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1. Introduction. The main goal of this paper is to provide further
evidence for the extended abelian rank one Stark conjecture by studying
two infinite families of abelian extensions of Q.

The extended abelian rank one Stark conjecture was stated for the first
time in [3]. Our approach is based on [15] and we refer to this latter paper for
the statement of the conjecture (Conjecture 3.6). See also [2] where arbitrary
orders of vanishing are treated. Here, we work exclusively with the S-version
of the conjecture. For a given 1-cover S (see §1.2 below for the definitions
of a 1-cover and Smin), rather than studying the extended abelian rank one
Stark conjecture, we study Question 4.2 of [15] (denoted by St(K/k, S, v)
for a given 1-cover S and a place v ∈ Smin). It was shown that an affirmative
answer to St(K/k, S, v) for all v ∈ Smin implies the extended abelian rank
one Stark conjecture (see Proposition 4.3 of [15]).

In this paper, we will be concerned almost exclusively with the case where
v ∈ Smin is a finite prime. In this case, as explained in [15], it is possible
to formulate an extension of the classical Brumer–Stark conjecture which,
if true, implies that St(K/k, S, v) has an affirmative answer. This extension
of the Brumer–Stark conjecture is recalled in §2 (Question 2.1). Question
2.1 will be the main object of study of this paper. In §1.1, we fix some of
our basic notation, and in §1.2, we recall some needed background infor-
mation regarding the extended abelian rank one Stark conjecture. In §2.1,
we formulate local versions of Question 2.1 and we prove some reduction
statements similar to the ones given in [6] for the classical Brumer–Stark
conjecture. In §3, we use the previous results of §2.1 and some previous work
of Greither and Kučera [5] and of Smith [12] in order to study two infinite
families of abelian extensions of Q.
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1.1. Notation. Given a finite abelian extension K/k of number fields
with Galois group G, the symbol S(K/k) denotes the set of primes in k
which are either archimedean or ramified in K/k. If S is any finite set of
places of k containing S(K/k), we denote the S-equivariant L-function by
θK/k,S(s). When necessary, we shall write

θK/k,S(0) = θK/k,S(K/k)(0)ωK/k,S ,

where

ωK/k,S =
∏

p∈SrS(K/k)

(1− σ−1p ),

and σp denotes the Frobenius automorphism associated to the unramified
prime p in K/k. In order to simplify the notation, we write θK/k(0) instead
of θK/k,S(K/k)(0) (i.e. we drop the subscript S if S is minimal).

If the top field K is a CM-field, we denote the complex conjugation in G
by j.

The subgroup of K× consisting of anti-units will be denoted by K0. We
remind the reader that α ∈ K× is an anti-unit if |α|w = 1 for all archimedean
places w of K. We use the symbol wK for the number of roots of unity
in K×. If n |wK , the subgroup of K× consisting of elements λ ∈ K× such
that K(λ1/n)/k is an abelian extension of number fields will be denoted by
A(K/k, n). This last property does not depend on the choice of λ1/n. Both
K0 and A(K/k, n) are G-modules.

If A is a subgroup of IK , the group of fractional ideals of K, and if n |wK ,

we define BrSt
(n)
Z[G](A) to be the set of elements α ∈ Z[G] for which, given

any a ∈ A, there exists η(a) ∈ K0 ∩ A(K/k, n) such that

aα = (η(a)).

The set BrSt
(n)
Z[G](A) is an ideal of Z[G]. The classical Brumer–Stark conjec-

ture says

wKθK/k,S(0) ∈ BrSt
(wK)
Z[G] (IK)

for any finite set S of places of k containing S(K/k). It is known to be true
for every finite abelian extension of Q. See for instance [9].

If A is a finite abelian group, its p-Sylow subgroup will be denoted
by A{p}.

1.2. Background. Let K/k be a finite abelian extension of number
fields and S a finite set of places of k containing S(K/k). One of the hy-
potheses of the classical abelian rank one Stark conjecture, as stated in [13],
requires that there is a split prime in S. This condition implies that the
order of vanishing of the S-imprimitive L-function LK/k,S(s, χ) is at least
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one for all non-trivial characters χ of Gal(K/k). This is a consequence of
the following theorem.

Theorem 1.1. Let K/k be an abelian extension of number fields and S
a finite set of primes of k containing the infinite ones. We have

ords=0 LK/k,S(s, χ) =

{ |S| − 1 if χ = χ1,

|{v ∈ S | Gv ⊆ Ker(χ)}| if χ 6= χ1,

where Gv denotes the decomposition group associated to the place v in G.

Proof. See [14, p. 24, Proposition 3.4].

On the other hand, it is not difficult to give examples of abelian exten-
sions K/k and finite sets S of places, not containing any split prime, for
which all the S-imprimitive L-functions vanish with order of vanishing at
least one as well. Such a set S is called a 1-cover:

Definition 1.2. Let K/k be an abelian extension of number fields with

Galois group G and let Λ be any subset of Ĝ = HomZ(G,C×). Let S be
any finite set of primes of k (perhaps not containing the ramified nor the
archimedean primes). The set S is said to be a 1-cover for Λ if the following
two conditions hold:

(1) For all non-trivial χ ∈ Λ, there exists at least one prime v ∈ S such
that Gv ⊆ Ker(χ).

(2) If the trivial character is in Λ, then |S| ≥ 2.

In the case where Λ = Ĝ, we also say that S is a 1-cover for G (or for K/k)

rather than for Ĝ.

If S is a 1-cover for K/k containing S(K/k), then ords=0 LK/k,S(s, χ) ≥ 1

for all χ ∈ Ĝ by Theorem 1.1. Unless otherwise stated, we always suppose
that a 1-cover S for K/k contains S(K/k). We need one more definition.

Definition 1.3. Let K/k be an abelian extension of number fields with

Galois group G and S a 1-cover for K/k. The set of characters χ ∈ Ĝ
whose S-imprimitive L-functions have order of vanishing precisely one will
be denoted by Ĝ1,S . Moreover, the set Smin is defined to consist of all primes

v ∈ S for which there exists χ ∈ Ĝ1,S , χ 6= χ1, such that Gv ⊆ Ker(χ).

In other words, Smin precisely consists of the places in S which are re-
sponsible for the vanishing of the S-imprimitive L-functions associated to
non-trivial characters having order of vanishing exactly one.

It is natural to try to generalize the abelian rank one Stark conjecture to
handle these more general sets S consisting of 1-covers. This is the purpose
of the extended abelian rank one Stark conjecture of Erickson [3].

In [15], the present author formulated and studied a stronger question
involving one v ∈ Smin at the time (this question is denoted by St(K/k, S, v),
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where S is a 1-cover and v ∈ Smin). It was shown that if St(K/k, S, v) has
an affirmative answer for all v ∈ Smin, then the extended abelian rank one
Stark conjecture is true. This question seems to be easier to study both
theoretically and numerically.

If v ∈ Smin is a finite prime, the present author also formulated in
[15] a generalization of the Brumer–Stark conjecture which in the case of
a positive answer implies that St(K/k, S, v) also has an affirmative answer.
This generalization of the Brumer–Stark conjecture is the main object of
study of this paper. We recall its precise statement in the next section.

2. A generalization of the Brumer–Stark conjecture. The setting
is as follows: Let K/k be a finite abelian extension of number fields and S
a 1-cover for K/k. Suppose that |S| ≥ 3 and S 6= Smin. Let p ∈ Smin be
a finite prime. As in [15], let L(p) = KGp , Γp = Gal(L(p)/k), np = |Gp|
and Rp = S r {p}. If p ∈ Smin is fixed, then we write L, Γ,R, n instead of
L(p), Γp, Rp, np, and similarly for other notations depending on p ∈ Smin.

(1) If p ∈ Smin is ramified in K/k, define the subgroup A = Ap of IL to
be the subgroup generated by the primes P of L lying above p.

(2) If p ∈ Smin is unramified in K/k, let A = Ap be the subgroup of IL
generated by the primes Q of L lying above primes q of k satisfying(

K/k

q

)
=

(
K/k

p

)
.

The extension of the Brumer–Stark conjecture alluded to above is the
following (Question 4.7 of [15]).

Question 2.1 (Extension of the Brumer–Stark conjecture). Let p∈Smin

be a finite prime. In the setting as above, do we have

wLθL/k,R(0)/n ∈ Z[Γ ]?

Moreover, do we have

wLθL/k,R(0)/n ∈ BrSt
(wL)
Z[Γ ] (A),

where A is the subgroup of IL defined above?

In all theoretical and numerical examples that have been investigated so
far, one can in fact take IL instead of A in the previous question. Numerical
examples have been computed only in the case where the base field is Q
(see [15] for some examples and [16] for more). It would be interesting to do
computations with other base fields.

We remark that since we assume p ∈ Smin is a finite prime, the field
k is necessarily totally real and K totally complex. Now, since K/k is Ga-
lois and k is totally real, every complex embedding of K induces a complex
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conjugation. If w is a (necessarily complex) place of K, we denote the corre-
sponding complex conjugation by σw. The fact that K/k is abelian implies
that σw depends only on the place v of k lying below w. Thus, it will be
denoted by σv rather than σw. By the decomposition group associated to the
infinite place v of k, we mean, as usual, Gv := 〈σv〉. The field L also has to
be totally complex, otherwise Gv ⊆ Gp for some real place v of k, and this
is impossible, since p is assumed to be in Smin. If we are in the situation
where K is a CM-field, then L is also a CM-field as subfields of CM-fields
are either totally real or CM-fields.

As another remark, we note that if R is any finite set of primes containing
S(K/k) and p is a prime of k which splits completely in K/k, then S =
R ∪ {p} is automatically a 1-cover. There are only two possibilities: Either
Smin is empty or Smin = {p}. In the former case, θK/k,R(0) = 0 and there is

nothing to show, whereas in the latter case K = L, n = 1 and A = IsplK is
the group of fractional ideals generated by the primes P of K lying above
primes p of k splitting completely in K/k. Since it is known (see the classical
book on the subject [14] or Lemma 2.3 below) that

wKθK/k,R(0) ∈ BrSt
(wK)
Z[G] (PK),

where PK is the group of principal ideals of K and IK is generated by PK
and IsplK , we get back the original Brumer–Stark conjecture.

We will refer to the following hypothesis as the Integrality Property.

Hypothesis 2.2 (Integrality Property). One has

AnnZ[Γ ](µL) · θL/k,R(0)/n ⊆ Z[Γ ].

If the Integrality Property is satisfied, then the first part of Question
2.1 holds true, since wL ∈ AnnZ[Γ ](µL). It was shown in [15, Theorem 4.30]
that if p ∈ Smin is unramified in K/k, then the Integrality Property follows
from a conjecture of Gross (Conjecture 7.6 of [7]). This case of the Gross
conjecture is known to be true, see for instance Lemma 2.3 in [8]. Therefore,
the Integrality Property is true if the finite prime p ∈ Smin is unramified in
K/k. If the finite prime p ∈ Smin is ramified in K/k, then we cannot say
anything in theory, but the numerical computations agree with it so far.

Lemma 2.3. Suppose that the Integrality Property holds true. Then

(L×)wLθL/k,R(0)/n ⊆ L0 ∩ A(L/k,wL).

Proof. This follows from Lemmas 4.10 and 4.12 of [15].

2.1. Local version of the extension of the Brumer–Stark con-
jecture. This section (§2.1) is based on [6] where the corresponding results
are proved for the classical Brumer–Stark conjecture. The proofs are similar
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and we include them here only for the sake of completeness relative to the
setting of Question 2.1.

Suppose that m |wL. If the Integrality Property holds true then it makes
sense to say

wLθL/k,R(0)/n ∈ BrSt
(m)
Z[Γ ](A),

where A is now a subgroup of ClL rather than IL. Indeed, if a is a fractional
ideal such that there exists η(a) ∈ L× satisfying

(1) awLθL/k,R(0)/n = (η(a)),
(2) |η(a)|w = 1 for all infinite places w of L,
(3) the extension L(η(a)1/m)/k is abelian,

and b = λ · a for some λ ∈ L×, then b has the same three properties with
η(b) = λwLθL/k,R(0)/n · η(a) by Lemma 2.3.

Proposition 2.4. Suppose the Integrality Property holds true and let A
be any subgroup of ClL. Let p be any prime number and set wL,p = |wL|−1p ,
i.e. wL,p is the exact power of p dividing wL. Then

wLθL/k,R(0)/n ∈ BrSt
(wL)
Z[Γ ] (A{p})

if and only if

(2.1) wLθL/k,R(0)/n ∈ BrSt
(wL,p)

Z[Γ ] (A{p}).

Proof. One direction is clear. So suppose that (2.1) holds, and write
wL = m ·wL,p for some integer m relatively prime to p. Since (m, p) = 1, the
group morphism A{p} → A{p} defined by [a] 7→ [a]m, is an isomorphism.
Let [a] ∈ A{p} and let [b] ∈ A{p} be such that [b]m = [a]. By hypothesis,
there exists η(b) ∈ L0 ∩ A(L/k,wL,p) such that

bwLθL/k,R(0)/n = (η(b)).

Now, there exists λ ∈ L× such that a = λbm. We then have

awLθL/k,R(0)/n = (λwLθL/k,R(0)/nη(b)m).

By Lemma 2.3,

λwLθL/k,R(0)/n ∈ L0 ∩ A(L/k,wL),

and since η(b) ∈ L0∩A(L/k,wL,p), it follows that η(b)m ∈ L0∩A(L/k,wL).
This is what we wanted to show.

This last proposition allows one to study Question 2.1 one prime at a
time:

Corollary 2.5. If p is a prime number, let np = |n|−1p . The following
statements are equivalent:



Stark conjecture 389

(1) wLθL/k,R(0)/n ∈ BrSt
(wL)
Z[Γ ] (A).

(2) wLθL/k,R(0)/n ∈ BrSt
(wL,p)

Z[Γ ] (A{p}) for all prime numbers p.

(3) wLθL/k,R(0)/np ∈ BrSt
(wL,p)

Z[Γ ] (A{p}) for all prime numbers p.

Proof. The equivalence between (1) and (2) follows directly from Propo-
sition 2.4. The proof of the equivalence of (2) and (3) is similar and left to
the reader.

The next proposition shows that assuming the usual Brumer–Stark con-
jecture, Question 2.1 does not say anything new at primes p which are
relatively prime to n.

Proposition 2.6. Suppose that the Integrality Property holds true and
also that the usual Brumer–Stark conjecture is true for L/k. If p is a prime
satisfying (p, n) = 1, then

wLθL/k,R(0)/n ∈ BrSt
(wL,p)

Z[Γ ] (ClL{p}).

Proof. Let [a] ∈ ClL{p} and pe be the exponent of ClL{p}. Let λ1 ∈ K×
be such that ap

e
= (λ1). Since (p, n) = 1, there exist s, t ∈ Z such that

spe + tn = 1. Therefore,

awLθL/k,R(0)/n = asp
ewLθL/k,R(0)/n · atwLθL/k,R(0)

= (λ
swLθL/k,R(0)/n

1 ) · atwLθL/k,R(0).

By Lemma 2.3, we have λ
wLθL/k,R(0)/n

1 ∈ L0 ∩ A(L/k,wL). Moreover, the
usual Brumer–Stark conjecture for the special value wLθL/k,R(0) shows that

the ideal awLθL/k,R(0) is principal generated by an element in L0∩A(L/k,wL).
This is what we wanted to show.

Hence, we just have to focus on the primes p dividing n.

Proposition 2.7. Let A be any subgroup of ClL and suppose that the
Integrality Property holds true. Let p be a prime number dividing n. Suppose
moreover that (p, wL) = 1. Then

wLθL/k,R(0)/n ∈ BrSt
(wL,p)

Z[Γ ] (A{p})

if and only if

(2.2) wLθL/k,R(0)/n ∈ AnnZ[Γ ](A{p}).
Proof. Again, one direction is clear, so suppose that (2.2) holds, and let

[a] ∈ A{p}. Let pe be the exponent of A{p} and let λ ∈ L× be such that
ap

e
= (λ). Since (p, wL) = 1, there exist s, t ∈ Z such that spe + twL = 1.

By hypothesis, there exists η(a) ∈ L× such that

awLθL/k,R(0)/n = (η(a)),
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hence

awLθL/k,R(0)/n = (λswLθL/k,R(0)/nη(a)twL).

Setting

η′(a) = λswLθL/k,R(0)/nη(a)twL ,

we see that η′(a) ∈ A(L/k,wL) by Lemma 2.3.

As explained after Question 2.1, the field L is necessarily totally com-
plex. For every (necessarily complex) place w of L, let σw be the associated
complex conjugation. From Lemma 4.10 in [15], we have

(1 + σw)wLθL/k,R(0)/n = 0

for all infinite places w of L. Since 1− σw = 2− (1 + σw), we get

(1− σw)wLθL/k,R(0)/n = 2wLθL/k,R(0)/n.

Hence, letting d = [L : Q]/2, we have∏
w

(1− σw) · wLθL/k,R(0)/n = 2d · wLθL/k,R(0)/n,

where the product is over all (necessarily complex) infinite places of L.
Since (p, wL) = 1 and wL is even, we see that there exists s, t ∈ Z such that
s2d + tpe = 1. Then

awLθL/k,R(0)/n = (λtwLθL/k,R(0)/n)as2
dwLθL/k,R(0)/n

=
(
λtwLθL/k,R(0)/nη′(a)s

∏
w(1−σw)

)
.

Letting

η′′(a) = λtwLθL/k,R(0)/nη′(a)s
∏

w(1−σw),

we see that η′′(a) ∈ L0 ∩ A(L/k,wL).

If A is a subgroup of the group of fractional ideals IL and m |wL, we

define Ab
(m)
Z[Γ ](A) to be the set of elements α ∈ Z[Γ ] such that there exists

η(a) ∈ A(L/k,m) satisfying

aα = (η(a)).

That is, we are just dropping the anti-unit condition. The set Ab
(m)
Z[Γ ](A) is

an ideal of Z[Γ ] and we clearly have the inclusion

BrSt
(m)
Z[Γ ](A) ⊆ Ab

(m)
Z[Γ ](A).

Again, if the Integrality Property holds true, Lemma 2.3 implies that it
makes sense to say

wLθL/k,R(0)/n ∈ Ab
(m)
Z[Γ ](A)

if now A is a subgroup of ClL rather than IL.
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Proposition 2.8. Let A be any subgroup of ClL and suppose that the
Integrality Property holds true. Let p be an odd prime number dividing n.
Suppose moreover that p |wL. Then

wLθL/k,R(0)/n ∈ BrSt
(wL,p)

Z[Γ ] (A{p})

if and only if

wLθL/k,R(0)/n ∈ Ab
(wL,p)

Z[Γ ] (A{p}).

Proof. The proof is similar to the second part of the proof of Proposition
2.7 and is left to the reader.

We can summarize the previous discussion as follows, always assuming
the Integrality Property. If p is a prime number and (p, n) = 1, we have
nothing to do assuming the usual Brumer–Stark conjecture. Suppose now
p |n. In order to give an affirmative answer to Question 2.1:

(1) If (p, wL) = 1, we just have to show an annihilation statement.
(2) If p |wL and p is odd, we have to show an annihilation statement

and the abelian condition.
(3) If p = 2, then we have to show an annihilation statement, the abelian

condition and the anti-unit part.

Suppose that L is a CM-field and p is an odd prime. Assuming the usual
Brumer–Stark conjecture, we just have to deal with the minus part of the
class group, as the following proposition shows.

Proposition 2.9. Suppose that the Integrality Property holds true and
that the usual Brumer–Stark conjecture is true for L/k. Suppose also that L
is a CM-field and p is an odd prime dividing n. Letting np = |n|−1p , we have

wLθL/k,R(0)/np ∈ BrSt
(wL)
Z[G] (ClL{p}+).

Proof. If [a] ∈ ClL{p}+, then a1−j = (λ1) for some λ1 ∈ L×. Moreover,
we have the identity

(1− j)wLθL/k,R(0)/np = 2wLθL/k,R(0)/np,

because θL/k,R(0) ∈ Q[G]−. Since (2, np) = 1, there exist s, t ∈ Z such that
s2 + tnp = 1. Thus,

awLθL/k,R(0)/np = as·2wLθL/k,R(0)/np · atwLθL/k,R(0).

Now, we have

a2wLθL/k,R(0)/np = a(1−j)wLθL/k,R(0)/np = (λ
wLθL/k,R(0)/np

1 ),

and λ
wLθL/k,R(0)/np

1 ∈ L0 ∩ A(L/k,wL) by Lemma 2.3.
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Moreover, the usual Brumer–Stark conjecture for wLθL/k,R(0) shows that

the ideal awLθL/k,R(0) is principal generated by an element in L0∩A(L/k,wL).
This is what we wanted to prove.

2.2. Further remarks. It seems clear now that a stronger Brumer–
Stark type statement for a certain subgroup A of IL would imply a big
part of the extended abelian rank one Stark conjecture. As explained at
the beginning of §2, depending on whether or not p is ramified in K/k, we
proposed two such subgroups which would be enough to have consequences
for the extended abelian rank one Stark conjecture.

On the other hand, surprisingly perhaps, in all theoretical and numerical
results so far, Question 2.1 holds true with A = IL. The simplest possible
type of fields for which Question 2.1 does not reduce to the classical Brumer–
Stark conjecture is when K/k is biquadratic.

Theorem 2.10. Suppose that K/k is a biquadratic extension of number
fields with K totally complex and k totally real. Suppose also that S is a
1-cover which does not contain a split prime, |S| ≥ 3 and S 6= Smin. Let
p ∈ Smin be a finite prime, L = KGp, Γ = Gal(L/k) and R = Sr {p}. Note
that |Gp| = 2. Then

wLθL/k,R(0)/2 ∈ Z[Γ ],

and moreover

wLθL/k,R(0)/2 ∈ BrSt
(wL)
Z[Γ ] (IL).

Proof. Proposition 5.2 of [10] implies the following result for quadratic
extensions. If M/k is a quadratic extension with Galois group Γ such that
|S(M/k)| ≥ 3, then

wMθM/k(0)/2 ∈ Z[Γ ] and wMθM/k(0)/2 ∈ BrSt
(wM )
Z[Γ ] (IM ).

If we come back to our biquadratic extension K/k and subfield L (which is
quadratic over k and also a CM-field), there are only two cases not covered
by this result:

(1) The base field k is Q and only one finite prime ramifies in L/Q.
(2) The base field k is a real quadratic number field and the extension

L/k is unramified.

As in the proof of Theorem 4.26 of [15], since S is a 1-cover and S 6= Smin,
we know that |S| ≥ 4. So in both cases, there is a prime q ∈ R which is
unramified in L/k. Since p ∈ Smin, the Frobenius automorphism σq has to
be the complex conjugation j ∈ Γ . Thus,

wLθL/k,R(0) = wLθL/k(0) · (1− j)β for some β ∈ Z[Γ ]

= 2wLθL/k(0)β,
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and hence wLθL/k,R(0)/2 ∈ BrSt
(wL)
Z[Γ ] (IL). This ends the proof, since the

usual Brumer–Stark conjecture is known to be true for quadratic exten-
sions.

It might be worthwhile to reinterpret a theorem of Erickson in terms of
Question 2.1.

Theorem 2.11 (Erickson). Let S be a 1-cover for K/k. Moreover, sup-
pose there exists a subset S′ ⊆ S which consists only of unramified finite
primes and is a 1-cover for K/k. Then, for every p ∈ Smin,

ωL/k,R ∈ nZ[Γ ].

Therefore, there exists α ∈ Z[Γ ] (which depends on p) such that

wLθL/k,R(0)/n = wLθL/k(0)α,

and if the usual Brumer–Stark conjecture is true for L/k, then

wLθL/k,R(0)/n ∈ BrSt
(wL)
Z[Γ ] (IL).

Proof. See the proof of Theorem 6.1 in [3].

Let us remark that if this theorem applies, then Smin consists only of
finite unramified primes.

2.3. Non-semisimplicity. Question 2.1 involves a “non-semisimple”
situation as we now explain. In [15], we made the following definition.

Definition 2.12. Let G be a finite abelian group. A subgroup H is
called cocyclic if G/H is a cyclic group. Moreover, if H is cocyclic and if
K ( H implies that G/K is not cyclic, then we say that H is a minimal
cocyclic subgroup.

We refer to §3.3 of [15] for the relation between minimal cocyclic sub-
groups and 1-covers.

Lemma 2.13. Let G be a finite abelian group and let H be a subgroup.
Then H is a minimal cocyclic subgroup of G if and only if H{p} is a minimal
cocyclic subgroup of G{p} for all prime p.

Proof. This is clear using the fact that G/H '
⊕

pG{p}/H{p}, where
the direct sum is over all prime numbers p.

Let us now come back to the setting of Question 2.1 for some finite prime
p ∈ Smin.

Proposition 2.14. Let p be a prime number. If p |n, then p | [L : k].

Proof. Since p ∈ Smin, we see that Gp is contained in a minimal cocyclic
subgroup H of G (Theorems 3.15 and 3.16 of [15]). If p - [L : k], then
Gp{p} = G{p}. Thus
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G{p} = Gp{p} ⊆ H{p} ⊆ G{p},
and we conclude that H{p} = G{p}. This contradicts Lemma 2.13.

By Proposition 2.6, we know that if (p, n) = 1, then Question 2.1 does
not say anything new assuming the usual Brumer–Stark conjecture. Now,
if p |n, then Proposition 2.14 says that we are studying an annihilation
statement

wLθL/k,R(0)/n ∈ AnnZ[Γ ](ClL{p}),
in the case where p | [L : k]. This is the so-called “non-semisimple” case.

Remark. Suppose we are in the setting of the question St(K/k, S, v) of
[15] where v ∈ Smin is a real infinite place of k. The same argument as above
shows that we necessarily have 2 | [L : k] where L = KGv .

3. Two infinite families of abelian extensions of Q

3.1. The first family of abelian extensions of Q to be studied.
The following example is taken from [2] and was studied numerically in some
cases in [15] and [16]. Let p, q be two odd prime numbers satisfying

p ≡ 1 (mod 4), q ≡ 3 (mod 4),

(
p

q

)
= 1.

Let K ′ = Q(ζq)
Dp , where Dp is the decomposition group associated to p

in Q(ζq)/Q. We remark that Q(
√
−q) ⊆ K ′. Let K ′+ be the maximal real

subfield of K ′. Let ` be an odd prime number, different from p and q and
satisfying (

K ′/Q
`

)
6= 1,

(
K ′+/Q

`

)
= 1,

(
p

`

)
= −1,

(i.e. ` splits completely in K ′+/Q, but does not split completely in K ′/Q
nor in Q(

√
p)/Q). Let K = K ′(

√
p). Then the Galois group G = Gal(K/Q)

is isomorphic to
Z/2Z× Z/2Z× Z/mZ,

where m = (q − 1)/2fp, and fp is the inertia index of p in Q(ζq). Since q ≡
3 (mod 4) we have (m, 2) = 1. Note that |Gp| = |G`| = 2 and Gp, G∞, G` are
precisely the three subgroups of index 2 in G. By Theorems 3.15 and 3.16 of
[15], we see that S = {∞, p, q, `} is a 1-cover for K/Q and Smin = {∞, p, `}.

If m = 1, then we are in the setting of Theorem 2.10. Otherwise, the
simplest thing that could happen is that m is an odd prime. Here is our
main theorem for this family of abelian extensions of Q.

Theorem 3.1. We have:

(1) For the ramified prime p ∈ Smin,

wLθL/Q,R(0)/2 ∈ Z[Γ ].
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Moreover,

wLθL/Q,R(0)/2 ∈ BrSt
(wL)
Z[Γ ] (IL).

Hence, Question 2.1 has an affirmative answer for p ∈ Smin.
(2) For the unramified prime ` ∈ Smin,

wLθL/Q,R(0)/2 ∈ Z[Γ ].

Suppose moreover that m is an odd prime and that 2 is a primitive
root modulo m. Then

wLθL/Q,R(0)/2 ∈ BrSt
(wL)
Z[Γ ] (IL).

Proof. We start by looking at the ramified prime p.

The ramified prime p. Recall that L=KGp , Γ =Gal(L/Q), R=Sr {p},
and |Gp| = 2. Since

ωR = 1− σ−1` ,

and σ` = j in Γ , we have

wLθL/Q,R(0) = wLθL/Q(0) · (1− j) = 2wLθL/Q(0).

Therefore,

wLθL/Q,R(0)/2 = wLθL/Q(0) ∈ Z[Γ ] and wLθL/Q,R(0)/2 ∈ BrSt
(wL)
Z[Γ ] (IL),

because of the usual Brumer–Stark conjecture for the special value
wLθL/Q(0). Hence, point (1) of Theorem 3.1 is now proved.

The unramified prime `. Recall here that L = KG` , Γ = Gal(L/Q),
R = S r {`}, and |G`| = 2. As noted after Hypothesis 2.2, we have

wLθL/Q,R(0)/2 ∈ Z[Γ ],

since ` is unramified in K/Q. Because of Corollary 2.5, Proposition 2.6 and
noting that wL,2 = wL = 2, we just have to show that

wLθL/Q,R(0)/2 ∈ BrSt
(2)
Z[Γ ](ClL{2}).

If m is an odd prime and 2 is a primitive root modulo m, then this follows
from Theorem 5.3 of [12]. (In Smith’s notation, we have K1 = L, K0 =
Q(
√
−pq), k1 = (K ′)+, k0 = Q, his S is our R, S1 = {∞, p}, and r = 1.)

Remark. In [12], it was shown that if a certain equation (7) were true,
then the conclusion of point (2) of our Theorem 3.1 would hold true if m is
any odd prime. In other words, we would not need the hypothesis that 2 is
a primitive root modulo m. See Proposition 5.2 of [12].

As for the extended abelian rank one Stark conjecture for this example,
here is what we can say. In the case where m is an odd prime and 2 is
a primitive root modulo m, Theorem 3.1 implies that St(K/Q, S, p) and
St(K/Q, S, `) have an affirmative answer (Propositions 4.4 and 4.9 of [15]).
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We only have to study what is happening at ∞ ∈ Smin, i.e. to study
St(K/Q, S,∞). Let now L = K+ = KG∞ , Γ = Gal(L/Q) and fix a place
w of L lying above ∞. Assuming the Gross conjecture (Conjecture 7.6 of
[7]) in the case where the split prime is ∞, Theorem 4.27 of [15] implies the
existence of an η ∈ L0 such that

θ′L/Q,S(0) = −
∑
γ∈Γ

log |ηγ |w · γ−1.

This case of the Gross conjecture when the base field is Q is known to be true
because of classical results (see §1.1 of [1] combined with the usual functorial
properties of the Gross conjecture such as top change and enlarging the set
S). Because of Proposition 3.8 of [15], the extended abelian rank one Stark
conjecture for K/k and S is true if and only if η ∈ A(L/Q, 2), i.e. if the
abelian condition of St(K/Q, S,∞) holds true.

3.2. The second family of abelian extensions of Q to be studied.
Let ` be an odd prime. Fix two absolutely abelian fields Ki (i = 1, 2) which
have degree ` over Q and prime conductor pi (p1 6= p2). Note that we
necessarily have pi ≡ 1 (mod `). Suppose also that p1 splits in K2 and p2
splits in K1. Let d < 0 be such that

` - d,
(
d

pi

)
= 1, and d ≡ 0, 1 (mod 4).

Let F be the imaginary quadratic field Q(
√
d) and set K = FK1K2. For

future use, we remark that (`, wK) = 1. The field K is an abelian extension
of Q with Galois group G = Gal(K/Q) isomorphic to

Z/2Z× Z/`Z× Z/`Z.
Corollary 3.22 and Theorem 3.23 of [15] imply that there are `+ 1 minimal
cocyclic subgroups which are precisely the subgroups of order ` of G (see
Section 3.3 of [15] for the notion of minimal cocyclic subgroup and its connec-
tion with 1-covers). Let us denote these subgroups by Hi for i = 1, . . . , `+ 1
in such a way that Hi = Gpi , the decomposition group of pi, for i = 1, 2.
In order to have a 1-cover, we need to take unramified primes p3, . . . , p`+1

satisfying
Hi = 〈σpi〉 for i = 3, . . . , `+ 1.

By Theorems 3.15 and 3.16 of [15], we see that

S = {∞, p | d, p1, . . . , p`+1}
is a 1-cover for K/Q and

Smin = {p1, . . . , p`+1}.
Note that |Gpi | = ` for all i = 1, . . . , `+ 1. Here is our main theorem for this
family of abelian extensions of Q.
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Theorem 3.2. For p ∈ Smin, let L = KGp and Γ = Gal(L/Q). Let also
R = S r {p}. Then Question 2.1 has an affirmative answer. More precisely

wLθL/Q,R(0)/` ∈ Z[Γ ] and wLθL/Q,R(0)/` ∈ BrSt
(wL)
Z[Γ ] (IL).

Proof. Given any prime p ∈ Smin, letting L = KGp as usual, we remark
that F ⊆ L. Set H = Hp = Gal(L/F ); it is a cyclic group of order `. Given
α ∈ Z`[Γ ]−, there exists a unique α̃ ∈ Z`[H] such that

α = e−α̃,

where e− is the usual idempotent

e− =
1− j

2
∈ Z`[Γ ].

We obtain in this way an isomorphism of rings

ψ : Z`[Γ ]− → Z`[H], α 7→ ψ(α) = α̃,

which allows us to identify Z`[Γ ]− with Z`[H]. At times, we will denote the
image of α ∈ Z`[Γ ]− simply by α̃ rather than ψ(α).

Since (wL, `) = 1, one has

θL/Q(0) ∈ Z(`)[Γ ]− ⊆ Z`[Γ ]−.

The image of θL/Q(0) via ψ will be denoted more simply by θ̃L/Q.

The ramified primes p1 and p2. Both ramified primes p1 and p2 are
treated in the same way. Let us take p1 and set as usual L = KGp1 , R =
S r {p1}, Γ = Gal(L/Q), and H = Gal(L/F ). Fix a generator h of H.
Noting that p2 ramifies in L+ and splits in F , Theorem 6.1 of [5] implies
that

θ̃L/Q = α(1− h)

for some α ∈ Z`[H] (denoted by ϑ0 in [5]). Since S(L/Q) = S(K/Q)r {p1},
we have

θL/Q,R(0) = θL/Q(0) · ωR, where ωR ∈ I`−1H .

Therefore,

ωR = (1− h)`−1β

for some β ∈ Z[H], again since H is cyclic. Hence, we have

wLθL/Q,R(0) = wLe−αβ(1− h)`

= wLe−αβ`(1− h)γ for some γ ∈ Z[H]

= `wLθL/Q(0)βγ.

In the previous chain of equalities, we used the fact that

(1− h)` ∈ `(1− h)Z[H],
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as a simple computation, using the binomial theorem, shows. We conclude
that

wLθL/Q,R(0)/` = wLθL/Q(0)βγ ∈ Z[Γ ],

and the classical Brumer–Stark conjecture for the special value wLθL/Q(0)
implies that Theorem 3.2 is true for the two ramified primes in Smin.

The unramified primes p3, . . . , p`+1. Again, all unramified primes pi, for
i = 3, . . . , `+1, are treated in the same way. Fix such an i and let L = KGpi .
We already know that

wLθL/Q,R(0)/` ∈ Z[Γ ],

because we are in the situation where p ∈ Smin is unramified in K/Q (see
the discussion after Hypothesis 2.2). Because of Corollary 2.5 and Proposi-
tions 2.6, 2.7 ((`, wL) = 1) and 2.9, we just have to show that

wLθL/Q,R(0)/` ∈ AnnZ[Γ ](ClL{`}−).

Let h be a generator of H. Since both p1 and p2 are ramified in L+/Q, but
split in F , Theorem 6.1 of [5] shows that there exists α ∈ Z`[H] (in Greither
and Kučera’s notation, we have h = γ, α = ϑ0, s = 2, and our H is their Γ )
satisfying

θ̃L/Q = α(1− h)2,

and such that

(3.1) α(1− h) ∈ AnnZ`[H](ClL{`}−).

Now, letting R = S r {pi}, we have ωR ∈ I`−2H . Write

ωR = β(1− h)`−2

for some β ∈ Z[H]. Then

wLθL/Q,R(0) = wLe−α(1− h)`β

= `wLe−α(1− h)γβ for some γ ∈ Z[H].

Therefore,

wLθL/Q,R(0)/` = wLe−α(1− h)γβ ∈ AnnZ[Γ ](ClL{`}−).

Here are some remarks. Suppose we are in the situation of an unramified
prime p ∈ Smin in the proof of Theorem 3.2. Given a prime p of L, the
classical Brumer–Stark conjecture gives the existence of an εR(p) ∈ L0 ∩
A(L/Q, wL) such that

pwLθL/Q,R(0) = (εR(p)).

In the case where p is relatively prime to the conductor of L, the algebraic
number εR(p) is a product of normalized Gauss sums, since our base field
is Q. Instead of simply using results of [5] as we did, it would be possible to
show directly that εR(p) is an `th power of an element in L0 ∩A(L/Q, wL)
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using certain complicated identities in group rings and the norm property
satisfied by the Euler system of Gauss sums. In fact, this was Greither and
Kučera’s original approach to related problems (see [4] for instance).

One could ask the following question regarding Question 2.1: If the
answer is “yes”, do we get new annihilators or not? In the setting of Theorem
3.2, the classical special value

wLθL/Q,R(0)

is always in the `-Stickelberger ideal in the sense of Sinnott. The motivating
question of [5] was to understand whether or not the Sinnott Stickelberger
ideal tells the whole story about the annihilator of the class group. In other
words, is it possible to find annihilators outside the Sinnott Stickelberger
ideal? The authors of [5] actually found such examples. Using their remarks
in that paper, we now explain that in some cases, the special value

wLθL/Q,R(0)/`

of Theorem 3.2 is not in the `-Sinnott Stickelberger ideal either.

Let us first recall how the Sinnott Stickelberger ideal is defined (for more
details see [11]). If both E and F are finite abelian extensions of Q such that
E ⊆ F and if R is a commutative ring of characteristic 0 (such as Z,Z`,Q,
etc.), then the usual restriction homomorphism defined as σ 7→ σ|E , for
σ ∈ Gal(F/Q) induces an R-algebra morphism

resF/E : R[Gal(F/Q)]→ R[Gal(E/Q)].

We also need the corestriction map

corF/E : R[Gal(E/Q)]→ R[Gal(F/Q)],

defined for σ ∈ Gal(E/Q) as

corF/E(σ) =
∑

τ∈Gal(F/Q)
τ |E=σ

τ.

In contrast to resF/E , the corestriction map is not a morphism of rings, but
it is additive. In other words, it is a morphism of R-modules.

For Q(ζn), where n 6≡ 2 (mod 4), we have the classical Stickelberger
element

θn :=

n∑
t=1

(t,n)=1

t

n
σ−1t ∈ Q[Gn],

where Gn is the Galois group of Q(ζn)/Q. Given E/Q we let

NE :=
∑

σ∈Gal(E/Q)

σ.
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One has

θQ(ζn)/Q(0) =
1

2
NQ(ζn) − θn,

as a consequence of the knowledge of the value at s = 0 of the Hurwitz zeta
function. If L is a finite abelian extension of Q with conductor m, let

θL = resQ(ζm)/L(θm).

Applying the restriction map to the corresponding equality for Q(ζm), we
have

θL/Q(0) =
1

2
[Q(ζm) : L]NL − θL.

Let us denote the Galois group of L/Q by Γ . Let S′L be the submodule
of Q[Γ ] generated over Z[Γ ] by the elements of the form corL/L′(θL′), where
L′ runs over all subfields of L. The Sinnott Stickelberger ideal is defined to
be

SL = S′L ∩ Z[Γ ].

If p is any prime number, the same construction as above replacing Z and
Q by Zp and Qp respectively gives the p-Sinnott Stickelberger ideal. We shall
use the notation S′L,p and SL,p. Note that by construction, one has

SL ⊆ SL,p
for all prime numbers p.

Let us come back to the situation of Theorem 3.2, where p ∈ Smin is
an unramified prime, |Gp| = `, and L = KGp . Since ` is relatively prime
to the conductor of L, we have S′L,` = SL,`. Consider the minus `-Sinnott
Stickelberger ideal

S−L,` = e−SL,`.

If L′ is a subfield of L which is real with conductor m, then

θL′ =
1

2
[Q(ζm) : L′]NL′ ,

which lives in the plus part. Hence, S−L,` is generated over Z`[Γ ] by the ele-

ments of the form corL/L′(θL′), where L′ runs over all totally complex sub-

fields of L. Let S̃L be the image of S−L,` under the isomorphism ψ of the be-

ginning of the proof of Theorem 3.2. The ideal S̃L is generated over Z`[H] by

the elements corL/L′(θ̃L′), as L′ runs over all totally complex subfields of L.
As explained on page 1650 of [5] (see comment (2)), the element α(1−h)

of equation (3.1) is outside the Sinnott Stickelberger ideal of L. Greither and
Kučera’s reasoning is as follows. They work in the quotient ring Z`[H]/NH ,
which is isomorphic to Z`[ζ`] and hence is a discrete valuation ring. The

image of S̃L in this quotient ring is generated over Z`[H] by a unique element,
namely
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θ̃L = −θ̃L/Q.

If α(1−h) were in this image, then it would be a multiple of θ̃L/Q = α(1−h)2.
We would then conclude that 1 − h is a unit in this ring, which is not the
case (the element 1− ζ` is not a unit in Z`[ζ`]).

For simplicity, let us assume further that ` = 3. In this case, it is simple
to check that both β and γ in the proof of Theorem 3.2 for unramified primes
in Smin are also units once projected onto the ring

Z3[H]/NH ' Z3[ζ3].

Therefore, we conclude as well that wLθL/Q,R(0)/3 6∈ SL,3.
As a corollary to Theorem 3.2, we get:

Corollary 3.3. In the same setting as in Theorem 3.2, the extended
abelian rank one Stark conjecture is true for K/Q and the 1-cover S.

Proof. If p ∈ Smin is a ramified prime, Theorem 3.2 implies that the
four conditions of Proposition 4.4 of [15] are true; hence, St(K/Q, S, p) has
an affirmative answer. If p ∈ Smin is unramified, Theorem 3.2 implies that
Question 4.7 of [15] has an affirmative answer. Hence, by Proposition 4.3 of
[15], we can conclude that the extended abelian rank one Stark conjecture
is true for K/Q and the 1-cover S.

4. Conclusion. The goal of this paper was to provide further evidence
for the extended abelian rank one Stark conjecture by studying two infinite
families of finite abelian extensions of Q. Rather than studying the extended
abelian rank one Stark conjecture itself, we studied a stronger statement,
namely an extension of the Brumer–Stark conjecture (Question 2.1). We
believe that this extension of the Brumer–Stark conjecture is interesting in
itself. There are some new phenomena proper to Question 2.1. Most notably
perhaps, in the case where the statement does not reduce to the classical
Brumer–Stark conjecture, we are always in a “non-semisimple” situation
as explained in §2.3. Moreover, we saw that if true, the extension of the
Brumer–Stark conjecture predicts the existence of annihilators which might
be outside the Stickelberger ideal in the sense of Sinnott.

If Question 2.1 is true, it would be interesting to find a proof, in the case
where the base field is Q, along the classical line of Stickelberger’s theorem.
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