Kloosterman sums with prime variable

by
Roger C. Baker (Provo, UT)

1. Introduction. We are concerned with the exponential sum

$$
S_{q}(a ; x)=\sum_{\substack{x<p \leq 2 x \\(p, q)=1}} e\left(\frac{a \bar{p}}{q}\right)
$$

where $x \geq 2 ; q \geq 2$ is an integer, $(a, q)=1$ and \bar{w} denotes inverse of w modulo q. As usual, $e(\theta)=e^{2 \pi i \theta}$ and $e_{q}(\theta)=e(\theta / q)$. The sum is taken over primes p.

Using bounds for multidimensional exponential sums coming from algebraic geometry, Fouvry and Michel [3] showed that

$$
\begin{equation*}
\sum_{\substack{x<p \leq 2 x \\(p, q)=1}} e\left(\frac{f(p)}{q}\right)<_{f, \varepsilon} q^{3 / 16+\varepsilon} x^{25 / 32} \tag{1.1}
\end{equation*}
$$

for q prime, $2 \leq x \leq q$, and $f(X)$ a rational function with integer coefficients, not of the form $c X+d$. (Values of p with the denominator of $f(p)$ divisible by q are excluded in (1.1).) Here and below, ε denotes an arbitrary positive number, which we may suppose is small. As for the particular case $f(X)=a X^{-1}$, Fouvry and Michel showed that for every $\delta>0$, there exists $\eta=\eta(\delta)>0$ such that

$$
\begin{equation*}
S_{q}(a ; x) \lll \delta x^{1-\eta} \tag{1.2}
\end{equation*}
$$

for q prime, $(a, q)=1$ and $q^{3 / 4+\delta} \leq x \leq q$. This was sharpened by Bourgain [2], using an ingenious elementary method that will be discussed below. It is shown in [2] that for every $\delta>0,(1.2)$ holds for q prime, $(a, q)=1$, some $\eta=\eta(\delta)>0$ and $q^{1 / 2+\delta} \leq x \leq q$.

An effective version of (1.2) has been given by Garaev [5] for prime q and extended to general modulus q by Fouvry and Shparlinski [4]. In [4] it

[^0]is shown that for $q^{3 / 4} \leq x \leq q^{4 / 3}$,
\[

$$
\begin{equation*}
S_{q}(a ; x) \ll\left(x^{15 / 16}+q^{1 / 4} x^{2 / 3}\right) q^{\varepsilon} \tag{1.3}
\end{equation*}
$$

\]

Fouvry and Shparlinski also give the average bound

$$
\begin{equation*}
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{q}(a ; x)\right| \ll\left(Q^{13 / 10} x^{3 / 5}+Q^{13 / 12} x^{5 / 6}\right) Q^{\varepsilon} \tag{1.4}
\end{equation*}
$$

for $Q^{3 / 2} \geq x \geq 1$. We use ' $q \sim Q$ ' as an abbreviation for ' $Q<q \leq 2 Q$ '.
We extend Bourgain's result, but with a limitation on the multiplicative structure of q. We shall write, for an integer $q \geq 2$,

$$
q=u v, \quad(u, v)=1, u \text { squarefree, } v \text { squarefull. }
$$

Theorem 1. Let $x \geq 2, q \geq 2$ and $v \leq x^{1 / 4}$. Let $0<\delta \leq 1 / 24$. Then

$$
S_{q}(a ; x) \ll_{\delta} x^{1-\delta^{4} / 2000} \quad \text { for }(a, q)=1 \text { and } v q^{1 / 2+\delta} \leq x \leq q^{3 / 4+\delta}
$$

Obviously it would be desirable to reduce the lower bound on x to $q^{1 / 2+\delta}$. We also give an improvement of (1.3) for part of the range of x, which is nontrivial for $x \geq Q^{1 / 2+\delta}$.

Theorem 2. We have

$$
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{q}(a ; x)\right| \ll\left(Q^{11 / 10} x^{4 / 5}+Q x^{11 / 12}\right) Q^{\varepsilon} \quad \text { for } Q^{1 / 2} \leq x \leq 2 Q
$$

A nice application of (1.4) given in (4] concerns the values of the quadratic form

$$
A\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2} X_{3}
$$

at prime triplets. We write $P^{+}(N)$ for the largest prime factor of $N \geq 2$, and $P^{+}(1)=1$. Let $\theta_{0}=1.1002 \ldots$ be the unique root of the equation

$$
13 \theta-16+12 \log \left(\frac{13 \theta-12}{2}\right)=0
$$

Then for $\theta<\theta_{0}$ and $x>x_{0}(\theta)$,

$$
\begin{equation*}
\left|\left\{\left(p_{1}, p_{2}, p_{3}\right): p_{i} \sim x, P^{+}\left(A\left(p_{1}, p_{2}, p_{3}\right)\right)>x^{\theta}\right\}\right| \geq \frac{c(\theta) x^{3}}{(\log x)^{3}} \tag{1.5}
\end{equation*}
$$

([4, Corollary 1.6]). Here and below, $|E|$ denotes the cardinality of a finite set E, or the number of elements (counted with multiplicity) of a multiset E.

In the present paper I improve this a little, by applying Theorem 2 and imposing a simple restriction on the set of triples $\left(p_{1}, p_{2}, p_{3}\right)$ considered.

Theorem 3. Let $\theta_{1}=1.1673 \ldots$ be the unique root of the equation

$$
24 \theta-37+22 \log \left(\frac{12 \theta-11}{2}\right)=0
$$

Then for any $\theta<\theta_{1}$, there exists $c(\theta)>0$ and $x_{1}(\theta)$ such that 1.5 holds for $x>x_{1}(\theta)$.
2. Proof of Theorem 1. We recall some results about the Fourier transform on the additive group $G:=\mathbb{Z} / q \mathbb{Z}$. For $f, g: G \rightarrow \mathbb{C}$, let

$$
\begin{aligned}
\hat{f}(y) & =\sum_{x \in G} f(x) e_{q}(-x y), \quad \check{f}(y)=\frac{1}{q} \sum_{x \in G} f(x) e_{q}(x y), \\
(f * g)(y) & =\sum_{\substack{x, z \in G \\
x+z=y}} f(x) g(z)
\end{aligned}
$$

It may readily be verified that $(\hat{f})^{\vee}=(\check{f})^{\wedge}=f,(f * g)^{\wedge}=\hat{f} \hat{g}$, and

$$
\begin{equation*}
\sum_{y \in G}|\hat{f}(y)|^{2}=q \sum_{x \in G}|f(x)|^{2} \tag{2.1}
\end{equation*}
$$

Let δ_{x} be the point mass at x. For complex measures

$$
\nu=\sum_{x \in G} a(x) \delta_{x}, \quad \mu=\sum_{y \in G} b(y) \delta_{y},
$$

with respective density functions $a(\ldots), b(\ldots)$, we define $\nu * \mu$ to be the measure with density function $a * b$, and define $\hat{\nu}=\hat{a}$, so that $(\nu * \mu)^{\wedge}=\hat{\nu} \hat{\mu}$. We write $\nu^{(k)}$ for the k-fold convolution $\nu * \cdots * \nu$, and $\|\nu\|=\sum_{x \in G}|a(x)|$. Clearly

$$
\|\nu * \mu\| \leq\|\nu\|\|\mu\| .
$$

We write χ_{E} for the indicator function of E.
Lemma 1. Let $S \subseteq G$. For a measure ν on G,

$$
\begin{equation*}
\nu(S)=\frac{1}{q} \sum_{y \in G} \hat{\nu}(y) \hat{\chi}-S(y) \tag{2.2}
\end{equation*}
$$

Proof. It suffices to prove this for $\nu=\delta_{x}$. Here the left-hand side of (2.2) is $\chi_{S}(x)$. The right-hand side is

$$
\left(\hat{\nu} \hat{\chi}_{-S}\right)^{\vee}(0)=\left(\left(f * \chi_{-S}\right)^{\wedge}\right)^{\vee}(0)=\left(f * \chi_{-S}\right)(0)
$$

where $f(y)=1$ for $y=x$ and $f(y)=0$ otherwise. The last expression is

$$
\sum_{z+w=0} f(z) \chi_{-S}(w)=\chi_{-S}(-x)=\chi_{S}(x)
$$

Lemma 2. Let p be prime and let $\left(b_{1}, \ldots, b_{2 k}\right)$ be a $2 k$-tuple of integers such that $\left(b_{k+1}, \ldots, b_{2 k}\right)$ is not a permutation of $\left(b_{1}, \ldots, b_{k}\right)$ modulo p. Then the congruence

$$
\left(y+b_{1}\right)^{-}+\cdots+\left(y+b_{k}\right)^{-}-\left(y+b_{k+1}\right)^{-}-\cdots-\left(y+b_{2 k}\right)^{-} \equiv 0(\bmod p)
$$

has at most $2 k-1$ solutions in the set $\left\{y(\bmod p):\left(y+b_{j}, p\right)=1(j=\right.$ $1, \ldots, 2 k)\}$.

Proof. After removing pairs with $j \leq k<h$ for which $b_{j} \equiv b_{h}(\bmod p)$ until no such pairs remain, and combining like terms, we must solve

$$
\begin{equation*}
\sum_{j \in A} a_{j}\left(b_{j}+y\right)^{-}-\sum_{h \in B} c_{h}\left(b_{h}+y\right)^{-} \equiv 0(\bmod p) \tag{2.3}
\end{equation*}
$$

where $A \subseteq\{1, \ldots, k\}, B \subseteq\{k+1, \ldots, 2 k\}$ are nonempty sets, the integers $b_{j}(j \in A \cup B)$ are distinct modulo p, and $1 \leq a_{j}, c_{h} \leq k$.

Since the result is trivial for $p \leq k$, suppose that $p>k$. We multiply (2.3) by $\prod_{j \in A \cup B}\left(y+b_{j}\right)$, obtaining a polynomial congruence

$$
G(y) \equiv 0(\bmod p)
$$

of degree $\leq 2 k-1$. Since for $j \in A$,

$$
G\left(-b_{j}\right)=a_{j} \prod_{\substack{l \in A \cup B \\ l \neq j}}\left(b_{l}-b_{j}\right) \not \equiv 0(\bmod p),
$$

G is not identically zero modulo p, and the result follows from Lagrange's theorem.

Lemma 3. Let \mathcal{B} be the set of $\boldsymbol{b}=\left(b_{1}, \ldots, b_{2 k}\right)$ in $\mathbb{Z}^{2 k}$ with $1 \leq b_{j} \leq B$ ($j=1, \ldots, 2 k$), where $B \geq 1$. Let $N(\boldsymbol{b}, q)$ be the number of solutions y $(\bmod q)$ of

$$
\left(y+b_{1}\right)^{-}+\cdots+\left(y+b_{k}\right)^{-}-\left(y+b_{k+1}\right)^{-}-\cdots-\left(y+b_{2 k}\right)^{-} \equiv 0(\bmod q)
$$

subject to $\left(y+b_{j}, q\right)=1(j=1, \ldots, q)$. Then

$$
\sum_{b \in \mathcal{B}} N(\boldsymbol{b}, q)<_{k, \varepsilon} q^{\varepsilon}\left(B^{2 k} v+B^{k} q\right) .
$$

Proof. For each factorization $u=u_{1} u_{2}$, let $\mathcal{B}\left(u_{1}, u_{2}\right)$ be the set of \boldsymbol{b} in \mathcal{B} for which:

- if $p \mid u_{1},\left(b_{k+1}, \ldots, b_{2 k}\right)$ is not a permutation of $\left(b_{1}, \ldots, b_{k}\right)$ modulo p;
- if $p \mid u_{2},\left(b_{k+1}, \ldots, b_{2 k}\right)$ is a permutation of $\left(b_{1}, \ldots, b_{k}\right)$ modulo p.

It suffices to show that

$$
\begin{equation*}
\sum_{\boldsymbol{b} \in \mathcal{B}\left(u_{1}, u_{2}\right)} N(\boldsymbol{b}, q)<_{k, \varepsilon} q^{\varepsilon / 2}\left(B^{2 k} v+B^{k} q\right) . \tag{2.4}
\end{equation*}
$$

For $\boldsymbol{b} \in \mathcal{B}\left(u_{1}, u_{2}\right)$,

$$
\begin{align*}
N(\boldsymbol{b}, q) & =\left(\prod_{p \mid u_{1}} N(\boldsymbol{b}, p)\right) N\left(\boldsymbol{b}, u_{2} v\right) \tag{2.5}\\
& \leq u_{2} v \prod_{p \mid u_{1}} N(\boldsymbol{b}, p) \quad(\text { trivially }) \\
& \leq u_{2} v(2 k-1)^{\omega\left(u_{1}\right)} \ll u_{2} v q^{\varepsilon / 4}
\end{align*}
$$

by Lemma 2. Here $\omega\left(u_{1}\right)$ denotes the number of prime divisors of u_{1}.

Let $l>k$. Given the first k coordinates of \boldsymbol{b}, the number of possibilities for b_{l} is $\leq k^{\omega\left(u_{2}\right)}\left(B / u_{2}+1\right)$, since there are $k^{\omega\left(u_{2}\right)}$ possibilities for $b_{l}\left(\bmod u_{2}\right)$. Hence,

$$
\begin{equation*}
\left|\mathcal{B}\left(u_{1}, u_{2}\right)\right| \ll k^{\omega\left(u_{2}\right)} B^{k}\left(\frac{B}{u_{2}}+1\right)^{k} \ll q^{\varepsilon / 4}\left(\frac{B^{2 k}}{u_{2}}+B^{k}\right) \tag{2.6}
\end{equation*}
$$

Now (2.4) follows on combining (2.5), (2.6).
In the proofs in the remainder of this section, we sometimes suppose implicitly that q is 'sufficiently large'. An interval $I=(a, b]$ denotes $\{x \in \mathbb{Z}: a<x \leq b\}$, rather than $\{x \in \mathbb{R}: a<x \leq b\} ;$ similarly for $I=[a, b]$. We write

$$
I^{*}=\{n \in I:(n, q)=1\}, \quad-I=\{q-n: n \in I\}
$$

and, for $\alpha>0$,

$$
\Omega(I, \alpha)=\left\{\zeta \in[1, q]:\left|\sum_{x \in I^{*}} e_{q}(\zeta \bar{x})\right|>\left|I^{*}\right| q^{-\alpha}\right\}
$$

Lemma 4. Let $0<\alpha \leq 1 / 5, I=(c, c+M] \subseteq[1, q]$ and suppose that $M \leq q^{1 / 2}$. Then

$$
|\Omega(I, \alpha)| \lll \alpha q^{1+5 \alpha^{1 / 2}} M^{-2}
$$

Proof. Let $\tau=\alpha^{1 / 2}$ and $k=[1 / \tau]+1$. Let us write

$$
\Omega=\Omega(I, \alpha), \quad \mathcal{A}=\left[1, q^{-2 \tau} M\right]^{*}
$$

Since the result is trivial for $M<q^{2 \tau+\varepsilon}$, we suppose that $M \geq q^{2 \tau+\varepsilon}$. It follows that

$$
|\mathcal{A}| \gg q^{-2 \tau-\varepsilon} M
$$

Let $a \in \mathcal{A}$ and $b \in\left[1, q^{\tau}\right]$. Then

$$
\begin{aligned}
\sum_{x \in I^{*}} e_{q}(\zeta \bar{x}) & =\sum_{\substack{w+a b \in I \\
(w+a b, q)=1}} e_{q}\left(\zeta(w+a b)^{-}\right) \\
& =\sum_{\substack{w \in I \\
(w+a b, q)=1}} e_{q}\left(\zeta(w+a b)^{-}\right)+O\left(q^{-\tau} M\right)
\end{aligned}
$$

Since $\tau>\alpha$,

$$
\begin{equation*}
S(\Omega):=\sum_{\zeta \in \Omega}\left|\sum_{a \in \mathcal{A}} \sum_{1 \leq b \leq q^{\tau}} \sum_{\substack{w \in I \\(w+a b, q)=1}} e_{q}\left(\zeta(w+a b)^{-}\right)\right| \gg|\Omega| q^{-\tau-\alpha-2 \varepsilon} M^{2} \tag{2.7}
\end{equation*}
$$

Now

$$
\begin{align*}
S(\Omega) & \leq \sum_{\zeta \in \Omega} \sum_{a \in \mathcal{A}} \sum_{w \in I}\left|\sum_{\substack{1 \leq b \leq q^{\tau} \\
(w+a b, q)=1}} e_{q}\left(\zeta(w+a b)^{-}\right)\right| \tag{2.8}\\
& =\sum_{1 \leq y, z \leq q} \mu(y, z)\left|\sum_{\substack{1 \leq b \leq q^{\tau} \\
(y+b, q)=1}} e_{q}\left(z(y+b)^{-}\right)\right|
\end{align*}
$$

where

$$
\mu(y, z)=|\{(w, a, \zeta) \in I \times \mathcal{A} \times \Omega: \bar{a} \zeta \equiv z(\bmod q), \bar{a} w \equiv y(\bmod q)\}|
$$

By Hölder's inequality, the last expression in (2.8) is at most

$$
\begin{align*}
\left(\sum_{1 \leq y, z \leq q} \mu(y, z)\right)^{1-1 / k} & \left(\sum_{1 \leq y, z \leq q} \mu(y, z)^{2}\right)^{1 / 2 k} \tag{2.9}\\
& \times\left(\sum_{1 \leq y, z \leq q}\left|\sum_{\substack{1 \leq b \leq q^{\tau} \\
(y+b, q)=1}} e_{q}\left(z(y+b)^{-}\right)\right|^{2 k}\right)^{1 / 2 k}
\end{align*}
$$

Clearly

$$
\begin{equation*}
\sum_{1 \leq y, z \leq q} \mu(y, z) \ll M|\mathcal{A}||\Omega| \ll q^{-2 \tau} M^{2}|\Omega| \tag{2.10}
\end{equation*}
$$

Now

$$
\begin{array}{r}
\sum_{1 \leq y, z \leq q} \mu(y, z)^{2}=\mid\left\{\left(w_{1}, a_{1}, \zeta_{1}, w_{2}, a_{2}, \zeta_{2}\right): w_{j} \in I, a_{j} \in \mathcal{A}, \zeta_{j} \in \Omega\right. \tag{2.11}\\
\left.\bar{a}_{1} \zeta_{1} \equiv \bar{a}_{2} \zeta_{2}(\bmod q), \bar{a}_{1} w_{1} \equiv \bar{a}_{2} w_{2}(\bmod q)\right\} \mid
\end{array}
$$

The contribution to the right-hand side of (2.11) from tuples with $w_{1}=w_{2}$ is

$$
\begin{equation*}
\ll q^{-2 \tau+\varepsilon} M^{2}|\Omega| \tag{2.12}
\end{equation*}
$$

To see this, let d be a divisor of q. It suffices to give the bound

$$
\ll q^{-2 \tau} M^{2}|\Omega|
$$

for the contribution from $w_{1}=w_{2},\left(w_{1}, q\right)=d$. There are $\leq M / d+1$ possibilities for w_{1}. Once w_{1} is fixed, the congruence

$$
a_{1} w_{1} \equiv a_{2} w_{1}(\bmod q)
$$

implies $a_{1} \equiv a_{2}(\bmod q / d)$, and there are $\leq q^{-2 \tau} M\left(1+q^{-2 \tau} M d / q\right)$ possible pairs a_{1}, a_{2}. Once a_{1}, a_{2} are fixed, we have $a_{1} \zeta_{2} \equiv a_{2} \zeta_{1}(\bmod q)$, and there are $|\Omega|$ possible pairs $\left(\zeta_{1}, \zeta_{2}\right)$. Thus the number of tuples $\left(a_{1}, w_{1}, \zeta_{1}, a_{2}, w_{1}, \zeta_{2}\right)$ in question is

$$
\leq\left(\frac{M}{d}+1\right)\left(1+\frac{q^{-2 \tau} M d}{q}\right) q^{-2 \tau} M|\Omega|
$$

Since

$$
\left(\frac{M}{d}+1\right)\left(1+\frac{q^{-2 \tau} M d}{q}\right) \ll M+q^{-2 \tau-1} M^{2} \ll M
$$

we have verified the bound 2.12).
To estimate the contribution to the right-hand side of (2.11) from tuples with $w_{1} \neq w_{2}$, we fix the values of $a=a_{1}-a_{2}, w_{1}$ and ζ_{1}. We have $a_{2} w_{1} \equiv$ $a_{1} w_{2}(\bmod q)$, hence

$$
a_{1}\left(w_{1}-w_{2}\right) \equiv a w_{1}(\bmod q)
$$

Since $0<\left|a_{1}\left(w_{1}-w_{2}\right)\right| \leq q^{-2 \tau} M^{2}<q$, this determines $a_{1}\left(w_{1}-w_{2}\right)$, and in turn determines a_{1} and w_{2} to within $O\left(q^{\varepsilon}\right)$ possibilities. Now a_{2} is determined by $a_{2}=a_{1}-a$, and ζ_{2} is determined by $a_{1} \zeta_{2} \equiv a_{2} \zeta_{1}(\bmod q)$. It follows that

$$
\begin{equation*}
\sum_{1 \leq y, z \leq q} \mu(y, z)^{2} \ll q^{-2 \tau+\varepsilon} M^{2}|\Omega| . \tag{2.13}
\end{equation*}
$$

We rewrite the last factor F in (2.9) as

$$
\begin{aligned}
F^{2 k} & =\sum_{1 \leq y \leq q} \sum_{\substack{1 \leq b_{1}, \ldots, b_{2 k} \leq q^{\tau} \\
\left(y+b_{j}, q\right)=1(j=1, \ldots, q)}} \sum_{1 \leq z \leq q} e_{q}\left(z \left(\left(y+b_{1}\right)^{-}+\cdots+\left(y+b_{k}\right)^{-}\right.\right. \\
& =\sum_{1 \leq b_{1}, \ldots, b_{2 k} \leq q^{\tau}} q N(\boldsymbol{b}, q) \\
& \ll q^{1+\varepsilon}\left(q^{2 k \tau} v+q^{1+k \tau}\right) \quad(\text { by Lemma } 2) \\
& \left.\left.\left.\ll b_{k+1}\right)^{-}-\cdots-\left(y+b_{2 k}\right)^{-}\right)\right) \\
& <q^{1+2 k \tau+\varepsilon} v
\end{aligned}
$$

by the choice of k. Combining this with (2.8, ,2.9, , 2.10, , 2.12, , we obtain

$$
S(\Omega) \ll q^{\varepsilon}\left(q^{-2 \tau} M^{2} \Omega\right)^{1-1 / 2 k}\left(v q^{1+2 k \tau}\right)^{1 / 2 k}
$$

In conjunction with 2.7), this gives

$$
\begin{aligned}
q^{-\tau-\alpha-2 \varepsilon} M^{2}|\Omega| & \ll q^{\varepsilon}\left(q^{-2 \tau} M^{2}|\Omega|\right)^{1-1 / 2 k}\left(v q^{1+2 k \tau}\right)^{1 / 2 k} \\
M^{2}|\Omega| & \ll v q^{2 k \alpha+2 \tau+1+6 k \varepsilon} .
\end{aligned}
$$

Since $2 k \alpha+2 \tau<4 \alpha^{1 / 2}+2 \alpha<5 \alpha^{1 / 2}-6 k \varepsilon$, the lemma follows.
Lemma 5. Let ν be the measure

$$
\nu=\frac{1}{|A|} \sum_{x \in A} \delta_{x}
$$

where $A \subseteq G$. Let $0<\alpha \leq 1 / 3, q>32$ and let l be an integer, $l>1 / \alpha$; let

$$
B=B(\nu, \alpha)=\left\{\zeta \in G:|\hat{\nu}(\alpha)|>q^{-\alpha}\right\}
$$

Then for any set $S \subseteq G$ with

$$
\begin{equation*}
|B(\nu, \alpha)||S|<\frac{1}{2} q^{1-\alpha} \tag{2.14}
\end{equation*}
$$

we have

$$
\begin{equation*}
\nu^{(l)}(S)<q^{-\alpha} \tag{2.15}
\end{equation*}
$$

Proof. Suppose that 2.15 is false; then

$$
\begin{equation*}
\frac{1}{q} \sum_{y \in G} \hat{\nu}(y)^{l} \hat{\chi}-S(y) \geq q^{-\alpha} \tag{2.16}
\end{equation*}
$$

by Lemma 1, while

$$
\begin{equation*}
\left|\sum_{y \notin B} \hat{\nu}(y)^{l} \hat{\chi}-S(y)\right| \leq q^{-\alpha l} \sum_{y \in G}|\hat{\chi}-S(y)| \leq q^{1-\alpha l}|S|^{1 / 2} \leq q^{3 / 2-\alpha l} \tag{2.17}
\end{equation*}
$$

by 2.1) and Cauchy's inequality. Since $q^{3 / 2-\alpha l}<q^{1 / 2}<\frac{1}{2} q^{1-\alpha}$, we deduce from (2.16) and (2.17) that

$$
\left|\sum_{y \in B} \hat{\nu}(y)^{l} \hat{\chi}_{-S}(y)\right|>\frac{1}{2} q^{1-\alpha}
$$

Moreover,

$$
\sum_{y \in B} \hat{\nu}(y)^{l} \hat{\chi}-S(y)=\sum_{y \in G} \hat{\nu}(y)^{l}\left(\hat{\chi}-S \chi_{B}\right)(y)=\sum_{y \in G} \hat{\nu}(y)^{l}\left(\chi_{-S} * \check{\chi}_{B}\right)^{\wedge}(y)
$$

For convenience, write $\nu^{(l)}=\sum_{z \in G} b(z) \delta_{z}$; then $\sum_{z \in G}|b(z)| \leq\|\nu\|^{l}=1$.
We have shown that

$$
\begin{equation*}
\left|\sum_{y \in G}\left(b * \chi_{-S} * \check{\chi}_{B}\right)^{\wedge}(y)\right| \geq \frac{1}{2} q^{1-\alpha} \tag{2.18}
\end{equation*}
$$

The left-hand side of 2.18 is

$$
\begin{aligned}
q\left|\left(b * \chi_{-S} * \check{\chi}_{B}\right)(0)\right| & =q \sum_{u+v+w=0} b(u) \chi_{-S}(v) \check{\chi}_{B}(w) \\
& \leq q\left\|\check{\chi}_{B}\right\|_{\infty} \sum_{u \in G}|b(u)| \sum_{v \in G}\left|\chi_{-S}(v)\right| \leq|B||S|
\end{aligned}
$$

and (2.14) is false.
Lemma 6. Let $0<\alpha \leq 1 / 5, l>1 / \alpha, I=(c, c+M] \subseteq[1, q]$ where $M \leq q^{1 / 2}$. Let $S \subseteq G$ and

$$
\begin{equation*}
|S| \lll{ }_{\alpha} v^{-1} q^{-6 \alpha^{1 / 2}} M^{2} \tag{2.19}
\end{equation*}
$$

Let

$$
\nu_{1}=\frac{1}{\left|I^{*}\right|} \sum_{x \in I^{*}} \delta_{\bar{x}}, \quad \nu_{2}=\frac{1}{\left|I^{*} \cup(-I)^{*}\right|} \sum_{x \in I^{*} \cup(-I)^{*}} \delta_{\bar{x}}
$$

Then $\nu_{1}^{(l)}(S) \ll_{\alpha} q^{-\alpha}$. If $I \cap(-I)=\emptyset$, then

$$
\nu_{2}^{(l)}(S) \ll_{\alpha} q^{-\alpha}
$$

Proof. We take $A=\left\{\bar{x}: x \in I^{*}\right\}, \nu=\nu_{1}$ in Lemma 5. Then

$$
B\left(\nu_{1}, \alpha\right)=\Omega(I, \alpha), \quad\left|B\left(\nu_{1}, \alpha\right)\right| \ll v q^{1+5 \alpha^{1 / 2}} M^{-2}
$$

from Lemma 4. Since we may suppose that q is large,

$$
\left|B\left(\nu_{1}, \alpha\right)\right||S|<q^{1-\alpha^{1 / 2}+\varepsilon}<\frac{1}{2} q^{1-\alpha}
$$

Now $\nu_{1}^{(l)}(S)<q^{-\alpha}$ from Lemma 5
Let $\nu_{3}=\left|(-I)^{*}\right|^{-1} \sum_{x \in(-I)^{*}} \delta_{\bar{x}}$; then $\hat{\nu}_{3}=\overline{\hat{\nu}}_{1}$. Assume now $I \cap(-I)=\emptyset ;$ then $\nu_{2}=\frac{1}{2}\left(\nu_{1}+\nu_{3}\right), \hat{\nu}_{2}=\operatorname{Re} \nu_{1}$, and $B\left(\nu_{2}, \alpha\right) \subseteq \Omega(I, \alpha)$. We can complete the proof for ν_{2} as before, and the lemma follows.

Lemma 7. Let $I=(c, c+M], J=(d, d+N]$ be intervals in $[1, q]$, with $J \cap(-J)=\emptyset$. Let

$$
\begin{align*}
\nu & =\frac{1}{\left|J^{*} \cup(-J)^{*}\right|} \sum_{x \in J^{*} \cup(-J)^{*}} \delta_{\bar{x}} \tag{2.20}\\
S(I, J) & =\sum_{m \in I^{*}} \sum_{n \in J^{*}} \alpha_{m} \beta_{n} e_{q}(a \bar{m} \bar{n})
\end{align*}
$$

where $\left|\alpha_{m}\right| \leq 1,\left|\beta_{n}\right| \leq 1$. Then for any even natural number k, and any $\alpha>0$,

$$
|S(I, J)|^{4 k} \leq(M N)^{4 k}\left\{q^{-\alpha}+2^{2 k} \nu^{(2 k)}(\Omega(I, \alpha))\right\}
$$

Proof. Let $k=2 h$. By Cauchy's inequality,

$$
\begin{aligned}
|S(I, J)|^{2} & \leq M \sum_{m \in I^{*}}\left|\sum_{n \in J^{*}} \beta_{n} e_{q}(a \bar{m} \bar{n})\right|^{2} \\
& =M \sum_{n_{1}, n_{2} \in J^{*}} \beta_{n_{1}} \bar{\beta}_{n_{2}} \sum_{m \in I^{*}} e_{q}\left(a \bar{m}\left(\bar{n}_{1}-\bar{n}_{2}\right)\right) \\
& \leq M \sum_{n_{1}, n_{2} \in J^{*}}\left|\sum_{m \in I^{*}} e_{q}\left(a \bar{m}\left(\bar{n}_{1}-\bar{n}_{2}\right)\right)\right|
\end{aligned}
$$

Using Cauchy's inequality again leads to

$$
|S(I, J)|^{4} \leq M^{2} N^{2} \sum_{m_{1}, m_{2} \in I^{*}}\left|\sum_{n_{1}, n_{2} \in J^{*}} e_{q}\left(a\left(\bar{m}_{1}-\bar{m}_{2}\right)\left(\bar{n}_{1}-\bar{n}_{2}\right)\right)\right|
$$

By Hölder's inequality,

$$
\begin{aligned}
|S(I, J)|^{8 h} \leq M^{8 h-2} N^{4 h} & \sum_{m_{1}, m_{1} \in I^{*}} \sum_{n_{1}, n_{2} \in J^{*}} \cdots \sum_{n_{4 h-1}, n_{4 h} \in J^{*}} \\
& e_{q}\left(a\left(\bar{m}_{1}-\bar{m}_{2}\right)\left(\bar{n}_{1}-\bar{n}_{2}+\cdots-\left(\bar{n}_{4 h-1}-\bar{n}_{4 h}\right)\right)\right) .
\end{aligned}
$$

Renumbering the variables $n_{1}, \ldots, n_{4 h}$, and treating the variable m_{2} trivially, we obtain

$$
\begin{align*}
& |S(I, J)|^{4 k} \leq M^{4 k-1} N^{2 k} \tag{2.21}\\
\times & \sum_{\left(n_{1}, \ldots, n_{2 k}\right) \in\left(J^{*}\right)^{2 k}} \mid \sum_{m_{1} \in I^{*}} e_{q}\left(a \bar{m}_{1}\left(\bar{n}_{1}+\cdots+\bar{n}_{k}-\left(\bar{n}_{k+1}+\cdots+\bar{n}_{2 k}\right)\right) \mid .\right.
\end{align*}
$$

For brevity, let

$$
\Omega=\Omega(I, \alpha), \quad T=\left\{\bar{x}: x \in J^{*} \cup(-J)^{*}\right\} .
$$

We partition $\left(J^{*}\right)^{2 k}$ into two sets $\mathcal{A}_{1}, \mathcal{A}_{2}$, where

$$
\mathcal{A}_{1}=\left\{\left(n_{1}, \ldots, n_{2 k}\right) \in\left(J^{*}\right)^{2 k}: \bar{n}_{1}+\cdots+\bar{n}_{k}-\left(\bar{n}_{k+1}+\cdots+\bar{n}_{2 k}\right) \in \Omega\right\}
$$

The contribution to the right-hand side of (2.21) from $\left(n_{1}, \ldots, n_{2 k}\right)$ in \mathcal{A}_{2} is

$$
\leq M^{4 k-1} N^{4 k} M q^{-\alpha}=(M N)^{4 k} q^{-\alpha} .
$$

We also observe that

$$
\nu^{(2 k)}(\Omega)=\frac{1}{|T|^{2 k}} \sum_{\substack{\left(z_{1}, \ldots, z_{2 k}\right) \in T^{2 k} \\ z_{1}+\cdots+z_{2 k} \in \Omega}} 1 \geq \frac{1}{|T|^{2 k}}\left|\mathcal{A}_{1}\right| .
$$

Accordingly, the contribution to the right-hand side of (2.21) from $\left(n_{1}, \ldots, n_{2 k}\right)$ in \mathcal{A}_{2} is

$$
\leq M^{4 k} N^{2 k}|T|^{2 k} \nu^{(2 k)}(\Omega),
$$

and the lemma follows.
Lemma 8. Let $0<\delta \leq 1 / 3$. Make the hypothesis of Lemma 7 and suppose in addition that $v \leq q^{1 / 4}$ and

$$
\begin{equation*}
v q^{\delta} \ll|I| \ll|J|, \quad|I||J| \gg v q^{1 / 2+\delta} . \tag{2.22}
\end{equation*}
$$

Then

$$
\begin{equation*}
S(I, J) \ll|I||J| q^{-\delta^{4} / 2100} \tag{2.23}
\end{equation*}
$$

Proof. If $|J|>q^{1 / 2}$, we partition J into intervals of length between $\frac{1}{2} q^{1 / 2}$ and $q^{1 / 2}$, and similarly for I. A pair of intervals I^{\prime}, J^{\prime} obtained in this way satisfies

$$
v q^{\delta} \ll\left|I^{\prime}\right| \ll\left|J^{\prime}\right| \ll q^{1 / 2}, \quad\left|I^{\prime}\right|\left|J^{\prime}\right| \gg v q^{1 / 2+\delta} .
$$

It now suffices to prove (2.21) for I^{\prime}, J^{\prime} in place of I, J. Thus we may add to (2.22) the hypothesis

$$
|J| \leq q^{1 / 2}
$$

Let $\alpha=\delta^{2} / 32, k=\left[16 / \delta^{2}\right]+j$, where $j=1$ or 2 is chosen to produce even k. Then

$$
\frac{\alpha}{4 k} \geq \frac{\delta^{2}}{128\left(16 \delta^{-2}+2\right)}=\frac{\delta^{4}}{2024+256 \delta^{2}} \geq \frac{\delta^{4}}{2100} .
$$

In view of Lemma 7, it suffices to show that

$$
\nu^{(2 k)}(\Omega(I, \alpha)) \ll q^{-\alpha},
$$

where ν is given by 2.20 .
We are going to apply Lemma 6 with $2 k, J, \Omega(I, \alpha)$ in place of l, I, S. The hypothesis (2.19) is satisfied, since

$$
M^{2} N^{2} \geq v^{2} q^{1+2 \delta} \geq v^{2} q^{1+11 \alpha^{1 / 2}}
$$

and

$$
|\Omega(I, \alpha)| \ll v q^{1+5 \alpha^{1 / 2}} M^{-2} \ll v^{-1} q^{-6 \alpha^{1 / 2}} N^{2}
$$

by Lemma 4 . We conclude that 2.23 holds.
In [2], Lemma A. 7 corresponds to Lemma 8 above. The author of [2] has inadvertently omitted to assume any lower bound on $|I|$ ($\left|I_{1}\right|$ in his notation), but it is implicit in his proof of Lemma A.7, being required to get a suitable lower bound for the quantity $\left|I^{\prime}\right|\left|J^{\prime}\right|$. The reader will easily see that Lemma 8 would not be true without a lower bound on $|I|$.

Proof of Theorem 1. We begin by recalling some facts from HeathBrown's decomposition [6] of $\Lambda(n)$. A function $f(n)$ on $K=(x,(1+\beta) x]$ is given, where $0<\beta \leq 1$. The decomposition enables us to express $\sum_{r \in K,(r, q)=1} \Lambda(r) f(r)$ as a sum of $O\left((\log x)^{6}\right)$ sums $S_{\mathrm{I}}, S_{\mathrm{I}}^{\prime}, S_{\mathrm{II}}$. Here

$$
\begin{equation*}
S_{\mathrm{I}}=S_{\mathrm{I}}(q, a)=\sum_{\substack{m \sim N \\ m n \in K \\(m n, q)=1}} \sum_{n \sim N} a_{m} f(m n), \quad S_{\mathrm{I}^{\prime}}=\sum_{\substack{m \sim N \\ m n \in K \\(m n, q)=1}} \sum_{n \sim N}(\log n) a_{m} f(m n), \tag{2.24}
\end{equation*}
$$

with $a_{m} \ll x^{\varepsilon}$ for every $\varepsilon>0$, and $M N \asymp x, N \gg x^{1-\lambda}$; while

$$
\begin{equation*}
S_{\text {II }}=S_{\text {II }}(q, a)=\sum_{\substack{m \sim N \\ m n \in K}} a_{m} \sum_{n \sim N} b_{n} f(m n) \tag{2.25}
\end{equation*}
$$

with $a_{m}, b_{n} \ll x^{\varepsilon}$ for every $\varepsilon>0 ; M N \asymp x, x^{\lambda} \ll N \ll x^{1 / 2}$. Here the parameter λ in $(0,1 / 3]$ is at our disposal. See [1] for a discussion of an almost identical situation. We can reduce S_{I}^{\prime} to S_{I} (with a different β) by partial summation. Let $\delta_{1}=99 \delta / 100$. For the proof of Theorem 1 we take $f(r)=e_{q}(a \bar{r}), K=\left(x, x^{\prime}\right], x^{\prime} \leq 2 x, x^{\lambda}=v q^{\delta_{1}} \leq x^{1 / 3}$ (since $v \leq x^{1 / 4}$, $\left.q \leq x^{2}, \delta \leq 1 / 24\right)$. We shall show that $S_{\mathrm{I}}, S_{\mathrm{II}}$ are $O\left(x^{1-\delta^{4} / 2000-\varepsilon}\right)$, leading to a suitable bound for $\sum_{x<r \leq x^{\prime},(r, q)=1} \Lambda(r) e_{q}(a r)$. The corresponding bound for $S_{q}(a ; x)$ follows easily.

Lemma 8, with δ_{1} in place of δ, gives

$$
S_{\mathrm{II}} \ll x q^{-\delta_{1}^{4} / 2100+\varepsilon} \ll x^{1-\delta^{4} / 2000-\varepsilon}
$$

for $v q^{\delta_{1}} \ll N \ll x\left(v q^{\delta_{1}}\right)^{-1}$. This requires a short calculation: we have $\delta_{1}^{4} \geq \frac{96}{100} \delta^{4}, x \leq q^{19 / 24}$ and

$$
x^{\delta^{4} / 2000} \leq q^{\frac{19}{24} \frac{100}{96} \frac{\delta_{1}^{4}}{2000}} \leq q^{\delta_{1}^{4} / 2100-2 \varepsilon}
$$

It remains to show that

$$
S_{\mathrm{I}} \ll x^{1-\delta^{4} / 2000-2 \varepsilon} \quad \text { for } N \gg \frac{x}{v q^{\delta_{1}}}
$$

We note that

$$
N \gg \frac{x}{v q^{\delta_{1}}} \gg q^{1 / 2+\delta / 100}
$$

By a standard estimate (see e.g. [4, Lemma 2.1]), the inner sum in $S_{\text {I }}$ is $\ll q^{1 / 2+\varepsilon}$. Hence

$$
S_{\mathrm{I}} \ll M q^{1 / 2+\varepsilon} \ll x \frac{q^{1 / 2+\varepsilon}}{N} \ll x q^{-\delta / 200}
$$

This completes the proof of Theorem 1.
3. Proof of Theorem 2, In the present section, we suppose that Q is large and $Q^{1 / 2} \leq x \leq 2 Q$. It is convenient for use in Section 4 to work with the sum

$$
S_{q}(a ; x, \beta)=\sum_{x<p \leq(1+\beta) x} e\left(\frac{a \bar{p}}{q}\right)
$$

where β is a constant in $\left(0,1\right.$. Define $S_{\text {I }}$ and $S_{\text {II }}$ by 2.24 , 2.25 with $f(r)=e_{q}(a \bar{r})$. We now take $\lambda=1 / 3$ in our application of Heath-Brown's identity. Thus in order to show that

$$
\begin{equation*}
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{q}(a ; x, \beta)\right| \ll\left(Q^{11 / 10} x^{4 / 5}+Q x^{11 / 12}\right) Q^{\varepsilon} \tag{3.1}
\end{equation*}
$$

it is sufficient to show that

$$
\begin{equation*}
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{\mathrm{I}}(q, a)\right| \ll\left(Q^{11 / 10} x^{4 / 5}+Q x^{11 / 12}\right) Q^{\varepsilon / 2} \tag{3.2}
\end{equation*}
$$

whenever $N \gg x^{2 / 3}$, and that

$$
\begin{equation*}
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{\mathrm{II}}(q, a)\right| \ll\left(Q^{11 / 10} x^{4 / 5}+Q x^{11 / 12}\right) Q^{\varepsilon / 2} \tag{3.3}
\end{equation*}
$$

whenever $x^{1 / 2} \ll N \ll x^{2 / 3}$.

Let $J_{K}(q)$ denote the number of solutions of the congruence

$$
\bar{n}_{1}+\bar{n}_{2} \equiv \bar{n}_{3}+\bar{n}_{4}(\bmod q) \quad \text { with } 1 \leq n_{i} \leq K .
$$

Lemma 9. For $M \leq q, N \leq q,(a, q)=1$ we have

$$
S_{\mathrm{II}}(q, a) \ll q^{1 / 8+\varepsilon / 4}(M N)^{1 / 2} J_{M}(q)^{1 / 8} J_{N}(q)^{1 / 8} .
$$

Proof. See Garaev [5. The restriction to prime q in [5 plays no role in the argument.

Lemma 10. We have, for $K \geq 1$,

$$
\sum_{q \sim Q} J_{K}(q) \ll\left(K^{2} Q+K^{4}\right) K^{\varepsilon} .
$$

Proof. This is Lemma 2.3 of [4].
Lemma 11. Let $M \leq N \leq Q, M N \asymp x$. We have

$$
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{\mathrm{II}}(q, a)\right| \ll Q^{\varepsilon / 2}\left(Q^{9 / 8} x^{3 / 4}+Q x^{3 / 4} N^{1 / 4}\right) .
$$

Proof. By Hölder's inequality and Lemma 10,

$$
\begin{aligned}
\sum_{q \sim Q} J_{M}(q)^{1 / 8} J_{N}(q)^{1 / 8} & \leq Q^{3 / 4}\left(\sum_{q \sim Q} J_{M}(q)\right)^{1 / 8}\left(\sum_{q \sim Q} J_{N}(q)\right)^{1 / 8} \\
& \ll Q^{3 / 4+\varepsilon / 4}\left(M^{1 / 4} Q^{1 / 8}+M^{1 / 2}\right)\left(N^{1 / 4} Q^{1 / 8}+N^{1 / 2}\right) \\
& \ll Q^{3 / 4+\varepsilon / 4}\left(x^{1 / 4} Q^{1 / 4}+x^{1 / 4} N^{1 / 4} Q^{1 / 8}\right)
\end{aligned}
$$

since $x^{1 / 2} \leq 2 Q^{1 / 4} x^{1 / 4}$. Combining this with Lemma 9, we get

$$
\begin{aligned}
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{\mathrm{II}}(q, a)\right| & \ll Q^{1 / 8+\varepsilon / 2} x^{1 / 2} \sum_{q \sim Q} J_{M}(q)^{1 / 8} J_{N}(q)^{1 / 8} \\
& \ll Q^{\varepsilon / 2}\left(Q^{9 / 8} x^{3 / 4}+Q x^{3 / 4} N^{1 / 4}\right) .
\end{aligned}
$$

Proof of Theorem 2. We begin by showing that (3.2) holds for $N \gg x^{2 / 3}$. We distinguish two cases.

CASE 1: $N>Q^{2 / 5} x^{1 / 5}$. For each $m \sim M,(m, q)=1$, we have the estimate

$$
\sum_{\substack{n \simeq N \\ n \leq(1+\beta) x / m \\(n, q)=1}} e_{q}(a \bar{m} \bar{n}) \ll q^{1 / 2+\varepsilon / 2}
$$

for $q \geq 1,(a, q)=1$, as noted earlier. Thus for $q \sim Q,(a, q)=1$,

$$
S_{\mathrm{I}}(q, a) \ll N^{-1} x q^{1 / 2+\varepsilon / 2} \ll Q^{1 / 10+\varepsilon / 2} x^{4 / 5}
$$

and

$$
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{\mathrm{I}}(q, a)\right| \ll Q^{11 / 10+\varepsilon / 2} x^{4 / 5}
$$

CASE 2: $x^{2 / 3} \ll N \leq Q^{2 / 5} x^{1 / 5}$. (This case occurs only if $Q \gg x^{7 / 6}$.) We observe that $N \leq Q$. By Lemma 11 ,

$$
\begin{aligned}
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{\mathrm{I}}(q, a)\right| & \ll Q^{\varepsilon / 2}\left(Q^{9 / 8} x^{3 / 4}+Q^{11 / 10} x^{4 / 5}\right) \\
& \ll Q^{\varepsilon / 2}\left(Q^{11 / 10} x^{4 / 5}+Q x^{11 / 12}\right)
\end{aligned}
$$

since $Q^{9 / 8} x^{3 / 4} \leq Q^{11 / 10} x^{4 / 5}$ for $Q \leq x^{2}$.
Thus (3.2) holds in both cases.
It remains to prove (3.3). Let $M N \asymp x, M \leq N, x^{1 / 2} \ll N \ll x^{2 / 3}$; then $M \leq N \leq Q$. From Lemma 11,

$$
\begin{aligned}
\sum_{q \sim Q} \max _{(a, q)=1}\left|S_{\mathrm{II}}(q, a)\right| & \ll Q^{\varepsilon / 2}\left(Q^{9 / 8} x^{3 / 4}+Q x^{11 / 12}\right) \\
& \ll Q^{\varepsilon / 2}\left(Q^{11 / 10} x^{4 / 5}+Q x^{11 / 12}\right)
\end{aligned}
$$

as above. This establishes (3.3), and (3.1) follows; in particular, we have proved Theorem 2
4. Proof of Theorem 3. Let β be a small positive constant. We write

$$
\begin{aligned}
\pi(x, \beta) & =|\{p: x<p \leq(1+\beta) x\}| \\
\mathcal{T}(x, \beta) & =\left\{\left(p_{1}, p_{2}, p_{3}\right): x<p_{i} \leq(1+\beta) x\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
A(q ; x, \beta) & =\mid\left\{\left(p_{1}, p_{2}, p_{3}\right) \in \mathcal{T}(x, \beta): A\left(p_{1}, p_{2}, p_{3}\right) \equiv 0(\bmod q)\right\} \\
\mathcal{L} & =\log x, \quad \tau(q)=|\{d: d \mid q\}|
\end{aligned}
$$

We shall show that for $\theta<\theta_{1}$, and $\beta \leq \beta_{1}(\theta), x>x_{1}(\theta)$,

$$
\begin{equation*}
\left|\left\{\left(p_{1}, p_{2}, p_{3}\right) \in \mathcal{T}(x, \eta): P^{+}\left(A\left(p_{1}, p_{2}, p_{3}\right)\right)>x^{\theta}\right\}\right|>c^{\prime}(\theta) \pi(x, \beta)^{3} \tag{4.1}
\end{equation*}
$$

where $c^{\prime}(\theta)>0$; this suffices for Theorem 3 . We draw heavily on the analysis in [4] and indicate briefly the changes in the argument that are needed.

Lemma 12. Let $A>0, B>0, q \leq \mathcal{L}^{A},(a, q)=1$. Then

$$
\begin{equation*}
S_{q}(a ; x, \beta)=\frac{\mu(q)}{\varphi(q)} \pi(x, \beta)+O_{A, B}\left(q x \mathcal{L}^{-B}\right) \tag{4.2}
\end{equation*}
$$

Proof. This follows at once from [4, (3.13)].

Lemma 13. Let $A>0$. For $x \geq 2,1 \leq q \leq x^{17 / 16-\varepsilon}$, we have

$$
\begin{align*}
A(q ; x, \beta)-\prod_{p \mid q}\left(1-\frac{1}{(p-1)^{2}}\right) \frac{\pi(x, \beta)^{3}}{q} \tag{4.3}\\
<_{A, \varepsilon}\left(\mathcal{L}^{-A}+\mathcal{L}^{5} \sum_{\substack{t \mid q \\
t \geq \mathcal{L}^{-A}}}\left(\frac{\tau(t)}{t}\right)^{1 / 2}\right) \frac{\pi(x, \beta)^{3}}{q}
\end{align*}
$$

Moreover, for $x \geq 2, B>0$,

$$
\begin{align*}
& \sum_{q \leq x^{17 / 16-\varepsilon}}\left|A(q ; x, \beta)-\prod_{p \mid q}\left(1-\frac{1}{(p-1)^{2}}\right) \frac{\pi(x, \beta)^{3}}{q}\right| \tag{4.4}\\
&<_{B, \varepsilon} \pi(x, \beta)^{3} \mathcal{L}^{-B}
\end{align*}
$$

Proof. Let
$A^{*}(q ; x, \beta)=\left|\left\{\left(p_{1}, p_{2}, p_{3}\right) \in \mathcal{T}(x, \beta):\left(p_{i}, q\right)=1, A\left(p_{1}, p_{2}, p_{3}\right) \equiv 0(\bmod q)\right\}\right|$.
It is clear that

$$
0 \leq A(q ; x, \beta)-A^{*}(q ; x, \beta) \leq 3 \omega(q) \pi(x, \beta)
$$

Moreover,

$$
A^{*}(q ; x, \beta)=\frac{1}{q} \sum_{a=1}^{q} S_{q}^{3}(a ; x, \beta)
$$

Just as in [4, (4.4)] this relation leads to

$$
A^{*}(q ; x, \beta)=\operatorname{MT}(q ; x, \beta)+O\left(\operatorname{ET}(q ; x, \beta)+\mathcal{L}^{3}\right)
$$

where

$$
\begin{aligned}
& \operatorname{MT}(q ; x, \beta)=\frac{1}{q} \sum_{t \mid q} \sum_{\substack{b=1 \\
(b, t)=1}}^{t} S_{t}^{3}(b ; x, \beta) \\
& \operatorname{ET}(q ; x, \beta)=\frac{\mathcal{L}}{q} \sum_{t \mid q} \sum_{\substack{b=1 \\
(b, t)=1}}^{t}\left|S_{t}(b ; x, \beta)\right|^{2}
\end{aligned}
$$

As in [4, (4.5)],

$$
\begin{equation*}
\sum_{b=1}^{t}\left|S_{t}(b ; x, \beta)\right|^{2} \ll x^{2}+t x \tag{4.5}
\end{equation*}
$$

leading to

$$
\operatorname{ET}(q ; x, \beta) \ll q^{-1} x(x+q) \tau(q) \mathcal{L}
$$

We partition $\operatorname{MT}(q ; x, \beta)$ as

$$
\operatorname{MT}(q ; x, \beta)=M_{1}\left(\mathcal{L}^{A}\right)+M_{2}\left(\mathcal{L}^{A}\right)
$$

where

$$
M_{1}(\Delta)=\frac{1}{q} \sum_{\substack{t \mid q \\ t \leq \Delta}} S_{t}^{3}(b ; x, \beta)
$$

As in (4.7)-(4.9) of [4, an application of Lemma 12 yields

$$
\begin{aligned}
M_{1}\left(\mathcal{L}^{A}\right) & =\frac{1}{q} \sum_{\substack{t \mid q \\
t \leq \mathcal{L}^{A}}} \frac{\mu(t)}{\varphi^{2}(t)} \pi(x, \beta)^{3}+O\left(q^{-1} x^{3} \mathcal{L}^{-A}\right) \\
& =\frac{1}{q}\left(\prod_{p \mid q}\left(1-\frac{1}{(p-1)^{2}}\right)+O\left(\mathcal{L}^{-A}\right)\right) \pi(x, \beta)^{3}+O\left(q^{-1} x^{3} \mathcal{L}^{-A}\right)
\end{aligned}
$$

For the remainder of the proof of (4.3), we follow the argument below [4, (4.10)], verbatim, using (4.5) (above) along the way. By applying the inequality

$$
\sum_{q \sim Q} \sum_{\substack{t \mid q \\ t \geq L}}(\tau(t) / t)^{1 / 2} \ll L^{-1 / 2} Q(\log L)^{\sqrt{2}-1}
$$

(see [4, (1.4)]), we deduce (4.4) from (4.3).
We now sharpen Theorem 1.5 of [4], where the corresponding range for q is $\left[1, x^{14 / 13-\varepsilon}\right]$.

Theorem 4. Let $B>0$. Then for $x \geq 2$,

$$
\begin{equation*}
\sum_{q \leq x^{13 / 12-\varepsilon}}\left|A(q ; x, \beta)-\prod_{p \mid q}\left(1-\frac{1}{(p-1)^{2}}\right) \frac{\pi(x, \beta)^{3}}{q}\right| \ll \pi(x, \beta)^{3} \mathcal{L}^{-B} \tag{4.6}
\end{equation*}
$$

Proof. By Lemma 13, it suffices to estimate the part of the sum in 4.6 with $q>x$. Let $\eta=\varepsilon / 6$. We say that q is (η, x)-good if for all divisors $t \mid q$ with $t \geq x$, we have

$$
\begin{equation*}
\max _{(b, t)=1}\left|S_{t}(b ; x, \beta)\right| \leq\left(t^{1 / 10} x^{4 / 5}+x^{11 / 12}\right) t^{\eta} \tag{4.7}
\end{equation*}
$$

Otherwise, we say that q is $(\eta, x)-b a d$.
We claim that for $Q<x^{2} / 4$,

$$
\begin{equation*}
\mid\{q \sim Q: q \text { is }(\eta, x)-\operatorname{bad}\} \mid<_{\varepsilon} Q x^{-\eta / 2} \tag{4.8}
\end{equation*}
$$

This is trivial for $Q<x / 2$, since $t \mid q \sim Q$ implies $t \leq 2 Q<x$. Suppose now that $Q>x / 2$. For $x \leq T \leq 2 Q$, consider the set of $t \in[T, 2 T$) for which (4.7) fails. By Theorem 2 with $\eta / 3$ in place of ε, there are $O_{\varepsilon}\left(T^{1-2 \eta / 3}\right)$ values of t with this property. For each $t \in[T, 2 T)$, there are $O(Q / T)$ integers $q \sim Q$ with $t \mid q$. So there are at most $O\left(Q x^{-2 \eta / 3}\right)$ values of $q \sim Q$ for which (4.7) fails. Summing over $O(\mathcal{L})$ values of T, we obtain 4.8).

For (η, x)-good values of q, we see from the proof of Lemma 13 that it is enough to estimate $M_{2}\left(\mathcal{L}^{B}\right)$. The contribution to $M_{2}\left(\mathcal{L}^{B}\right)$ of those t in
$[1, x)$ is estimated as before (individually for every q). Thus it is enough to prove

$$
\sum_{\substack{x \leq q \leq x^{13 / 12-\varepsilon} \\ q(\eta, x) \text {-good }}} \frac{1}{q} \sum_{\substack{t \mid q \\ t \geq x}} \sum_{\substack{b=1 \\ b, t)=1}}^{t}\left|S_{t}(b ; x, \beta)\right|^{3} \lll B \frac{\pi(x, \beta)^{3}}{\mathcal{L}^{B}}
$$

in order to obtain a satisfactory contribution to 4.6 from $\left\{x \leq q \leq x^{13 / 12-\varepsilon}\right.$: q is (η, x)-good $\}$. Using (4.5), (4.7), we get

$$
\begin{aligned}
& \sum_{\substack{x \leq q \leq x^{13 / 12-\varepsilon} \\
q(\eta, x)-\text { good }}} \frac{1}{q} \sum_{\substack{t \mid q \\
t \geq x}} \sum_{\substack{b=1 \\
(b, t)=1}}^{t}\left|S_{t}(b ; x, \beta)\right|^{3} \\
& \ll x \sum_{x \leq q \leq x^{13 / 12-\varepsilon}} \frac{1}{q} \sum_{\substack{t \mid q \\
t \geq x}}\left(t^{1 / 10} x^{4 / 5}+x^{11 / 12}\right) t^{1+\eta} \\
& \leq x \sum_{q \leq x^{13 / 12-\varepsilon}} \tau(q)\left(q^{1 / 10} x^{4 / 5}+x^{11 / 12}\right) q^{\eta} \\
& \ll x\left(\left(x^{13 / 12-\varepsilon}\right)^{11 / 10} x^{4 / 5}+x^{2-\varepsilon}\right) x^{3 \eta} \ll x^{3-\varepsilon / 2}
\end{aligned}
$$

As for the (η, x)-bad values of q, we use a bound from [4] for

$$
\rho(n)=\left|\left\{\left(p_{1}, p_{2}, p_{3}\right): p_{i} \sim x, A\left(p_{1}, p_{2}, p_{3}\right)=x\right\}\right|
$$

namely

$$
\rho(n) \ll \tau(n) x \mathcal{L}
$$

(see [4, (1.6))]. Thus the contribution to (4.6) from (η, x)-bad values of q is

$$
\begin{aligned}
& \ll \sum_{\substack{x \leq q \leq x^{13 / 12-\varepsilon} \\
q(\eta, x) \text {-bad }}} \sum_{\substack{n \ll x^{2} \\
n \equiv 0(\bmod q)}} \rho(n) \ll \sum_{\substack{x \leq q \leq x^{13 / 12-\varepsilon} \\
q(\eta, x) \text {-bad }}} \frac{x^{3+\eta / 4}}{q} \\
& \ll \sum_{\substack{x \leq Q \leq x^{13 / 12-\varepsilon} \\
Q=2^{j}}} \frac{x^{3+\eta / 4}}{Q} Q x^{-\eta / 2} \ll x^{3} \mathcal{L}^{-B}
\end{aligned}
$$

where we use (4.8) in the penultimate bound. This completes the proof of Theorem 4.

Proof of Theorem 3. Consider the 'Chebyshev-Hooley'sum

$$
\mathrm{CH}(x):=\sum_{p_{i} \in(x,(1+\beta) x]} \log A\left(p_{1}, p_{2}, p_{3}\right)
$$

Since all $A\left(p_{1}, p_{2}, p_{3}\right)$ are in $\left[3 x^{2}, 3(1+\beta)^{2} x^{2}\right]$, we have

$$
\begin{equation*}
\mathrm{CH}(x) \sim 2 \mathcal{L} \pi(x, \beta)^{3} \quad(x \rightarrow \infty) \tag{4.9}
\end{equation*}
$$

Let

$$
X:=\pi(x, \beta)^{3}, \quad Y:=x^{13 / 12-\varepsilon}, \quad Z:=x^{\theta}
$$

Arguing as in the proof of [4, (4.14)], we have

$$
\begin{equation*}
\mathrm{CH}(x)=\sum_{q \ll x^{2}} \Lambda(q) A(q ; x, \beta)=\sum_{1}+\sum_{2}+\sum_{3}+\sum_{4} \tag{4.10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sum_{1}:=\sum_{q \leq Y} \Lambda(q) A(q ; x, \beta), \quad \sum_{2}:=\sum_{\substack{q>Y \\
q \text { not prime }}} \Lambda(q) A(q ; x, \beta) \\
& \sum_{3}:=\sum_{\substack{Y<q \leq Z \\
q \text { prime }}} \Lambda(q) A(q ; x, \beta), \quad \sum_{4}:=\sum_{\substack{q>Z \\
q \text { prime }}} \Lambda(q) A(q ; x, \beta)
\end{aligned}
$$

Theorem 4 easily yields

$$
\begin{equation*}
\sum_{1} \sim\left(\frac{13}{12}-\varepsilon\right) X \mathcal{L} \quad(x \rightarrow \infty) \tag{4.11}
\end{equation*}
$$

while, just as in the argument leading to [4, (4.16)],

$$
\begin{equation*}
\sum_{2} \ll x^{2} \tag{4.12}
\end{equation*}
$$

We can follow the proof of [4, (4.17)] to obtain

$$
\begin{equation*}
\sum_{3} \leq \sum_{0 \leq k \leq K_{0}} \log \left(2^{k+1} Y\right) \sum_{3}\left(2^{k} Y\right) \tag{4.13}
\end{equation*}
$$

where $K_{0}=[\log (Z / Y) / \log 2]$ and

$$
\sum_{3}(P)=\sum_{p \sim P} A(p ; x, \beta)
$$

If $r p$ is an integer counted by $A(p ; x, \beta)$ in $\sum_{3}(P)$, then $r p=A\left(p_{1}, p_{2}, p_{3}\right)$ and

$$
\begin{equation*}
\frac{3 x^{2}}{2 P} \leq r \leq \frac{3(1+\beta)^{2} x^{2}}{P} \tag{4.14}
\end{equation*}
$$

For a fixed r satisfying (4.14), let $\mathcal{C}^{(r)}$ be the set of integers $A\left(p_{1}, p_{2}, p_{3}\right) / r$ for which $\left(p_{1}, p_{2}, p_{3}\right) \in \mathcal{T}(x, \beta)$ and $A\left(p_{1}, p_{2}, p_{3}\right) \equiv 0(\bmod r)$. We see that for any $z<x$,

$$
\begin{equation*}
\sum_{3}(P) \leq \sum_{r \text { satisfies }} S\left(\mathcal{C}^{(r)}, z\right) \tag{4.15}
\end{equation*}
$$

Here we use the standard notation: $S\left(\mathcal{C}^{(r)}, z\right)$ counts the elements of $\mathcal{C}^{(r)}$ coprime to $\prod_{p \leq z} p$.

Let

$$
\begin{aligned}
\omega(m) & =\prod_{p \mid m}\left(1-(p-1)^{-2}\right), \quad X^{(r)}=\frac{\omega(r)}{r} X \\
R(x ; m) & =A(m ; x, \beta)-\frac{\omega(m)}{m} X
\end{aligned}
$$

Let d denote a squarefree positive integer, and

$$
C_{d}^{(r)}=\left|\left\{a \in \mathcal{C}^{(r)}: d \mid a\right\}\right|
$$

It is clear that

$$
C_{d}^{(r)}=A(x ; d r, \beta)
$$

We rewrite this as a 'main term' plus an 'error term':

$$
C_{d}^{(r)}=\frac{\omega(d r) / \omega(r)}{d} X^{(r)}+R(x ; d r)
$$

Using the theory of the linear sieve just as in [4, (4.20)], we have, with an $O(\ldots)$ error independent of r, z,

$$
\begin{align*}
S\left(\mathcal{C}^{(r)}, z\right) \leq & \prod_{p \leq z}\left(1-\frac{\omega(p r) / \omega(d r}{p}\right)\left(F\left(\frac{\log D}{\log z}\right)+O\left((\log D)^{-1 / 3}\right)\right) X^{(r)} \tag{4.16}\\
& +\sum_{d<D}|R(x ; d r)|
\end{align*}
$$

for any choice of $D \geq 1$. For the sieve function F, we only need the formula

$$
F(s)=\frac{2 e^{\gamma}}{s} \quad(0<s \leq 3)
$$

where γ is Euler's constant.
In view of (4.13), (4.15), we need to give an acceptable upper bound for

$$
\mathcal{E}(D):=\sum_{d<D} \sum_{r \leq 3(1+\beta)^{2} x^{2} / P}|R(x ; d r)|
$$

Lemma 14. For $Y \leq P<Z$ and $D \leq P Y / x^{2}$, we have

$$
\mathcal{E}(D) \ll X \mathcal{L}^{-3}
$$

Proof. We follow the proof of [4, Lemma 4.1], substituting Theorem 4 for the corresponding result in [4].

By 4.15, 4.16 and Lemma 14 , we have

$$
\begin{align*}
\sum_{3}(P) \leq & (1+\varepsilon) X \sum_{r \text { satisfies } \sqrt[4.14]{ }} \frac{\omega(r)}{r} \prod_{p \leq z}\left(1-\frac{\omega(p r) / \omega(r)}{P}\right) \tag{4.17}\\
& \times F\left(\frac{\log \left(P Y x^{-2}\right)}{\log z}\right)
\end{align*}
$$

for every $\varepsilon>0$ and for every sufficiently large x and every $z \leq x$. We choose

$$
z:=\left(P Y x^{-2}\right)^{1 / 2}
$$

As noted in [4],

$$
\prod_{p \leq z}\left(1-\frac{\omega(p r) / \omega(r)}{p}\right) \leq\left(1+O\left(z^{-1}\right)\right) C_{0} V(z) \prod_{p \mid r}\left(\frac{1-1 / p}{1-\omega(p) / p}\right)
$$

where

$$
C_{0}:=\prod_{p \geq 2}\left(\frac{1-\omega(p) / p}{1-1 / p}\right), \quad V(z):=\prod_{p \leq z}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma}}{\log z} \quad(x \rightarrow \infty)
$$

Inequality 4.17) now simplifies to the form

$$
\begin{equation*}
\sum_{3}(P) \leq \frac{(2+\varepsilon) C_{0} X}{\log \left(P Y x^{-2}\right)} \sum_{r \text { satisfies }} \frac{\nu(r)}{r} \tag{4.18}
\end{equation*}
$$

where ν is the multiplicative function

$$
\nu(r)=\omega(r) \prod_{p \mid r}\left(\frac{1-1 / p}{1-\omega(p) / p}\right)
$$

From the analysis in [4], we know that

$$
\sum_{r \leq R} \frac{\nu(r)}{r}=G(1) \log R+F_{0}+O\left(R^{-\delta_{2}}\right)
$$

where δ_{0} is a positive absolute constant, F_{0} is a constant, and $G(s)$ is defined by

$$
\sum_{r=1}^{\infty} \frac{\nu(r)}{r^{s}}=\zeta(s) G(s)
$$

G is holomorphic in $\operatorname{Re} s>1 / 2$ and $C_{0} G(1)=1$. We use this to reduce (4.18) to the form

$$
\sum_{3}(P) \leq \frac{(2+\varepsilon) X}{\log \left(P Y x^{-2}\right)} \log \left\{2(1+\beta)^{2}\right\}
$$

Combining with 4.13 , we obtain

$$
\begin{equation*}
\sum_{3} \leq(2+\varepsilon) \pi(x, \beta)^{3} \log \left\{2(1+\beta)^{2}\right\} \sum_{0 \leq k \leq K_{0}} \frac{\log \left(2^{k} Y\right)}{\log \left(2^{k} Y^{2} x^{-2}\right)} \tag{4.19}
\end{equation*}
$$

Now
$(\log 2) \sum_{0 \leq k \leq K_{0}} \frac{\log \left(2^{k} Y\right)}{\log \left(2^{k} Y^{2} x^{-2}\right)}=\mathcal{L}\left\{\frac{\log 2}{\mathcal{L}} \sum_{0 \leq k \leq K_{0}} \frac{(\log Y) / \mathcal{L}+(k \log 2) / \mathcal{L}}{\log \left(Y^{2} x^{-2}\right) / \mathcal{L}+(k \log 2) / \mathcal{L}}\right\}$.

As in [4], we only have to consider the expression in brackets as a Riemann sum to obtain the asymptotic formula

$$
(\log 2) \sum_{0 \leq k \leq K_{0}} \frac{\log \left(2^{k} Y\right)}{\log \left(2^{k} Y^{2} x^{-2}\right)} \sim \mathcal{L} J \quad(x \rightarrow \infty)
$$

where

$$
\begin{aligned}
J & =\int_{0}^{\log (Z / Y) / \mathcal{L}} \frac{t+(\log Y) / \mathcal{L}}{t+\log \left(Y^{2} x^{-2}\right) / \mathcal{L}} d t \\
& =\frac{\log (Z / Y)}{\mathcal{L}}+\frac{\log \left(x^{2} / Y\right)}{\mathcal{L}} \log \left[\frac{\log \left(Y Z x^{-2}\right)}{\log \left(Y^{2} x^{-2}\right)}\right] \\
& =\theta-\frac{13}{12}+\varepsilon+\left(\frac{11}{12}+\varepsilon\right) \log \frac{12 \theta-11-12 \varepsilon}{2-24 \varepsilon} .
\end{aligned}
$$

Combining this with (4.19), 4.20, for large x we have

$$
\begin{align*}
\sum_{3} \leq & (2+2 \varepsilon) \pi(x, \beta)^{3} \mathcal{L}\left(1+\frac{2 \log (1+\beta)}{\log 2}\right) \tag{4.21}\\
& \times\left[\left(\theta-\frac{13}{12}+\varepsilon\right)+\left(\frac{11}{12}+\varepsilon\right) \log \frac{12 \theta-11-12 \varepsilon}{2-24 \varepsilon}\right]
\end{align*}
$$

Since $\theta<\theta_{1}$, we may choose positive numbers ε and β so small that the right-hand side of 4.21 is less than $(11 / 12-\varepsilon) \pi(x, \beta)^{3} \mathcal{L}$. It now follows from $(4.9)-(4.12)$ and (4.21) that, for large x,

$$
\sum_{4} \gg \pi(x, \beta)^{3} \mathcal{L} .
$$

This completes the proof of Theorem 3 .
Acknowledgments. I would like to thank Dale Brownawell and Bob Vaughan for a stimulating visit to the Department of Mathematics, Penn State University, during which part of the work was done.

This work was partially supported by a research grant from NSA.

References

[1] R. C. Baker, Sums of two relatively prime cubes, Acta Arith. 129 (2007), 103-146.
[2] J. Bourgain, More on the sum-product phenomenon in prime fields and its applications, Int. J. Number Theory 1 (2005), 1-32.
[3] É. Fouvry et P. Michel, Sur certaines sommes d'exponentielles sur les nombres premiers, Ann. Sci. École Norm. Sup. (4) 31 (1998), 93-130.
[4] E. Fouvry and I. E. Shparlinski, On a ternary quadratic form over primes, Acta Arith. 150 (2011), 285-314.
[5] M. Z. Garaev, Estimation of Kloosterman sums with primes and its application, Math. Notes 88 (2010), 330-337; transl. of: Mat. Zametki 88 (2010), 365-273
[6] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity, Canad. J. Math. 34 (1982), 1365-1377.

Roger C. Baker
Department of Mathematics
Brigham Young University
Provo, UT 84602, U.S.A.
E-mail: baker@math.byu.edu

Received on 6.12.2011
and in revised form on 22.5.2012

[^0]: 2010 Mathematics Subject Classification: 11L20, 11N36.
 Key words and phrases: Kloosterman sums, finite Fourier transforms, counting solutions of congruences, linear sieve.

