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1. INTRODUCTION

There are a number of recent papers on powers of words occurring in
Sturmian sequences (see for instance [1, 2, 3, 6, 8, 9, 16, 17, 27, 32, 38,
41]). Quantities of interest include the supremum of powers of factors of
a sequence (the index or critical exponent of the sequence), and the limit
superior of powers of longer and longer factors of the sequence. It is well
known that these numbers are finite if and only if the partial quotients
of the continued fraction expansion of the slope of the Sturmian sequence
are bounded (see [31]). An explicit formula for the index of a Sturmian
sequence was given by Vandeth (see Theorem 16 in [41]) in terms of the
partial quotients of its slope.

This paper deals with powers of factors occurring at the beginning of
Sturmian sequences, which we call initial powers. The work is motivated in
part by a simple observation about the Fibonacci Sturmian shift, the shift
space of all Sturmian sequences of slope 2/(1 4+ /5). This space is infinite,
minimal and uniquely ergodic; one might expect prefix powers to be some-
what uniform. Yet its characteristic sequence begins in no (3 + v/5)/2 ~ 2.62
power at all, while every sequence outside the shift orbit of the characteristic
sequence begins in arbitrarily long words repeated three or more times. This
example leads us to define the initial critical exponent of a sequence w over
a finite alphabet, denoted ice(w), as the supremum of all real numbers p > 0
for which there exist arbitrarily long prefixes u of w such that «? is also a
prefix of w. We obtain an explicit formula for the initial critical exponent of
a Sturmian sequence, in terms of a particular S-adic expansion. For char-
acteristic Sturmian sequences, our formula for ice has probably been known
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since [34], though Hedlund and Morse did not address this question specif-
ically. One can also obtain the formula for ice of a characteristic sequence
using Cassaigne’s formula for the recurrence quotient in [13]. See also [9, 43].

Every Sturmian sequence w on the alphabet {0,1} admits a unique S-
adic representation as an infinite composition of the form

w=T% 015" oT? om0 T® o1y o T 01" 0+,

where T denotes the one-sided shift map, 79 and 77 are the morphisms on
{0,1}* defined by

’7’0(0) = 0, ’7’1(0) = 10,

7(1) =01, 7(1)=1,

ap > ¢, > Oforallk, ap > 1for k > 2, and if ¢ = a then ¢;_1 = 0.
The sequence (ay)r>1 turns out to be the sequence of partial quotients of
the slope (defined as the density of the symbol 1), while (¢g)g>1 is the
sequence of digits in the arithmetic Ostrowski expansion of the intercept
of the Sturmian sequence (see for instance [18, 19, 28, 29, 26, 35, 39, 40]
and the references in [10]). From this point of view, the characteristic (or
standard) Sturmian sequence of a particular slope is the one having ¢ =0
for all k. This expansion of w is just one of many possible expansions as
an infinite composition of morphisms (see work of Arnoux [37], Arnoux—
Fisher [5], Arnoux—Ferenczi-Hubert [4]). In each case these expansions are
intimately linked to the Ostrowski numeration system.

In [3] it is shown that each Sturmian sequence begins in infinitely many
squares (see also [16]), and hence ice(w) > 2 for all Sturmian sequences w. We
show that the value 2 is attainable, and give the following characterization
of those slopes for which there is a Sturmian sequence with initial critical
exponent equal to 2:

THEOREM 1.1. Let a = [0;a1,a2,as,...| be an irrational number and
let X, be the set of all Sturmian sequences of slope a. Then there is a
Sturmian sequence w € X, with ice(w) = 2 if and only if for each pair of
positive integers (s,t) with s > 1 there are only finitely many indices k for
which (ag,aps1) = (s,t) or (ag, a1, apro) = (1,1,1).

We also show how to explicitly construct a Sturmian sequence w € X,
with ice(w) = 2 in case one exists.

Write ind*(w) for the limit superior of powers of longer and longer words
appearing in a sequence w. We prove the following relation between ice and
ind* for characteristic Sturmian sequences:

THEOREM 1.2. Let w be the characteristic Sturmian sequence of slope a.
Then

ind*(a) = 1 +ice(w).
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The paper is organized as follows. After first recalling some basic facts
on Sturmian sequences and on ice, we introduce in Section 2 two S-adic
representations of Sturmian sequences (additive and multiplicative versions)
based on Ostrowski’s numeration system, and conclude the section with a
characterization of primitive substitutive Sturmian sequences. We derive
an explicit formula for the ice of a Sturmian sequence in Section 3. We
study general properties of ice in Section 4; special attention is given to
the Fibonacci shift in Section 4.4. We end with a proof of Theorem 1.1 in
Section 5.

2. PRELIMINARIES

2.1. Definitions and notation. Throughout the paper, o denotes an
irrational number in (0, 1). Consider two two-interval exchange transforma-

tions, Ry : [~a,1 —a) — [~a,1 —a) and Ry : (—a,1 —a] — (—a,1 —al,
defined by
Ra(z)z{z—i-a ?fze[—a,l—Qa),
z+a—-1 ifzell-20,1-0q),
Ea(z):{z—ka ?fze(—oz,l—Qa],
z+a—-1 ifze(l—-2a,1—al

Both can be considered as rotations of angle 27, since these are conjugate,
after identification of points —a and 1 — «, to a circle rotation. A Sturmian
sequence w € {0, 1}N of slope « is simply the forward itinerary (with respect
to the natural partition) of a point = € [—a, 1 — ] (called the intercept of w)
under the action of one of these transformations, i.e., either

VEeN (wp =0« RF(z) € [-a,1 - 2a))
or
Vk €N (wp =0 RE(2) € (—a,1 — 2a]).
It is clear from this interpretation that the slope of a Sturmian sequence is

the density of the symbol 1.

Notation. In all that follows, the coding of the orbit of the point y with
respect to the partition (I,J) under the action of the two-interval exchange E
means the sequence v € {0, 1} defined by

Vk e N (v =0 < EF(y) e ).

A factor of a sequence w is a finite subsequence of the form w(i,j) :=
WiWiy1 ... wWj_1, i.e., a finite word that appears in w. The complexity function
p: N — N for a sequence w is given by

p(n) = the number of distinct factors of w of length n.
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Sturmian sequences are exactly those one-sided infinite sequences with
complexity p(n) = n + 1 for every n (see [34, 14]). Write X, for the set
of all Sturmian sequences of slope a, and denote by T the shift map on
sequences, i.e., (T (w)); = wit1. Then X, is a compact, T-invariant subset
of {0,1}Y and the restriction of T to X, (we shall abuse notation and
call it T also) gives us an infinite, minimal, uniquely ergodic (one-sided)
shift space. Recall that a map on a topological space is minimal if the only
closed nonempty invariant subset is the whole space, and is uniquely ergodic
if there exists a unique invariant Borel probability measure on the space.
The characteristic sequence of slope « is the unique left-special sequence
in X, i.e., the sequence having more than one T-preimage in X,; this is
the sequence with intercept 0 (it is the same for R, and R,) and its two
shift preimages code respectively the orbits of —a under R, and 1—« under
R,. For more details on Sturmian sequences, see [30, 37].

We shall use in Sections 2.3 and 2.4 the notion of induction of a rotation.
The induced transformation of the rotation R, (or similarly of R,) on a
subinterval I of [—a, 1 — ¢ is defined as follows. For = € I, we call the first
return time of x in I and denote by ny(x) the smallest integer m > 0 such
that R (x) € I (m is finite since « is irrational). The induced transformation

of R, on I is the map = — Rgl(w)(x) on I.

A sequence is called recurrentif each of its factors appears infinitely many
times, and uniformly recurrent if each of its factors appears with bounded
gaps. If a shift space is minimal, then any of its sequences is uniformly
recurrent, and any shift space generated by a uniformly recurrent sequence,
as the closure of the orbit of this sequence under the action of the shift, is
minimal. A shift space (X, T) is said to be linearly recurrent if there exists a
constant K such that, for each n € N, every factor of length n of a sequence
of X appears in every factor of length nK. If a shift space (X, T) is linearly
recurrent, then it is minimal, and it has sublinear complexity, that is, there
exists C' > 0 such that, for all n € N, there are at most Cn different factors
of length n in sequences of X. For more details on these notions, see for
instance [37] and [21]. If ¢ € {0,1} we denote by 7 the other symbol in
{0,1}. Thus 7 = 1 — 4, 7;(¢) = ¢, and 7(z) = 4z. Throughout the paper we
write 6 for the golden mean, (14 /5)/2. We use Greek letters w and v for
infinite sequences, and Roman letters u, v, w for finite words. The length of
a word w over the alphabet {0, 1} is denoted by |w|. We write N for the set
of nonnegative integers (0 € N) and N* for the set of positive integers.

2.2. Initial critical exponent. Positive integer powers of a finite word
w are defined by

1

w'=w and w"=w""!

w forn > 1.



Initial powers of Sturmian sequences 319

We define w° to be the empty word, i.e., the unique word of length 0, and
for arbitrary p > 0, the pth power of w is given by

wP = wlPly

where w is the prefix of w of length [ (p—|p])|w]|]. Thus, wP has length [p|w]].
A word is called primitive if it is not an integer power of some shorter word.
The power of a word w in a sequence w is the largest p (possibly co) so
that w? is a factor of w. The prefiz power of a word w in a sequence w is the
largest p (possibly 00) so that w? is a prefix of w. We define the initial critical
exponent of w, denoted by ice(w), as the limit superior of the prefix powers
of the words w[0,n) in w. We similarly define ind*(w) for a sequence w as
the limit superior as n tends to oo of the largest powers of the factors of
length n appearing in w. For a minimal shift space X, we write ind*(X) for
the common value of ind* on sequences of X. Let us prove some properties
of ice and ind*.

PROPOSITION 2.1. Let (X, T) be a (one-sided) shift space. Then:

(1) For any w € X one has ice(w) < ice(Tw), and if the inequality is
strict then Tw s the shift image of at least two different members
of X, i.e., w is a left-special element of X.

(2) If (X,T) is minimal then max,ex ice(w) = ind*(X).

(3) If X is infinite and minimal then some w € X has ice(w) < 1+6 =
(3+V5)/2.

(4) If (X, T) is minimal with sublinear complexity then ice is shift in-
variant off of the union of a finite set of orbits; hence ice is almost
everywhere constant with respect to any ergodic Borel measure.

(5) If (X, T) is linearly recurrent then ice is almost everywhere equal to
ind*(X) with respect to any finite invariant Borel measure.

Proof. Let w € X. If w is a prefix of w with prefix power p then the
first right conjugate of w, i.e., the word v obtained from w by moving the
first letter to the end, is a prefix of Tw with prefix power p — 1/|w|. The
inequality in (1) follows by taking limits as |w| tends to infinity.

Now suppose the inequality in (1) is strict. Then ice(Tw) > 1. Let v, be
an increasing sequence of prefixes of Tw whose corresponding prefix powers
qx converge to ice(Tw). Let a be the first letter of w and let b be a common
last letter for infinitely many of the vi. By passing to a subsequence we
may assume that g > 1 and v ends in b for all k. Note that a # b, since
otherwise, for all k, the first left conjugate of vy is a prefix of w with prefix
power g + 1/|vg| and we obtain a contradiction:

1
lim ¢ + — <ice(w) < ice(Tw) = lim g.
k—oo ”Uk’ k—o0
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. -1 . 1

For each k, Tw begins in vpv*~ " and w begins in av*, hence avf*™" and

~1 ~1 ~1
bul*~" are both factors of sequences of X. But [v/* | — oo and each v{*

is a prefix of Tw, hence aTw and bTw both belong to X.
To prove (2) we need the following:

(2") For every p € (0,ind*(X)), every word which appears in sequences
of X is a prefix of some word whose pth power appears in sequences
of X.

Proof of (2'). By minimality, if w appears in sequences of X then it
appears in bounded gaps, i.e., there exists N = N(w) such that for all w in
X, at least one of w, Tw, ..., TNW-1, begins in w. Choose 1 > 0 such that
p+n < ind*(X), and let v be a word of length at least N/n such that vP*"
appears in sequences of X. Then one of the first NV — 1 right conjugates of v
has w as a prefix and appears to power p in sequences of X.

Proof of (2). By (2") we can find a sequence wy, of words which appear in
sequences of X, such that, for each k, wZ’“ is a prefix of wy11, where py > 1
and pr, — ind*(X) and |wg| — oo as k — oo. There is a unique w € X having
each wy, as a prefix, and the construction guarantees ice(w) > ind*(X). We
always have ice < ind*(X), of course.

Part (3) follows from [33].

To prove (4), we use Cassaigne’s result from [12]: The first difference of
the complexity function is bounded if complexity is sublinear. Let C' > 0
be an upper bound for the first difference of the complexity. By minimality,
every word w in X of length n has at least one left extension, that is, a
word aw occurring in X for some letter a; hence there can be no more than
C words of length n which have two or more left extensions, and the set of
sequences w in X that have more than one shift preimage has at most C
elements.

Assertion (5) holds trivially if X consists of a single periodic orbit, so
let us assume that X is an infinite set. Then (X,7') is minimal and has
sublinear complexity, and ind*(X) < co. Let  be a (nonzero) finite invariant
Borel measure for (X,T). Suppose, for a contradiction, that u{w € X :
ice(w) < ind*(X)} > 0. For some £ > 0 we must have p{w € X :ice(w) <
ind*(X) — e} > 0. Fix such an ¢, and set

E={we X :ice(w) < ind*(X) —e}.
Let v be the Borel probability measure defined by
v(B) = MEOB)
uE
As in the proof of part (4), ice is invariant off a finite set of orbits. Thus,
w(T7YE\ E) = 0, and v is an invariant measure. Choose a subsequence
(ng)k>0 of the positive integers such that the sequence of maximal powers
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pr. of words of length ny, converges to ind*(X). Linear recurrence implies that
the pg are bounded and the v-measure of the set of sequences beginning in
a word of length ny, to power at least py — ¢ is bounded away from 0 (see for
instance [21]). But then we must have v{w € X :ice(w) > ind*(X)—¢e} > 0,
a contradiction. m

The focus of this paper is on the values of ice on the set X, of all
Sturmian sequences of some fixed irrational slope a. It follows from known
results (see for instance [41]) that

ind*(a) := ind*(X,) = 2 + limsup|ag; ak—1, - .., a1],
k—o00

where [ag;ak_1,...,a1] denotes the continued fraction of ay,ax_1,...,a1.
This implies in particular that any Sturmian sequence contains cubes (see
also [9]) and that a Sturmian sequence has finite index if and only if its
slope has bounded partial quotients (this last result is in [32]). See [13] for
a study of the topological structure of the set of values taken by the index.
Recall that X, is uniquely ergodic.

LEMMA 2.2. The almost everywhere value of ice on X4 is ind*(«).

Proof. Suppose first that ind*(a) = co. Let p > 2 and N > 3. There is a
primitive word u of length at least N and a power p’ > Np—+1 such that u?
appears in X, and the exponent p’ is maximal for words having the same
length as wu.

We claim that u” ! is left special, i.e., both 0uP’~! and 1u? 1 appear
in X,. To see this, let a be the last letter of u. Since au®’ is the same as the
first left conjugate of u to power p’ + 1/|u|, maximality of p’ implies that
this word does not appear in X,. One of the symbols b € {0, 1} is such that
bu?’ appears in X,, and we have just shown that b # a. Thus au?’ ~! and
bu? ~! both appear in X,, the former as a suffix of v”" and the latter as a
prefix of bu?’.

A return word to a factor h in a sequence w is a factor w[i,j), where
h occurs in w starting at the ¢th and jth places and nowhere between.
Sturmian sequences have the following properties (see for instance [42]):

e there is exactly one left special factor of each length;

every factor has exactly two return words;

the sum of the lengths of the return words to a factor v is at least
|v| + 1; and

the length of a return word to a left special factor v is bounded above
by |v] + 1.

We know that u is a return word for u?' ~! because u is primitive and p’ > 3.
The other return word to u” ~ must be a prefix of u” =10 or u” ~!1 of length
at least (p’ — 2)|u| + 1. This implies that the set of points of X, beginning
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in a suffix of u”' =1 of length at least (p’ — 1)|u|/N has measure at least

[(N— D' - 1)|U|1
N _N-1
@ -2)u[+1 = N

and such points begin in a word of length |u| to power p. The result follows
easily from this.

In case ind*(«) < oo, the partial quotients of o are bounded and X,
is linearly recurrent following [21]. Part (5) of Proposition 2.1 applies di-
rectly. m

Using this lemma and the formula for ind*(«) above, we see that the
a.e. value of ice on X, is greater than 4 unless the partial quotients aj are
eventually 1. Lebesgue almost every slope a € (0,1) has unbounded partial
quotients, and thus, for Lebesgue a.e. «, ice is a.e. infinite on X,.

2.3. An additive S-adic representation. Let w € {0,1}" be a Stur-
mian sequence of slope a. Exactly one of the words i (i € {0,1}) is a factor
of w and there is a unique sequence w’ such that w = T°(7;(w’)), where b = 0
if w begins in 7 and b = 1 otherwise. The map w — w’ on X, is really just
induction on the longer of the two intervals in the associated two-interval
exchange. Specifically, suppose w codes the orbit of a point z; if z is in the
longer interval then w’ codes the orbit of z in the induced interval exchange,
and if z is in the other (shorter) interval then w’ codes the orbit of the
preimage of x (which is in the longer interval) in the induced interval ex-
change. With this interpretation it is clear that w’ is also Sturmian. Thus
we may iterate this “desubstitution” process to obtain our additive S-adic
eTpansion:

PROPOSITION 2.3. Let w be a Sturmian sequence. There exist a sequence
of Sturmian sequences (w(”))nzl and two sequences (bp)n>1, (in)n>1 with
values in {0, 1} such that

(1) w=T"or,0---0T ot (w™) for each n,
(2) (in) is not eventually constant,

(3) if in = int1 and bpt1 = 0 then b, = 0,

(4) if in # int1 then b, and byy1 are not both 1.

Proof. The induction process described above gives us the three se-
quences satisfying assertion (1). If (i,)n>1 were eventually constant, say
in, =i forallm > N, then w would contain arbitrary powers of 7, o- - -o7;, (1),
which is impossible since w is Sturmian.

Assertions (3) and (4) are easily deduced from the facts that wén) is the
first letter of TP+ o Tini1s 1-€.,
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(n) { in+1 lf bn+1 == 0,
UJO == _ .
In+1 if bpi1 =1,
and

It is helpful to think of T% o 7;, 0 --- 0o TP o 7; as a composition of
“inflations” (the 7;, ) and “cuts” (the T°") where the amount cut after
applying 7;,, to w(™ is less than the inflated image of the first letter of
w™ e, by < |7, (w(()m))|. Extending this notion of 7" as the map which
cuts off the first letter of a sequence, we shall abuse notation slightly and
write T'w for the suffix of a word w obtained by deleting the first letter. Let
us note that, by definition,

T o7, 00T oy, (w(()n))| >1 for all n,
hence

T o7 0--- 0T 075 (wW™)

= Tb1 0Tj O-++0 Tb” o Tin(w(()n)) *Tjy O+ 0 Tin((wlgn))kZI)v

where, for clarity, we have written x for concatenation. It is possible that
T o7 00T o1y, (w(()n))] =1 for all n.

This happens, for example, when 4, = b, = n mod 2 for all n.
The following useful lemma can be proved by straightforward induction.

LEMMA 2.4. If v and v' are sequences in {0,1} beginning in different
letters and T is any composition of the ; then the longest common prefix of
7(v) and T(V") has length |7(01)] — 2.

We next show that what we have is indeed an additive S-adic expansion

in the sense of [21, 23]. The important thing is that the sequences (iy)n>1
and (by,)n>1 entirely determine w; we do not need to keep track of the w(m),

PROPOSITION 2.5. Every pair of sequences (in)n>1, (bn)n>1 with values
in {0, 1} satisfying (2)—(4) of Proposition 2.3 is the additive S-adic expansion
of a unique Sturmian sequence.

Proof. Suppose (i), (by) satisfy (2)—(4) of Proposition 2.3. If v,0" €
{0,1}" then it follows from Lemma 2.4 and the previous remarks on cuts
and inflations that 7% oy, 0+ 0T o7; (v) and T" o1y 0---0 TP o7; (V')
have a common prefix of length at least |7, o7y, 0- - -0o7;, (in)|—1, which tends
to infinity as n tends to infinity. Thus (0", T? o7, 0---0 TP o7; ({0,1}Y)
consists of a single point, w. We claim that w is Sturmian. Indeed, if v is
any Sturmian sequence then

: b b
w= lim T" o7, 0---0T™ o (V).
n—oo
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The morphisms 79 and 77 are Sturmian (i.e., they take Sturmian sequences
to Sturmian sequences, see [30]) and the complexity of a limit is less than or
equal to the limit of the complexities, hence w has complexity p(n) < n+1
and is therefore either Sturmian or eventually periodic. It follows from the
fact that (i,)n>1 is not eventually constant that w is not eventually periodic,
so p(n) > n+ 1 and w is Sturmian. One checks by induction that w has
(in)n>1, (bn)n>1 as its S-adic expansion. =

Such an expansion will be called the additive Ostrowski S-adic expansion
associated with the sequence w. We will see below that Ostrowski expan-
sions in the sense of [35] appear in a natural way when one considers a
multiplicative version of these expansions.

2.4. A multiplicative S-adic expansion. A more compact version of
the additive S-adic representation is desirable. As a sequence in {0,1} we
can write

11ty ... = 0911920%31% .
with a; > 1 for ¢ > 2. Let s = Z?:l aj and ¢ = fll;sk—l+1 b,,. For all
n > 1 we have 0 < ¢, < a,, and if ¢, 11 = ap+1 then ¢, = 0. We also have
biby ... =0%1—11410%2 7212 |

and for k > 0,
W=7 o(Tom) tor{~0(Tor )0 07tk 1% 20(ToT 1 maa 2)° ().

To avoid cumbersome notation we shall henceforth write 7,, for 7,, mod 2. We
can further simplify to obtain

w=T7" o T2 o T 7% 0 -+ 0 Tc’“T,?fl(w(sk)).

Let a =[0;a; + 1,a9,a3,...]. Set

Po = 0) qo = ]-a

p1:17 q1:a1+1a
and for k > 2,

Dk = QkPg—1 +Pk—2, Gk = QkGr—1 + qk—2-
Set 6_1 = 1 —a, and for k > 0 put 0, = |qea — pr| = (=1)*(qra — pp).
One has
VEeN, 6p_1=ap416k + Opq1-

The continued fraction convergents of a are the rational numbers py/qx,
which, as the name suggests, converge to «. The convergents are, in a sense,

the best possible rational approximations to «. The following lemma can be
proved by straightforward induction.
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LEMMA 2.6. Write |w|; for the number of occurrences of the letter j in
the word w. Then for i € {0,1},

(Irgt o+ om® (D)o, 79" 0+~ o™ (3)1)

(qk—1 — Pk—1,PK—1) if i # k mod 2.

It follows that the slope of w is equal to lim py /g = «. This means that
the ap and hence also the sequence (ip)n>1 are determined by the slope
of w. Translating the condition on the sequences (in)p>1 and (by)p>1 to a
condition on the cg, we have shown how Sturmian sequences of slope o =

[0;a1 + 1,a2,...] are in one-to-one correspondence with sequences (ck)r>1
such that 0 < ¢ < ay and if cx11 = agy1 then ¢ = 0.

PROPOSITION 2.7. Let o = [0;a1 + 1,a2,a3,...]. Let w be a Sturmian
sequence which codes the orbit of the point x under the action of Ry or R,.
There exists a sequence of integers (cn)nen where

0<¢c, <ap,
(1) n,
Cntl = Apt1 = Cp = 0,

and a sequence of Sturmian sequences (v¥)) such that

(2) Vk, w=T%" oT??oT%1f*0 - 0 TC’“T,gfl(U(k)),
and
[e.e] o0
r=> (1) 01 = crlgr_1a — pr1).
k=1 k=1

Proof. Let us suppose that w codes the orbit of z in [—a,1 — «) under
the rotation R, with respect to the partition ([—a, 1 — 2a), [l — 2,1 — @)
(the R, case is similar). We define two-interval exchanges F(™ for n > 0 as
follows:

If n is even then E(™ : [=8,,6,_1) — [=0n,0,_1) is given by
{z—i—én if z € [=0n, —0n + On-1),

E™ () =
(Z) z2—0p_1 Hze€ [—6n + 0p_1, 5n—1)-

If n is odd then E™ : [=6,_1,8,) — [—0,_1,0,) is given by
E(n) (Z) _ { z+ 571—1 lf VRS [_571—17 _571—1 + 571)7
z—0p if z € [—0p—1+ In, 0n).
Note that E(©) equals R,. We also define inductively a sequence of points
(2(™),,>0 where

(n) { [—0n,0n—1) if n is even,
x S
[—0n—1,0,) if n is odd,



326 V. Berthé et al.

and a sequence of nonnegative integers (¢, )n>1 by setting 0 =z, and for
n > 0:
If n is even then

0 if 20 € [0, 0n11),

— (n) _
Cn+1 \‘%J +1 ifz™e [0n41, On—1)
and
If n is odd then
0 If .fU(n) & [_511—{-17 611)7
_ (n)
- [_%Mﬂ if 20 € [0, 1, —0p11)

and

Let us check that the admissibility condition (1) holds. We easily see that
Cl < ag for all &k > 1. If Cok+1 75 0 then $(2k+1) S [62k+1 - 52k,(5gk+1), and
thus cog12 % aopr2. If copyo # 0 then z(2k+2) ¢ [_52k+27 _52k+2 + 62k+1)7
and thus coxy3 # agk3.

Furthermore, for all n € N we have z = z(™ + Ez;é ces1(—1)%6;, and
thus

r = Z CkJrl(—l)k(Sk.
k=0

We claim that if n is even then E(*1 is the induced transformation of
E™ on the interval [—0n, On+1). Let us check this. If z € [—d,,, =5, + Ipt1)
then

EM(2) = 24 5, € [0, 5,1)

and thus the induced transformation agrees with E@+) on [—0n, —0n +
5n+1)' If z € [—(Sn + 5n+17 6n+1) then

(E(n))k(z) =2+ koy >0pr1 for1 <k <api

and
(B 1+l — 2 4 (a,41)0p — Op1 = 2 — Ony1 € [—6,,0),

as desired. One similarly checks that for n odd, E™*V is the induced trans-
formation on the interval [—d,41,dy) of the map E™,

We let v(™ be the Sturmian sequence coding the orbit of (™ in the
two-interval exchange E(™ with respect to the partition ([=0n, —0n + On—1),
[—0n + 0n—1,0n—1)) if n is even, and to the partition ([—d,—1, —0n—1 + 0p),
[—0p_1 4 0n,6,)) if n is odd. Tt follows that v( = Tentiot! (v(+1) holds
for every n. =
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REMARKS. Such an expansion will be called the (multiplicative) Os-
trowski S-adic expansion associated with the sequence w. More generally,
an expansion of the form

o0

v = crp1(gre — pi),

k=0

where the sequence of integer digits (cx)i>1 satisfies the admissibility con-
dition (1), is called an Ostrowski expansion following [35] (see also [10, 18,
19, 28, 29, 26, 39, 40]). Note that the characteristic sequence of slope «
corresponds to intercept x = 0, having all ¢ equal to 0.

2.5. The Ostrowski odometer. Let a = [0;a1 + 1, a9, ...] and set
Ko={(ck)i>1:YE>1, (e €N, 0<¢x, <ay) and (cpy1 =ap41 = ¢, =0)}.
It is easy to see that
Ko={(ct)r>1:Vk>1, cp €N, cigo+ - + cpqr—1 < qx — 1}
Let ¢ = (cx)r>1 € Ka, set
D(c)={k>1:c1q0+ -+ cxqr-1= qrs1 — 1},

and put m(c) = sup D(c) if D(c) is nonempty, and m(c) = —1 otherwise.
Note that m(c) = oo if and only if ¢ is of the form

a10a30... or 0Oag0ay4...,
and if m(c) > 0 then
e { a10a30 . . . Gy (c)—10Cm(c)41Cm(e)+2 - - - if m(c) is even,
0a20ay - . 08y ()~ 10Cm () +1Cm(c)+2 - - - if m(c) is odd.

Following [24], one can define on the compact set K, (endowed with
the product of the discrete topologies on the finite sets {0 < d < a;}) the
addition o by 1:

0% otherwise.
The map o is called the Ostrowski a-odometer. The map o : K, — K, is

onto and continuous, and (K4, o) is minimal (for more details, see [24, 7]).

PROPOSITION 2.8. The dynamical systems (Kq,0) and (Xq,T) are topo-
logically conjugate.

Proof. The sets X, and K, are in one-to-one correspondence via the
map ¥ : X, — Ku, w — (cg)k>1, where (cg)p>1 is the Ostrowski S-adic
expansion of Proposition 2.7.
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Suppose w € X, and ¥(w) = ¢ does not have a tail in common with
a10a30. .. or Oaz0ay . ... Put m = max D(c) and let v*) be as in Proposi-
tion 2.7. Then cpm+1 < amy1 and

T(w) = T(T78 o+ 0 Tomrlm (™))
= Tgl 0-+-0 TsLﬂil(TU(m))

_ a1 a C +1+1 Am4-1 m—+1
=Ty © onWilon 7—mm (U( ))’

whence ¥ (Tw) = o(¥(w)). This holds for a dense set of w € X,. =

2.6. A characterization of primitive substitutive Sturmian se-
quences. Let A be a finite alphabet and denote by A* the free monoid
generated by A with concatenation as the multiplication, i.e., A* is the set
of finite words over the alphabet A. A substitution is a morphism of the free
monoid A* taking each element of A to a nonempty word. A substitution
T is primitive if there exists an integer k£ such that for all letters a, b in the
alphabet A, a is a factor of 7#(b). A sequence u is primitive substitutive if
there exist a primitive substitution 7 over an alphabet B and a letter-to-
letter morphism ¢ : B — A such that u = (v), where v = 7(v) € BY is
fixed by 7. We shall characterize primitive substitutive Sturmian sequences
in this section. For characterizations of Sturmian sequences that are fixed
points of substitutions, see [15, 36, 44]. Let us recall a fact about Ostrowski’s
numeration (see for instance [26]):

THEOREM 2.9. Let

(o.9]
T = Z c1(qke — pr),
k=1
where the sequence (ci)k>1 satisfies the admissibility conditions (1). Suppose
a is quadratic. Then (ci)k>1 s eventually periodic if and only if x € Q(«).

Let w be a uniformly recurrent sequence, and let h be a factor of w. Recall
that a return word to h is a factor wli, j), where h occurs in w starting at the
ith and jth places and nowhere between. Let Ay, be the set of return words to
hin w. A sequence v with the same set of factors as w and having h as a prefix
can be recoded over the alphabet Aj. Indeed we can naturally write the
sequence v as a concatenation of return words to i and this decomposition
is unique. We enumerate the elements of the set A, of return words to h in
the order of their first appearance in the sequence w, turning this set into a
new alphabet. We then can recode the sequence v over this new alphabet.
The recoded sequence, called a derived sequence of v, is denoted by Dy (v).
One can also associate a derived sequence with a sequence v not having h
as a prefix as follows. Let p be a prefix of a return word in A;, such that
the sequence pv starts with A and has the same set of factors as w. We will
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also call a derived sequence the sequence over A; obtained by coding the
sequence pv. We will use the following result [20, 25, 22]:

THEOREM 2.10. A uniformly recurrent sequence is primitive substitutive
if and only if the set of derived sequences (up to the alphabet) over all its
factors is finite.

Note that an expansion of the form
=T 0 (Tom) 02~ o (Tom) o+ 0k % o (T o 1) (wlV)

can explicitly be written as a standard S-adic expansion, that is, as a limit
of the composition of a finite number of substitutions following [23, 21],
by introducing the morphisms 7] for ¢ € {0,1} defined by 7/(i) = ¢ and

/

7/(j) = ji for j # i. Indeed we have
w = 7—611—01 o (T(/))m o Til2—02 o (T{)CQ 6.0 TIZEIC]C o (T]é_l)ck(u)(sk)).

PROPOSITION 2.11. A Sturmian sequence w of slope a which codes the
orbit of x is primitive substitutive if and only if a is a quadratic irrational

and x € Q(a).

Proof. If o is quadratic and x € Q(«), then (ag)r>1 and (cx)r>1 are
eventually periodic. The standard S-adic expansion above (using the 7; and

7!) is eventually periodic, and w is seen to be primitive substitutive.

7
Conversely, suppose w is primitive substitutive. We will use the notation
of Proposition 2.7. The sequences v(*) are derived sequences. More precisely,

if £ mod 2 denotes the letter in {0, 1} with value k£ mod 2, then
U(k+l) - D(k mod 2)%k+1 ((k mod 2)Ck+lv(k))7

where we denote by (kmod 2)%+10*) the sequence made of the word
(k mod 2)%+1 concatenated with the sequence v¥). Indeed, (k mod 2)%+11
and (k mod 2)®*+1 711 are exactly the two return words of (k mod 2)%+!
in w, the second one corresponding to the interval of induction. The derived
sequence of a derived sequence is again a derived sequence (up to the alpha-
bet). Hence following Theorem 2.10, there are two sequences v®) and v®
which are equal, hence (a)r>1 and (cx)g>1 are eventually periodic. m

3. CALCULATING INITIAL POWERS

The paradigm for our study is that large initial powers of w come from
large initial powers of the w(™. Before giving a more precise statement let
us prove a simpler fact. Let w be a Sturmian sequence and let 4y, by, w™ be
defined as in the previous section. Recall that a word is primitive if it is not
an integer power of a shorter word.
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LEMMA 3.1. If w begins in a word w" where r > 1, |w| > 2, and w is
primitive then there is a prefizt w™) of w® such that w is a cyclic permu-
tation of 7, (w(M). Furthermore, wM| > 2 and w™) is primitive.

Proof. 1f by = 0 then wy = wy,, = i1. The only place that i; occurs in
the image of a letter under 7;, is as the first letter. Thus the longest word

of the form 7;, (w(()l))ril(wgl)) . .Til(w(-l)

;) which is a prefix of w must in fact
be w, so that w® = w10, j] does the job.

In the case by = 1, we have Til(w(l)) = 1w, and wy = wy,| = 71. Since
no sequence in the image of 7, can have 7177 as a factor, it must be that
Wjyw|—1 = 1. The same argument used in the first case produces a prefix w®
of wM for which 7;, (wM) = i;w|0, |w| — 2], and i w[0, |w| — 2] is a cyclic
permutation of w.

Now |7, (u)| < 2|u| for any word u, and |7, (wM)| = |w| > 2, so we must
have |wM| > 2, and if w(") were an integer power of some shorter word then
w would be also, contrary to the hypothesis. n

We are now prepared to prove an important fact about initial powers.

Let us recall that for all £ > 0, s, = Z?Zl aj, and

=T 0 (T o) 07 o (T'o )0 -+ o1 o (T o 71 (l*9)
=T475" o T o T 750 - - oTclegfl(w(sk)).

PROPOSITION 3.2. Suppose w begins in a word w to power r > 2, where
|lw| > 2, and w is primitive. Then there is a nonnegative integer m such
that w is a cyclic permutation of 3, o --- o7, (01), and W™ begins in 01
or 10 to power > |r| — 1. Furthermore, m is one of the numbers s — 1 or
sp —c — 1. If r > 3 then m is one of the numbers s, — 1.

Proof. Let w() be the prefix of w™®) given by Lemma 3.1. If |w| > 2
and the prefix power of w) in w® is > 1 then we can apply the lemma
again to get a prefix w® of w?). Continue in this way as long as possible,
at the nth step obtaining a prefix w( of w(™ for which Tin(w(”)) is a cyclic
permutation of w1 stopping after m steps when either [w(™| = 2 or the
prefix power / of w(™) in w(™ is 1. We shall show that r’ > 1 and |w(™)| = 2,
from which it follows that w(™) is 01 or 10 since w(™ is primitive, and hence
w is a cyclic permutation of 7;, o--- o7, (01).

Write (w(™) for the infinite periodic word w(™w(™w(™) . The
longest common prefix shared by (w()* and w™ is (w(™)" so by Lemma
2.4 the longest common prefix of

Ti, O - oﬂ.m«w(m))m) and 75, 0--- Onm(w(m))
has length
iy 0+ 07, (W™)) 4|75, 0007, (01)| =2 < |73, 0+ -0 73, (™) 1],
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since w(™) must contain both a 0 and a 1, by primitivity of w(™), and since
|w(™| > 1 in view of Lemma 3.1.
On the other hand,

T ori0--oTtor (w™)*®) and TMor, o0---0Ttm o (w™)
have w" as their longest common prefix and thus
T o+ 0Ty (W™)) and 7007, (W)

have a common prefix of length > r|w|. Putting these inequalities together
we get
|7'Z‘1 0+++0 Tim((w(m))r +1)‘ > 7"7'1'1 6.0 Tim(w(m))|7

from which we may deduce that |r'| > |r] — 1 and if r or 7/ is an integer
then 7’ > r — 1. Thus #/ > 1 and hence |w(™| = 2 as claimed. This shows
that w(™ begins in 01 or 10 to power ' > |r| — 1.

Let us now examine m more closely. We know that w(™) begins in 010 or
101; indeed w(™ = 01 or 10 and 7/ > 1. By symmetry we need only consider
the former possibility.

CASE 1: ipy1 = 0. Since w(™ begins in 01, we have by, = 0 and
w1 must begin in 1. If 4,42 = 0 then this means by,1o = 1, i.e., m is
one of the numbers s; — ¢ — 1, where 0 < ¢ < ag. Otherwise 4,12 = 1 and
m is one of the s, — 1.

CASE 2: ippy1 = 1. Then by 1 = 1 and w1 begins in 00, which means
im+2 = 0, and hence m is one of the s; — 1.

From the first case we see that if m is one of the numbers s, — ¢, — 1
(0 < ¢ < ag) then w™ = 750 T o 79(w™*?)) and w(™+2) begins in 1, and
thus in 10 since 11 does not occur as a factor in w(™*2) (one has i,,42 = 0),
which is enough to guarantee that w("™) begins in 0100, i.e., ' = 3/2. This
cannot happen if r > 3, since |[7/| > [r| — 1. =

Now that we know where prefix powers r > 2 in w come from we can
compute them exactly.

PROPOSITION 3.3. Let w and r be as in Proposition 3.2 and let m, w(™,
and w'™ be as in its proof. Assume that r is the largest power of w which
s a prefix of w. Then

k+1
Zj:l (a; — ¢j)gj-1

1ak+2:Ck+2 + m if m=sp—1,
T = k
1(aj —cj)gj—1 .
L Shale — o)y o1
qK — Ckqk—1
with 0 < ¢ < ay,
where 1a;  y=cyn 8 1 4f agr2 = ckyo and 0 otherwise.
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Conversely, for each k, w begins in a cyclic permutation of 75" o )
-~ o7e* (01) with prefiz power

k+1
> (aj —¢j)gj

1ak+2:0k+2 + ar
and for each k such that 0 < ¢ < ag, w begins in a cyclic permutation of
the word 73" o T2 0 -+ - o TE T Y(01) with prefiz power
k
- > i=1(a; = ¢j)gi—1
gk — CkQk—1

Before proving the proposition let us state a lemma, closely related to
Lemma 2.6, to be used in the calculation. It is proved easily by induction.

LEMMA 3.4. Let k > 0 and set i = kK mod 2. Then

k
76 0T 0o Th ()] = gk + Ge1 = 2+ ) ajgj-1,
j=1
’7_0(1107—1 ngﬁl(Z)‘ZQh
[T orgt o 0T ot (i)| = qr — Zcﬂb 1,
|Tc1o7_6llo...oTCkOT ZZ|—2+Z q] 1.

Proof of Proposition 3.3. First suppose m = s — 1. Set ¢ = k mod 2.

. . .1 — — _
The sequence w(**) begins in itok+2=k+2T@+17%+17 Tndeed, wsk) = T%+1 o

T R i ay 9 # cppo, then w(®k+1) begins in 7 and w(**) begins in

1174170 if agio = cpyo, then w(sk+1) begins in 7 and since cpy1 = 0,
w(®t) begins in ¢1+%-+17, The longest common prefix of

w=T% 01" 0---0T%0 Tgfl(w(sk)) and T ord o 0T%o T}?kl(-OO)
has the following length by Lemma 2.4:
TV orgto---0T% o Tgfl(i1“k+2:%+2+ak+1_c’“+1)|
It om0 07k, (i) ~2
= (1ak+2 =chy2 T k41 — Cpt1 — 1)’701 © 7—1 o Tlgil(i)’
—{—|T01O7'01 OTCkOTak ()|+’ a1 ..OTgEl(ﬁN_Q

1 OT12 O"'OTIZEI(Z.)‘

+ [T o7yt o+ 0 T% o, (i7)]| — 2

= (1ak+2:ck+2 + Ar+1 — ck+1)|7—0
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(a/j - Cj)qul + (lak+2=ck+2 + ak+1 - Ck"!‘]-)Qk

|

> <
+
_ =

= (a; —cj)gj—1 + Qk(lak+2=0k+2)'

.
Il
R

. . . . al a ag :
Thus w begins in a cyclic permutation of 75" o 7> o --- o 7., (i) to power

k+1 k+1
Zj:l (@ = ¢j)gj—1 + Gklago=ci o 1 n Zj=1 (aj — ¢j)gj—1
oo o) e &

Since 1,—1(7) = 7, this power is exactly the value of r.

Next we consider the case m = s — ¢, — 1 with 0 < ¢ < a. Again, set
i = k mod 2. From

=T 0 (Tom)™ o7~ o (Tom) 0+~ 0 i % o (T o) * (W),

it is easy to see that w(**~%) begins in 7. Indeed, since ¢y, # 0, we have
Cha1 # apy1, and W) begins in 7, so W ~%) = (T o 7,_1)% (w*)) begins
in i, and then in 7, since 7i does not occur in w(+ =) We thus deduce that
the longest common prefix of

=T ot oo Tt 075 o 708 ok (e
and
T orgt o0 T% 1o ! otk (i)
has length
T 07§t 00 T% 1o T:f; o Tk (1)
+ gt o ooty o Tk K (i) — 2
=T o715’ 0---0T% 10 lef;(iak_c’“i)] + |t o o0 T:f;(i)]
i ot o-ory ori ()] -2
=[T% o7ito---0T% 1o Tl?f;(ﬂ)] + (ag —cx)|Tg* o1 0+ -0 Tsi;(i)\

+Irgt o7 oot ok ()| - 2

N
—_

= ) (aj—¢j)gi—1+ (ar — ) qr—1 + |75 0 T{2 0+ 0 Tt o TR (1))

1

.
Il

1

(aj —¢j)gj—1 + |15t o200 TZE; o TRk (1))

I

<
Il
—
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We also have
al a2 Ap—1 A —Ck (\| __
|9t oT? 0 w0 Te—2 ©Tp_1 (D) = qx — ckqr—1

. . . . al a2 ak—1 ap—Ck (;
and thus w begins in a cyclic permutation of 75" o 71?0+ --o7, " o7 * 7 (4)

to power
Yhi(a = ¢j)gi
qk — Crqk—1 '
As in the first case, this is exactly the value of r.
To prove the “conversely” part of the proposition, simply note that the
formulas for the lengths above do not depend on r or m at all. m

1+

COROLLARY 3.5.

k+1
<Zjil(aj = ¢j)qj—1

Sy (a; — Cj)qj‘—1>.

ice(w) = lim sup max 1+
k—o0 dk dk — CkGk—1
Proof. Set
>t (aj = ¢)aj i (aj — ¢j)aj-1
z(k) =14, .= + == ,oylk) =14+ =2 .
(k) Hera ke ak (k) k. — Ckqk—1

One has, from Proposition 3.3,

ice(w) = max(limsupz(k), limsup y(k)).

k—oo k—o00,0<cp<ag
Observe that
e If ¢, = ay then y(k) = z(k — 2). Thus, if cp1o = agso then z(k) =
y(k + 2).
o If ¢, =0 and cgy1 = agyq then y(k) <y(k+1) =xz(k —1).
o If ¢, =0 and cxy1 < ag41 then y(k) < z(k).

The conclusion follows from these observations. m

4. ICE FOR SOME SPECIAL STURMIAN SEQUENCES

4.1. Notation. In all that follows,

(a5 — ¢j)ai
:C(k) = 1ak+2:ck+2 + . )

qr
(k) = >t (a; - Cj)%‘—lj
dk
y(b) =1+ S8 (a; — Cj)Qj—l_
dk — CkQk—1

One has
ice(w) = limsup max(z(k), y(k)) = lim sup max(z’(k), y(k)).

k—o0 k—o0
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4.2. Characteristic sequence. Recall that the characteristic sequence
w of slope «a is the sequence obtained by setting all of the ¢; equal to 0. We
now prove Theorem 1.2 that we recall below.

THEOREM 1.2. Let w be the characteristic Sturmian sequence of slope a.
Then

ind*(a) = 1 + ice(w).

Proof. We can easily compute ice(w) for such sequences from Corollary
3.5:

k+1 k
. . i=1 4jdj—1 i=1 @41
1ce(w):hmsupmax<zj LT 14 21934 >
k—o0 4k 4k
k+1
ajqj-1 -2
= lim sup M = lim sup Benr G2 =limsupl 4+ — Gt
k—oo dk k—o0 qk k—oo qk
=1+ limsuplag41; ak, . ..,a1] =ind*(a) — 1. =
k—oo

This quantity is finite if and only if the aj are bounded. One has ice(w) <3
if and only if all but finitely many of the a; are equal to 1, in which case
a € Q(f) and ice(w) =1+6.

We can recover the shift invariance of ice off the orbit of w as follows.
Let w(—a) be the Sturmian sequence of slope a coding the orbit of —a
under R,, and let w(1 — «) be the Sturmian sequence of slope a coding the
orbit of 1 — & under R,. These sequences are the two shift preimages of the
characteristic sequence w, i.e.,

w(—a) =0w and w(l-—a)=lw.

Since o(0az0ay4...) = o(a10a30...) = 0000--- = ¥(w), it follows from
Proposition 2.8 that
U(w(—a)) = 0az0ay . . . Y(w(l—a)) =a10a30....

Corollary 3.5 shows that for ¢ € Ka, ice(¥~1(c)) depends only on the tail
of ¢, which is by definition the same as that of o(c) unless ¢ € {a10a30..
0a20a4...}. Thus ice =iceo T on X, \ {w(—a),w(l — a)}.

By Corollary 3.5, one checks that for w(—«), 2'(2k) > z'(2k + 1) and
y(2k) > y(2k + 1) for all k, and

lim sup max(z'(2k), y(2k))

k—o00

= lim sup max
k—o00

= lim sup maux(q%+1 , 14+ d2k—1 ) ,
k—o0 q2k q2k—2

1+
92k q2k—2

2%-+1 2% .
<Z] Lodd % 4j—1 Zj:l,oddajq]—1>
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hence

ice(w(—a)) = lim sup max <a2k+1 + P2k—1 14+ agp_1+ q%g),
k—o0 q2k q2k—2

and similarly

ice(w(1 — «)) = limsup max<a2k+2 + QQ_’C7 1+ agp + Q2k—2).
koo Q2k+1 Q2k-1

This implies ice(w(—a)) < ice(w) and ice(w(1l — «)) < ice(w). One may have
equality as in the Fibonacci case (o = 0 = [1;1,1,...]), as well as a strict
inequality as, for instance, for & = [0;3,1,3,1,...].

4.3. The “keep one” sequence. The aim of this section is to prove
that there exists a Sturmian sequence of slope « with very little repetition
at the beginning, even if o has unbounded partial quotients (and thus X,
has arbitrarily large powers in its language).

PROPOSITION 4.1. For every irrational slope « there exists a Sturmian
sequence w € X, such that ice(w) <1+ 6.

Proof. This is a special case of (3) of Proposition 2.1, but we find it
interesting to specifically give the S-adic expansion of such a point w. Set
cr, = arp—1 for all k and let w € X, be the corresponding Sturmian sequence.
We claim that ice(w) < 6 + 1. By Corollary 3.5,

k1 koo
(Zj:l qj—1 14 Zj:l q]—1>

% Q-1+ Q2

ice(w) = lim sup max
k—o0

k k
i—14d5—-1 i=14—1
:limsupmax<1+zj L , 1+ Z] L >
k—o00 Ak Qk—1 + qr—2

k
. i=14j—-1

=1+ limsup L
k—oo Qk—1 1 qr—2

Our next lemma completes the proof. =

LEMMA 4.2. The continued fraction convergents q; satisfy
k
D=1 951
Qk—1 + qr—2
Proof. Our proof is far from elegant and requires consideration of several
cases. Let f,, be the Fibonacci sequence fy =0, fi = 1 and fr+1 = fn+ fn-1.
Also, set a} = a1 + 1 and a], = a,, for n > 2.
If all of the a;,j =1,...,k—1,areequal to 1 theng; = fj41for0 < j <k
and

< 6.

k
D181 free— 1
Qk—1 + qk—2 Je+1
since fxy2/fr+1 is one of the continued fraction convergents for 6.

<0,
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Otherwise we let [ € {1,2,...,k — 2} be the greatest index for which
aj# 1l,orwesetl =1ifa} =---=a)_, =1 (and thus aj,_, > 1). We have
@ = froaq + fraq forl <r <k-2,

and from the recursive definitions,

25:1 4j—1
qk—1 + qr—2
(Femrr2 = D@+ (fe—r1 — D1 + (ah—y — Dae—2 + 351 g5
fe—iv1qt + fo—iq—1 + (af,_; — 1)qr—2
(fo—ivze =14+ (ah—y — 1) femi—1)@ + (fo—igr + (ah—1 — D) fai—2)@—1 + 22;11 qi-1
(fe—t41 4+ (af_y = D fs—i-1)a@ + (fs—1 + (@} — 1) fro—1-2)@1—1
_ (fr—i42 + (a;_l =D fe—i—1)q + (fe—i41 — a; + ((12_1 — D fr1i-2)q-1+ 22;21 qj—-1
(fe—i+1+ (af_; = D fe—i—)at + (fo—t + (@) — 1) fr—i—2)q1—1

(fe—i42 + (ah—1 — D fe—i—1)@ + (fo—i41 — (a7 = 1) + (af—1 — 1) fo—i—2)@i—1
(fr—g1+ (@, — D fsmi—)@ + (fo—i + (af_y — 1) fromi—2)@i—1 ’

<

since qo + - + q—3 < q;—1. We shall use the fact that (a +b)/(c+d) is

between a/c and b/d for any positive real numbers a, b, ¢, d.

fn+1+m

Frm < f for any positive integers m,n, we

If aj_, > 1 then, since
have

fe—rr2 + (@ — D11
Se—iv1 +(af_y — D) fr11
and the desired inequality follows.

We are left to consider the possibility that aj,_; = 1 and aj > 1. The
inequality above simplifies to

Se—ip1 —(ap = 1)+ (af_y — 1) fr—1-2
Jei+(ag_y — D) fri2

<0, <0,

k
> j=14i-1 < Je—tvoq + (fr—141 — (a] — 1))%71.
Q-1+ Qu—2 — Sre—t1q + fr—1q1—1
If £ —1is even then

— /_ —_
fkfl+2<9’ Jr—i+1 — (q 1)<fkfl+1 1<9’

Jr—141 Jr—1 = e
and the desired inequality follows. In case k — [ is odd, we have k — 1 > 3
and fr_j11/frx—1 < 0. Since
/

, a; 1
a—1)q_1 > > —q,
(ap = Dagr—1 achJz_ng

we have

k
> =151 < (fr—i42 = 1/3)@ + fr—141q1—1
Q-1+ Qe—2 — Jro—141@ + fe—1q1-1
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and the observation that (f, —1/3)/fn—1 < 0 for n > 5 completes the
proof. m

REMARKS. By Proposition 3.3, all prefix powers r > 2 in the “keep one”
Sturmian sequence of slope « are of the form

k k
D =141 > =141
= or 14 —/—m——.
QK qk—1 + qk—2
We have qr > qr_1 + qrp_o for kK > 2 and thus, by Lemma 4.2, the Sturmian
sequence obtained this way begins in no 1 4 6 power at all. It is easy to see
from the proof of Lemma 4.2 that

k
i=145—1
limsup 1 + M
k—00 Qk—1 1 qr—2
with equality if and only if (ax)x>1 has arbitrarily long strings of consecutive
ones. Thus,

1+

<1+90

ice(“keep one”) <1+ 46.

One can show that equality holds in this last expression if and only if every
sequence of slope a has ice > 1 + 6.

4.4. The Fibonacci case. We prove some characteristic properties
of the Fibonacci Sturmian shift X,y = Xy_1, which we henceforth denote
by Xy. Let us recall that according to the results of Section 4.2, the function
ice is shift invariant on Xp, and ice(w) = 1+ 6 if w belongs to the Z-orbit of
the characteristic sequence. The first statement of the following proposition
also occurs in [9].

PROPOSITION 4.3. Every w in the Fibonacci shift Xy begins in arbitrarily
large cubes except those w in the shift orbit of the characteristic sequence.
Furthermore, suppose w € Xy is not in the shift orbit of the characteristic
sequence. Then ice(w) = 2+6 if and only if the Ostrowski expansion (cx)r>1
of w contains arbitrarily long strings of consecutive 0s.

Proof. Here we have a1 = 0 and a; = 1 for all j > 2. Observe that for

w € Xy,
ice(w) = limsup y(k).

k—o0

Indeed, this is an immediate consequence of the following:

o if agr1 =cpyr1 =1, then ¢ =0, and y(k) = 2'(k) + 1;

o if ¢j11 = ¢, =0, then y(k) = 2/(k);

e if cpry =0and ¢y =1, then ¢,_1 =0, and y(k) = 1+ 2/ (k — 2).

Let w be a Sturmian sequence of slope 6, with Ostrowski expansion

(ck)k>1, not belonging to the shift orbit of the characteristic sequence. That
is, (cx)k>1 ends with neither 0101010. .. nor 00000. . ..
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The pattern 001 must appear infinitely often in the sequence (cg)g>1.
Consider an integer k for which (cgx_o,cx_1,cx) = (0,0,1). We have

k-3
Qk—2 + qk—3 + ijz(l = ¢j)qj—1
qk—2 '
One easily proves by induction that for any positive integer [,
!
dA—¢)g1= a1,

=2

y(k) =1+

with equality if and only if ¢;_; =l—i+1 mod 2, for j =0,1,...,l—1. Thus,
if k is large enough that (cj)?;f’ contains two consecutive Os, the prefix of w
of length g;_o has prefix power
Qk—3 + Qk—4
yk) 22+ ———— =
dk—2
Consider now an arbitrary index k. If ¢, = 0 then

k-1 k—1
(1 —ci)gi L o _
> =2l 3)-1 <14 D j=2 41 _ 14 B 2

qk qk qk

3.

ylk) =1+

and if ¢, = 1 then

<1486,

k—2 k—2
=2 (1 —¢j)gj—1 Qe—1— Q=3 Cjqj—1
y(k) —24 Z]_Q( ]) J —94 2]_2 74) )
Ak—2 Ak—2
Since qx_1/qx—2 — 0 as k — oo, we see that ice(w) = 2 + 6 if and only
if (cx)k>1 contains arbitrarily long strings of consecutive Os and infinitely

many 1s. m

5. SMALLEST PREFIX POWERS

Now we turn our attention to minimizing ice over X, and proving The-
orem 1.1, which we recall below.

THEOREM 1.1. Let o = [0;a1,a2,as,...] be an irrational number and
Xq be the set of all Sturmian sequences of slope a. Then there is a Sturmian
sequence w € X, with ice(w) = 2 if and only if for each pair of positive
integers (s,t) with s > 1 there are only finitely many k for which (ax, ag+1) =
(57 t) or (aka Ak+1, ak+2) = (17 1, t)‘

We deduce from this theorem that if min(ice(X,)) = 2 then « has un-
bounded partial quotients and only finitely many strings of more than two
consecutive 1s in its sequence of partial quotients (aj)x>1. The set of o with
this property has measure zero, since every finite sequence of positive in-
tegers appears infinitely many times in the sequence of partial quotients of
almost every real number (see for instance [11]). In particular, no Sturmian
shift with a quadratic slope can contain a sequence of ice equal to 2, and
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by Proposition 2.11, there are no substitutive Sturmian sequences w with
ice(w) = 2.

5.1. Some first restrictions. Given the partial quotients ay of o we
must choose the ¢ (satisfying the admissibility condition (1)) so as to min-
imize the lim sup in Corollary 3.5. A couple of observations will help narrow
the playing field:

e If ap — ¢, > 2 for infinitely many k then ice(w) > 3. Indeed, if a; — ¢

> 3, then
) > (ar — cr)qr—1

2'(k—1
dk—1

> 3.

e Given a sequence c¢; we can define a new sequence ¢, by settin
q q L Py
oo if ag = cp or agpy1 = cpy1,
k= .
ap — 1 otherwise.

The sequence ¢}, also satisfies the admissibility condition (1) and de-
termines a Sturmian sequence of slope a, and the only quantities in
the formula of Corollary 3.5 which are increased by substituting the
¢}, for the ¢, are the ones of the form

k
> i=1(a; = ¢j)qi—1

y(k) =1+
4k — Ckqk—1
where k is an index for which cﬁc # ¢, in which case 02 =ar—1>ck
and
k / k /
2j=1(a = ¢j)gj1 2j=1(a5 = ¢j)gj1
1 + J ; J — 1 + ] J
qk — CLqk—1 qk—1 + qk—2
k
s > i—1la; = c)aj
dk—1
k
- > j=1(a; = ¢j)gi—1
N qk—1
so that ice of the new sequence is no greater than that of the given
sequence.

Consequently, in our quest to minimize ice over X, we need only consider
sequences which for each k satisfy

o ¢ € {0,ar —1,ax},
o if ¢, =0 or if cg11 = ag+1, then ap = 1.

5.2. Special slopes. We describe those slopes « for which X, has a
sequence with ice equal to 2. First we rule out some of the noncontenders.
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As before, 1
T a; —cj)qi—
a=1[0a1+1,a2,a3,...], x(k)= 1o y=cp o + Zj*l( qu )3 17
k+1 k
(k) = >t (aj —¢j)gi—1 J(k) =1+ > i=1(a; = ¢j)gi—1

gk qk — Ckqk—1

PROPOSITION 5.1. If (s,t) is a pair of integers with s > 1 such that

(ag,ar+1) = (s,t) for infinitely many k then every w € X, has
1

20s+1)(t+1)+1°

Proof. From the results of the previous section, we can restrict ourselves
to sequences (ci)r>1 which satisfy: for all &, if ¢, = 0 then a;, = 1. Fix now
an index k for which a; > 1 (and hence ¢ > 1). There are three cases to
consider:

ice(w) > 2+

Cl: ¢cxq2 = agya. Then cp1 = 0. We have

St (aj — ¢j)g-1 o1l
y(k—|—2):1+ j=1\%j J)45 Zl+ak+1+kIQk2
qk qk
> 14 appn o
a .
= ML e + 1
C2: cpy2 < agso — 2. We have
thl(a‘ —¢j)qj-1
2(k+1) > apyo — Cpyg + =277
gk+1
Qrqr—1
> Q42 — Cpg2 +
qk+1
> + !
a — C D ———
= Q2 k+2 2apis + 1

C3: ckio = apyo—1. Using the fact that cx11 < agy1, which follows here
from the hypothesis that a; > 1, we have

k+1
G120 (a5 — ¢5)gj—1

yk+2)=1+
( ) Qk+1 + qx
k
+ + L a; — C; .
S 14 Qk+1 T Gk Z]_l( i~ C)aj-1 > 9.4 Ok—19k—2
qk+1 + gk Qk+1 + Qk
1

>2+ .
- 2(a + 1) (ag41 +1)+1

In every case, one of z(k + 1), y(k+ 1) and y(k + 2) is at least
1
2(ar + 1) (age1 + 1)+ 1

The result follows from this fact and Proposition 3.3. =

2+
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PROPOSITION 5.2. Ift is an integer such that (ak, axy1, axs2) = (1,1,1)

for infinitely many k then every w € X, has
. 1
ice(w) > 2+ STl

Proof. Fix an index k for which ay = agy1 = 1, and set t = apy2. We can
save ourselves some labor by noting that in our proof of Proposition 5.1 the
assumption a; > 1 was used only in the third of the three cases, to deduce
that cy+1 < ag41; in the first two cases the same estimates are valid and we
see that one of x(k+1) and y(k+2) is at least 2+1/9 > 2+1/(8ags2+1) =
2+1/(8t+1).

In the case that cp+1 = ag41 we must have cpi9 < agio; if we replace k
with k£ + 1 in our proof of Proposition 5.1, we find that one of z(k + 2) and
y(k + 3) is at least

1 1 1

2+ >24—— =24
4(ak+2+1)+1 B 8ak+2+1 8t+1

5.3. Proof of Theorem 1.1. Finally, we can prove the main theorem.

Proof of Theorem 1.1. One direction follows from the preceding propo-
sitions. Let us prove the converse. Let o be as in the statement of the
theorem, that is, for each pair of positive integers (s,t) with s > 1 there are
only finitely many indices k for which

(3) (ak7ak+1) = (Sa t) or (ak‘) ak+17ak+2) — (1) 1)t)

We shall define the sequence (cx)r>1 and check that the Sturmian se-
quence it represents has ice equal to 2. Since ice does not depend on the
first values of ¢, we will define the ¢ for k large enough such that the

pattern 111 no longer appears in ag, ag11, . ... We just require that the first
values of (ci)r>1 satisfy the admissibility condition (1). Here it is:

ap—1 ifar>1, ap_1 > 1,
ap —1 ifar>1, ap_1 =ap_o =1,

Cr = ar ifap,>1, ap_1 =1, ap_9 > 1,
0 ifap =1, ap_1 > 1,
ag if ap = 1, ap—1 = 1.

We verify the admissibility condition: If ¢, = ay, then either ap > 1, a1 =1
and ap_o9 > 1 or ap =1, ap_1 = 1 and thus aj_s > 1; in both cases we have
Cp—1 — 0.

Note that ar — ¢, € {0,1} for all k& > 1, hence 2/(k) < y(k) for every
k > 1. Assume that ice(w) > 2. Then there exists ¢ > 0 such that y(k) > 2+¢
holds for infinitely many integers k; among those k, one of the following four
possibilities holds for infinitely many of them:
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ar > 1 and ¢ = ap — 1;
ap > 1 and ¢, = ay;

ap = ag—1 = 1;

ar =1 and ap_1 > 1.

GQw>

CASE A. Suppose ap > 1 and ¢, = a; — 1. Then either ap_; > 1 or
ag_1 = ag_o = 1. We thus get

k
C (ai —ei)gi_
2+€§y(k;)§1+zﬂ—l( J J)QJ 1

Qk—1 + Qr—2
therefore
k k—3
I+ g +a2) <D g1 <G 1+qG 2+as+y, g1
j=1 j=1
Since
k-3 k-3
Z qj—1 < Z a;qi-1 < qk—3 + Qk—4,
j=1 j=1
we have
e(qr—1 + qk—2) < 2qi—3 + Qr—1,
hence

e(ar—1qr—2 + ar—2qr—3) < 3qr—3 < 3qr—2.

In particular, e(ag—1qk—2) < 3qr—2 and e(ax_2qk—3) < 3qr_3 hold for in-
finitely many k, therefore there exists a pair of integers (s,t) such that
(ag—2,ar—1) = (s,t) for infinitely many k. It follows from our assumption
(3) on « that s = 1. There are two cases to consider:

e s =t =1, and thus for infinitely many k,
0 ar >1, ap1=ax2=1, c=a,—1, cx1=0ar,
ag-3>1, ¢c2=0, cx3=>ar3—1,
and s
k-1 + qk—3 + qk—4 + Zj;l (aj —¢j)aj—1

2+e<y(k) <1+

Qk—1 + qr—2
_ g B + qr—2 + Z?;f(aj - Cj)Qj—l’
Gk—1 + Qk—2
and thus
e(qr—1+ qr—2) < 2qk—4-
As

Q-1+ Q-2 = Q-2+ Q-3 + qe—3 + Qr—1 = 3qx—3 + 2qx_4
> (3ak—3 + 2)qr—a,

we see that
e(3ag—3 + 2)qr—4 < 2qx_4.
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Since this inequality holds for infinitely many k, there exists an integer
s’ > 1 such that ax_3 = ¢, and ax_o =t = 1 (by (4)) for infinitely
many k, a contradiction with (3).

e s=1andt > 1. We thus have ap > 1, ap_1 =t > 1, ap_9 = 1, and
¢k = ap — 1. One can assume ai_3 > 1, by assumption (3) on « (the
pattern 11t appears only finitely many times). Hence ¢x_1 = aj_1 and
cx—2 = 0. We thus obtain, by arguing as in case s =t =1,

e((t+2)ap—3+ (t+1))qr—a < 2qx_4.

Since this inequality holds for infinitely many k, there exists an integer
t' such that ay_3 = t', a_» = 1 and a,_; = t for infinitely many &, a
contradiction with (3).

CAseE B. Suppose ap > 1, ¢ = ag. Then ap_1 = 1, ag_o > 1 and
cx—1 = 0. We have

k—2 k—2
Qrk—2 + 1 \a; — Cj)qi—1 qi—1
AN TSR0 o () S BN i | Sl Y
U2 Q2
hence
k—
€Qk—2 < qk—3 + Z i —¢)q-1 < 3qk—3,
and

Eap—oqr—3 < 3qk—3-

Since this inequality holds for infinitely many k&, there exists an integer s > 1
such that ax_1 = 1 and ap_o = s for infinitely many k, a contradiction
with (3).

Cask C. Suppose ar = ai_1 = 1. Then, by hypothesis, ap_o > 1, ¢ = 1
and ci_1 = 0. We have
k—3
Qr—2 + Qr—3 + 21 (a5 — ¢)gj—1

24e<y(k)=1+ ;
dk—2

that is,
EQr—2 < 3qk—3,
and
eak—2qk—3 < 3qk—3-

Since this inequality holds for infinitely many k, there once again exists
an integer s > 1 such that ag_1 = 1 and ag_o = s for infinitely many k,
contrary to hypothesis (3).
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CASE D. Suppose ar =1 and ag_1 > 1. Then ¢ = 0. One has
Qk—1+ qr—2 + Z?ﬁ(aj — ¢j)qj-1

24+e<yk) <1+

qr
&t i3 (ay — cj)qj_17
gk
hence
eqr < qk—2 + qk—3,
and

e(ag—1+ 1)gr—2 < e(qr-1+ qr—2) < 2qk—2.
These inequalities hold for infinitely many k. It follows that for some s > 1
we have a; = 1 and ag_1 = s for infinitely many k, a contradiction with (3). =
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