;] < 1 for all i. Let
Z =% ,Z; and let o? be the variance of Z. Then

Prob(|Z| > d0) < 2¢79/% for any 0 < § < 20.
We apply this theorem using Z; = X; — E(X;) and
do =v(z)E(X;) — 1,
and then deduce that if v(x) > 20| Ba|(log | B1|)?/log p, then
Prob(v/(z) < 1) = Prob(Z < 1 —v(2)E(Z})).
Noting that 1 — v(x)E(Z;) < 0, we deduce that

< > _ (w(@)E(Xy) - 1)2) 1
Prob(|Z| < d0) < 2exp(—d-/4) §2exp< W @)E(X) < 3B
Clearly, since there are at most (6) places z where v(z) satisfies the hy-
potheses of (5), it follows that (5) holds with probability exceeding 2/3. But
also (4) holds with probability at least 1/3; so, there is an instantiation of
the set B’ such that both (5) and (4) hold. Since we proved that such a B’
has the property that there is an element x € By — B’ having v/(z) = 1, it
follows from (5) that v(z) < 20|Bs|(log | B1])?/log p, which proves the second
part of our lemma. =

3. Proof of Theorem 1. We apply Lemma 2 with B=A={ay,...,a},
so t = k. Let then d be as in the lemma, and let a,,a, € A satisfy

ay — a; = d.
We define 4
g(n) — errzdn/pf(n)’
and note that
(f = f)(n) = [(g = f)(n)|.
So, our theorem is proved if we can show that (g * f)(n) is often non-zero.
Proceeding in this vein, let us compute the Fourier transform of g f: First,
we have

~

g(a) = En(g(n)e’™ ") = By (f (n)e®™ ™+ D/P) = fla + d).

So, by Fourier inversion,

-~

(7) (f * g)(n) = e™2™9="/P f(a,) f(a,) + E(n),

where E(n) is the “error” given by

B(n) =" e 2™/P f(a)f(a + d).
aFag
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Note that for every value of a # a, we have
(8) either a or a +d lies in {ag41,...,ap}

= |f(@)f(a+d)| < eXpmax{|f(a)],|fla+d)]}.

To finish our proof we must show that “most of the time” |E(n)| is
smaller than the “main term” of (7); that is,

[E(n)| < [f(az)f(ay)].
Note that this holds whenever
(9) |B(n)] < AR
We deduce by Parseval and (8) that
Y IE@P =p > [f@Pfa+d)f < 2p€2>\42|f
n aFaz
< 20’ AIE(f?) = 2p2\i6.
So, the number of n for which (9) holds is at least p(1 — 20€?), as claimed. =

4. Proof of Theorem 2. Let
Bl = BQ = A= {al,...,ak}.

Suppose initially that 2|A|log |A| > logp, so that the hypotheses of the
second part of Lemma 3 hold. We then see that there exists di € B; — By =
A — A with at most 20|A|(log|A|)?/logp representations as di = a — b,
a,b € A. Let now A; denote the set of all the elements b that occur. Clearly,

| A1] < 20/4|(log |A])? /log p.

Keeping By = A, we reassign By = A;. So long as 2|A;|log|A| > logp
we may apply the second part of Lemma 3, and when we do we deduce that
there exists dy € A— A having at most 20| A1 |(log | A|)?/log p representations
asdyo =a—0b,a € A, be A;. Let now Ay denote the set of all elements b
that occur. Clearly,

| A2| < 20| A, |(log |A]) /log p.

We repeat this process, reassigning By = A, then By = Ajs, and so
on, all the while producing these sets A1, As, ..., and differences dy,do, ...,
until we reach a set A,, satisfying

2| A, |log |A| < logp.

We may, in fact, reach this set A, with m = 1 if 2|A|log |A| < log p to begin
with.
It is clear that since at each step we have, for i > 2,

| 4] < 20]4;-1|(log | A|)*/log p < |Ai—1|(51og |A])*/log p,
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it follows that
| A;] < |A[(5log |A])*/(log p)'.

Since we have assumed that
|A] < (logp)"~ (5t log log p) ~**2,
were we to continue our iteration to ¢ =t — 1 we would have
|A;_1| < |A|(5log |A|)*72/(logp)t=t < (tloglogp) 22 (log |A)* 2 < 1.
So, our number of iterations m satisfies
m<t—1,

for p sufficiently large.

By the second part of Lemma 3, this set A,, will have the property that
there exists d,,, € A — A,, having a unique representation as d,, = a — b,
a€ A be A,

Now, we claim that there exists a unique b € [F;, such that

b,b+di,b+ds,...,b+d, € A.

To see this, first let b € A. Since b+d; € A we must have b € Ay, by definition
of Ay. Then, since b+ dy € A, it follows that b € As. And, repeating this
process, we eventually conclude that b € A,,.

So, since b € A,,, and b+d,, € A, we haved,, = a—b,a € A, b € A,,. But
this d,,, was chosen by the second part of Lemma 3 so that it has a unique
representation of this form. It follows that b € A is unique, as claimed.

From our function f : F, — [0,1], we define the functions g1,...,gm :
F, — C via

filn) s= 2017 (),

It is obvious that

supp(f k-« f* gy k- % gp) Csupp(f*---x f),
where there are ¢ convolutions on the left, and ¢ on the right; so, f appears
t —m times on the left.
We also have

~

gi(a) = f(a+dy),

and therefore

(P frgrns s gn) @) = J@) " flatdy) - Fla+ dp).

Since there exists a unique a, call it z, such that all these a4+ d; belong to A,
we deduce via Fourier inversion that for any n € F,,

~

(Fxeesfrguee s sgm)(n) = € @) " Fludy) - ot d)+ E(n),
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where the “error” F(n) satisfies, by the usual L? — L> bound,
[B(n)] < the1072 > [f(a)]? < AL
a

~ ~ ~

So, since all of |f(a)|,|f(a + d1)]|,...,|f(a + dn)| are bounded from above
by Ag, we find that |E(n)| is smaller than our main term above, and therefore

(f*x-xf)(n)>0.m
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