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1. Introduction. Let F be a number field and OF its ring of integers.
The problem of computing the higher K-groups of F and of OF has a rich
history (see [1], [5], [6] and [18]). Quillen [18] proved that for all n > 0
the K-groups Kn(OF ) are finitely generated. There are various conjectures
about their torsion subgroups. One of them, due to Lichtenbaum, is:

Lichtenbaum Conjecture. For all n ≥ 2,

ζ∗F (1− n) = ± |K2n−2(OF )|
|K2n−1(OF )tors|

RBn (F )

up to powers of 2, where RBn (F ) is the Borel regulator and ζ∗F (1− n) is the
first non-vanishing coefficient in the Taylor expansion of the zeta function
ζF (s) at s = 1− n.

For n = 1, there is an exact sequence (see [19])

0→ K2(OF )→ K2(F )
⊕τp−−→

⊕
pfinite

k∗p → 0.

The map ⊕τp is explicitly given by the so-called tame symbol, namely, for
each prime ideal p of OF , the map

τp : K2(F )→ k∗p

defined by
τp({a, b}) = (−1)vp(a)vp(b)avp(b)b−vp(a) mod p,

where vp denotes the p-adic valuation. Therefore K2(OF ) = ker(⊕τp), and
hence K2(OF ) is also called the tame kernel.

For a quadratic number field F , the 2-primary part of K2(OF ) has been
intensively studied (see [4, 12–16]). For an odd prime p, some results on
p-primary parts of tame kernels of number fields can be found in [2, 3, 5,
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9–10, 17, 20–22]. Browkin [2] studied tame kernels of cubic cyclic fields
with exactly one ramified prime. Li, Qin, Wu and the author obtained
some results on tame kernels of cubic and quintic number fields in [10, 17,
20–22].

Throughout the paper we use the following notation:

• Cn is a cyclic group of order n.
• An is the alternating group of order n!/2.
• Dn is the dihedral group of order 2n.
• V4 = C2 × C2 is Klein’s four group.
• If A is a finite group, then we denote by |A| the number of elements

of A.
• Let p be a prime and a, b two positive integers. If a = pna0, b = pnb0,
a0 and b0 are prime to p, then we write a =p b.

Recently, J. Browkin and H. Gangl [3] discussed the following conjecture:

Conjecture. For every number field F , one has

(1) |ζ∗F (−1)| = R̃2(F )|K2(OF )|
ω2(F )

,

where R̃2(F ) is the second dilogarithmic regulator of F , and ω2(F ) is the
maximal order of the root of unity belonging to the compositum of all
quadratic extensions of F .

Let E be a Galois extension of Q with dihedral Galois group Dp, where
p is an odd prime, E0 the unique quadratic subfield of E, and E1 a subfield
of degree p. Assuming the conjectural formula (1) and applying the Brauer–
Kuroda relations between the Dedekind zeta functions of a number field E
and of some of its subfields, J. Browkin and H. Gangl [3] proved that if E
is not totally real and ω2(E) = ω2(E0) = ω2(E1) = 24, then

(2) |K2(OE)| = Q2(E)

4p
|K2(OE1)|2|K2(OE0)|

for some Q2(E) ∈ N. Moreover, in numerical examples in [3], it is always
the case that Q2(E) = 1 or p.

Let E/F be a Galois extension of number fields. In this paper, using some
basic properties of the transfer mapping in K-theory, we mainly prove some
relations among the orders of odd parts of tame kernels of some subfields
of E/F . In Section 2, we obtain two main results, Theorems 1 and 2. For
F = Q and Gal(E/F ) = V4, the following formula can be obtained from
Zhou [21]:

|K2(OE)| =p |K2(OF0)| |K2(OF1)| |K2(OF2)|,
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where Fi, i = 0, 1, 2, are three quadratic subfields of E. Our result in Theo-
rem 1 generalizes the above formula. Let E/F be a dihedral extension with
Galois group Dl, where l is an odd prime. We will prove (see Theorem 2)
that for every odd prime p 6= l,

(3) |K2(OE)| |K2(OF )|2 =p |K2(OK)|2|K2(Ok)|,

where K/F is a subextension of degree l in E/F and k is the unique
quadratic subfield. For F = Q, the formula (3) implies that Q2(E) in (2)
has prime factors 2 and p only.

As applications, in Section 3 we give some formulae for the odd parts of
the tame kernels of E, F and of some subfields of E over F , when E/F is
a Galois extension of number fields with Galois group D4 or A4.

2. Main theory. Let E/F be a finite extension of number fields. In [11],
the transfer trE/F was defined, which is a group homomorphism trE/F :
K2(E) → K2(F ). Now, we recall its basic properties (see [8]) and some
well known facts about K2-groups of a number field and of its ring of inte-
gers.

(i) The composite

K2(F )
j→ K2(E)

trE/F−−−→ K2(F ),

where j is induced by the inclusion F ⊂ E, is multiplication by the
degree of E/F .

(ii) If E/F is a Galois extension with Galois group G, then j trE/F =
NE/F , where NE/F is the group norm, NE/F (x) =

∏
σ∈G σ(x).

(iii) If j : K2(F ) → K2(E) and tr : K2(E) → K2(F ) are restricted to
the groups K2(OE), K2(OF ), then the analogues of (i) and (ii) hold
for these groups as well.

We denote by K2(E/F ) the kernel of the map trE/F : K2(OE) →
K2(OF ). The Sylow p-subgroup K2(E/F )(p) of K2(E/F ) is the kernel of
the restriction of trE/F to the Sylow p-subgroup K2(OE)(p) of K2(OE). For
every prime p - (E : F ), the exact sequence

1→ K2(E/F )(p)→ K2(OE)(p)
tr→ K2(OF )(p)→ 1

splits, and we conclude that K2(OE)(p) ∼= K2(E/F )(p)×K2(OF )(p).

Lemma 1. Let E/F be a Galois extension of number fields and p a
prime not dividing (E : F ). Then the map j : K2(OF )(p) → K2(OE)(p) is
injective, the transfer trE/F : K2(OE)(p) → K2(OF )(p) is surjective, and
K2(OE)(p) ∼= K2(E/F )(p)×K2(OF )(p).
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Theorem 1. Let E/F be a Galois extension of number fields with the
Galois group V4 = {1, σ0, σ1, σ2} and let Fi := Eσi , i = 0, 1, 2, be subfields
quadratic over F . Then for every odd prime p,

(4) K2(E/F )(p) ∼= K2(F0/F )(p)×K2(F1/F )(p)×K2(F2/F )(p),

and

(5) |K2(OE)| |K2(OF )|2 =p |K2(OF0)| |K2(OF1)| |K2(OF2)|.

Proof. We shall define a mapping

λ : K2(E/F )(p)→ K2(F0/F )(p)×K2(F1/F )(p)×K2(F2/F )(p)

and prove that it is an isomorphism.

For an odd prime p, squaring is an automorphism of the p-part of any
finite abelian group. So for every element c ∈ K2(E/F )(p) there is a unique
element d ∈ K2(E/F )(p) such that c = d2.

From trE/F = trFi/F trE/Fi
, it follows that trE/Fi

(ker trE/F ) ⊆ ker trFi/F .
Hence

(6) trE/Fi
(K2(E/F )(p)) ⊆ K2(Fi/F )(p).

By assumption, we have 1 = trE/F (d) = d1+σ0+σ1+σ2 , and, by (6),

trE/Fi
(d) = d1+σi ∈ K2(Fi/F )(p).

We define

λ(c) := (d1+σ0 , d1+σ1 , d1+σ2).

Obviously, λ is a homomorphism.

If λ(c) = 1, then d1+σ0 = d1+σ1 = d1+σ2 = 1. Hence

c = d2 = d2+1+σ0+σ1+σ2 = d(1+σ0)+(1+σ1)+(1+σ2) = 1.

So λ is injective.

For every bi ∈ K2(Fi/F )(p) there exists di ∈ K2(Fi/F )(p) such that
bi = d2

i , i = 0, 1, 2. We have d1+σi = d2
i = bi, since di is fixed by σi.

Moreover, d
1+σj
i = trFi/F (di) = 1 for j 6= i.

Hence taking d := d0d1d2 and c := d2 we get

λ(c) = (d1+σ0 , d1+σ1 , d1+σ2) = (b0, b1, b2),

so λ is surjective.

Thus we have proved (4). By (4), we have

(7) |K2(E/F )| =p |K2(F0/F )| |K2(F1/F )| |K2(F2/F )|.

By Lemma 1, we have |K2(OE)| =p |K2(E/F )| |K2(OF )| and |K2(OFi)|
=p |K2(Fi/F )| |K2(OF )|, i = 0, 1, 2. Substituting this in (7) proves the the-
orem.
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Corollary 1. Let E/F be a Galois extension of number fields with Ga-
lois group V4 = {1, σ0, σ1, σ2} and let Fi := Eσi, i = 0, 1, 2, be the quadratic
subextensions of E/F . Then, for every odd prime p,

K2(E/F0)(p) ∼= K2(F1/F )(p)×K2(F2/F )(p),(8)

K2(E/F1)(p) ∼= K2(F0/F )(p)×K2(F2/F )(p),(9)

K2(E/F2)(p) ∼= K2(F0/F )(p)×K2(F1/F )(p).(10)

Proof. By Lemma 1, we get K2(OE)(p) ∼= K2(E/F0)(p) × K2(OF0)(p)
and K2(OF0)(p) ∼= K2(F0/F )(p)×K2(OF )(p). Putting them together gives
K2(OE)(p) ∼= K2(E/F0)(p) × K2(F0/F )(p) × K2(OF )(p). Comparing this
with K2(OE)(p) ∼= K2(E/F )(p)×K2(OF )(p) we deduce

K2(E/F )(p) ∼= K2(E/F0)(p)×K2(F0/F )(p).

Together with (4) this gives (8) as claimed. The proofs of (9) and (10) are
similar.

Let l be an odd prime and let Dl be the dihedral group of order 2l. Then
Dl has a unique subgroup of order l, and l subgroups of order 2.

Theorem 2. Let E/F be a dihedral extension with Galois group Dl, k
its quadratic subfield fixed by 〈σ〉, K the fixed field of τ , and K ′ the fixed
field of στ . Then for every odd prime p 6= l, we have

K2(E/k)(p) ∼= K2(K/F )(p)×K2(K ′/F )(p),

|K2(OE)| |K2(OF )|2 =p |K2(OK)|2|K2(Ok)|.

Proof. For a ∈ K2(K/F )(p), there exists b ∈ K2(OE)(p) such that a =
trE/K(b) = bτ(b) by Lemma 1. Then

NE/F (b) = trE/F (b) = (trK/F trE/K)(b) = trK/F (a) = 1.

So we have trE/k(a) = trE/k(bτ(b)) = NE/F (b) = 1. This implies that a ∈
K2(E/k)(p). Similarly, K2(K ′/F )(p) can also be considered as a subgroup
of K2(E/k)(p).

Since trK/F trE/K = trk/F trE/k and trK′/F trE/K′ = trk/F trE/k, we can
define the mapping

φ : K2(E/k)(p)→ K2(K/F )(p)×K2(K ′/F )(p)

by φ(a) = (trE/K(a), trE/K′(a)). Clearly, it is a homomorphism. We shall
prove that φ is injective: If trE/K(a) = trE/K′(a) = 1, then aτ(a) =

a((στ)(a)) = 1, so σ(a) = a. Hence, al = trE/k(a) = 1. This implies a = 1
since p 6= l.

For c ∈ K2(K/F )(p) ∩K2(K ′/F )(p), it is clear that c is fixed by τ and
by στ , hence by σ. Since K2(K/F )(p) and K2(K ′/F )(p) are subgroups of
K2(E/k)(p), we have cl = trE/k(c) = 1. This implies
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K2(K/F )(p) ∩K2(K ′/F )(p) = 1

since p 6= l. Therefore

(11) |K2(E/k)(p)| = |K2(K/F )(p)| |K2(K ′/F )(p)|.

Since K and K ′ are isomorphic, we conclude that |K2(OK′)(p)| =
|K2(OK)(p)|. This proves the theorem by Lemma 1 and (11).

3. Applications. Let E/F be a number field extension with Galois
group D4 or A4. By Galois theory, we get the following information about
subextensions of E/F .

(I) Let D4 = 〈a, x | a4 = x2 = 1, xax−1 = a−1〉. Then there are five sub-
groups of order 2: {e, a2x}, {e, x}, {e, a2}, {e, a3x} and {e, ax}. The corre-
sponding fixed subfields are respectively K ′1, K1, K, K2 and K ′2. Since there
is only one normal subgroup {e, a2}, we have only one Galois subextension
K/F of degree 4. Moreover {e, a2x} and {e, x} are conjugate subgroups,
so K1 and K ′1 are isomorphic subfields over F . Similarly, K2 and K ′2 are
isomorphic subfields over F .

There are three subgroups of order 4: {e, x, a2, a2x}, {e, ax, a2, a3x}, and
{e, a, a2, a3}. The corresponding fixed subfields are respectively k1, k2 and k.
Since every quadratic extension is normal, there are three Galois subexten-
sions of degree 2 in E/F .

(II) The alternating group A4 has the following subgroups except for
trivial subgroups:

(a) Three subgroups of order two, each generated by the product of two
transpositions. These subgroups are conjugate.

(b) A subgroup of order four, i.e., {(1), (12)(34), (13)(24), (14)(23)}. It
is the Klein four-group V4. It is a normal subgroup of A4.

(c) Four subgroups of order three, each generated by a 3-cycle. These
subgroups are conjugate.

Hence, the corresponding subfields Ki, i = 1, 2, 3, of E in (a) are iso-
morphic over F , and the corresponding subextension K/F of E/F in (b) is
a Galois extension.

Proposition 1. Let E/F be a dihedral extension with Galois group D4

described as in (I). Then, for any odd prime p,

|K2(OE)| |K2(Ok1)|2 =p |K2(OK1)|2|K2(OK)|,(12)

|K2(OE)| |K2(Ok2)|2 =p |K2(OK2)|2|K2(OK)|,(13)

|K2(OK)| |K2(OF )|2 =p |K2(Ok1)| |K2(Ok2)| |K2(Ok)|,(14)

|K2(OE)| |K2(OF )|2 =p |K2(OK1)| |K2(OK2)| |K2(Ok)|.(15)
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Proof. By (I), we have three Galois subextensions with Galois group
V4 in E/F . They are respectively E/k1 with subextensions K1/k1, K ′1/k1

and K/k1; E/k2 with subextensions K2/k2, K ′2/k2; and K/k2, and K/F
with subextensions k1/F , k1/F and k/F . Since Ki and K ′i, i = 1, 2, are
isomorphic fields over F , it is easy to see that K2(OKi), i = 1, 2, 3, are
isomorphic. The first three formulae follow from Theorem 1. Finally, we get
the last formula from (12)–(14).

Corollary 2. Let E/F be a dihedral extension with Galois group D4

denoted as in (I). Then for any odd prime p and any integer i > 0, we have

pi-rank(K2(OK1))− pi-rank(K2(Ok1))

= pi-rank(K2(OK2))− pi-rank(K2(Ok2)).

Proof. We know that the tame kernels of Kj and K ′j are isomorphic since
Kj and K ′j are isomorphic fields over F , where j = 1, 2. So for every odd
prime p and every integer i > 0,

pi-rank(K2(OKj )) = pi-rank(K2(OK′
j
)).

By Corollary 1, we know that for every odd prime p,

K2(K1/k1)(p)×K2(K ′1/k1)(p) ∼= K2(E/K)(p)
∼= K2(K2/k2)(p)×K2(K ′2/k2)(p).

This proves the corollary, by Lemma 1.

Example. Let E = Q( 4
√

2, i). It is easy to see that Gal(E/Q) = D4,
k1 = Q(

√
2), k2 = Q(

√
−2), k = Q(i), K = Q(

√
2, i), K1 = Q( 4

√
2), K ′1 =

Q(i 4
√

2), K2 = Q((1− i) 4
√

2) and K ′2 = Q((1+ i) 4
√

2). For every odd prime p,
we see that K2(Ok)(p) = K2(Ok1)(p) = K2(Ok2)(p) = 1. So K2(OK)(p) is
trivial by Theorem 1. By Proposition 1, we have |K2(OK1)| =p |K2(OK2)|
and

|K2(OE)| =p |K2(OK1)|2 =p |K2(OK2)|2.

Proposition 2. Let E/F be a Galois extension with Galois group A4

denoted as in (II). Then, for any odd prime p,

|K2(OE)| |K2(OK)|2 =p |K2(OK1)|3.

Proof. This follows from (II) and Theorem 1.

Corollary 3. Let E/F be a Galois extension with Galois group A4

denoted as in (II). Then, for any odd prime p and any integer i > 0, we
have

pi-rank(K2(OE)) = 3pi-rank(K2(OK1))− 2pi-rank(K2(OK)).
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Proof. This follows at once from Corollary 1 by observing that the fields
Ki, i = 1, 2, 3, are isomorphic over F .

Acknowledgements. The author thanks Professors Jerzy Browkin and
Herbert Gangl for sending her their paper [3] and the anonymous referees
for their very careful reading of the paper and useful comments.

Supported by NSFC 10801076, 10971098, 11071110, Post-Doctor Funds
of Jiangsu 1201065C and BK 2010362.

References

[1] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup.
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