
ACTA ARITHMETICA

164.3 (2014)

Sumsets in quadratic residues

by

I. D. Shkredov (Moscow and Yaroslavl’)

1. Introduction. Let p be a prime number, Fp the finite field, and R
the set of all quadratic residues. In other words, R is the set of all squares
in Fp \{0}. There are many interesting conjectures about the set R (see e.g.
[6, 15, 17]). We begin with one of A. Sárközy [17]:

Conjecture A. The set R cannot be represented as R = A+B where
the cardinality of each set A,B is at least 2.

Here, as usual,

A+B := {a+ b : a ∈ A, b ∈ B}.
We also define, for a set A ⊆ Fp,

A +̂A := {a+ a′ : a, a′ ∈ A, a 6= a′}.
In [17] the following result was obtained (see also [7]).

Theorem 1.1. Let p be a prime number. Suppose that R = A+B with
|A|, |B| ≥ 2. Then

p1/2

3 log p
< |A|, |B| < p1/2 log p.

Some generalizations and improvements of Theorem 1.1 can be found in
[7, 21].

Another well-known conjecture (see e.g. [6]) states, in particular, the
following:

Conjecture B. Let ε ∈ (0, 1) and let p be a sufficiently large prime
number. Suppose that A+A ⊆ R or A−A ⊆ R t {0}. Then |A| � pε.

Some results in this direction can be found in [1, 5, 10]. At the moment
the best known bound has the form |A| � √p (see e.g. [1]). A lower bound
for the case A− A ⊆ R t {0} is due to S. Graham and C. Ringrose [10]. It
asserts that |A| � log p · log log log p for infinitely many primes p. A uniform
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lower bound of the form |A| ≥ (1/2 + o(1)) log p, where p is an arbitrary
prime, can be found in [5]. Conjecture B can be reformulated in terms of
the clique number of the Paley graph Pp (see e.g. [3]).

Exponential sums with multiplicative characters over sumsets have been
studied by various authors (see e.g. [4], [8], [9], [13]–[15]). The classical gen-
eral result of [8], [9] states that

(1) σ(A,B) :=
∣∣∣ ∑
x∈B, y∈A

χ(x+ y)
∣∣∣ ≤√|A| |B|p

for any sets A,B ⊆ Fp and an arbitrary nonprincipal multiplicative
character χ. The bound is nontrivial if |A| |B| > p1+δ with some δ > 0.
A. A. Karatsuba and M.-C. Chang contributed significantly to the theory of
such exponential sums. For example, Karatsuba proved a nontrivial upper
bound for σ(A,B) provided |A| > pε1 and |B| > p1/2+ε2 with ε1, ε2 > 0.
Chang obtained plenty of results for specific A and B, e.g. when A has small
sumset or, conversely, A is a well-spaced set (see [4] for details). In his survey
[15] Karatsuba formulated the following conjecture (see Problem 6 there).

Conjecture C. Let A,B ⊆ Fp with |A|, |B| ∼ √p. Then

(2)
∣∣∣ ∑
x∈B, y∈A

χ(x+ y)
∣∣∣ ≤ c(δ)|A| |B|p−δ, δ > 0.

The last conjecture in this section, also called the Paley graph conjec-
ture (see e.g. [4]), predicts a nontrivial upper bound for the sum (1) for
|A|, |B| > pε with ε > 0.

Conjecture D. Let A,B ⊆ Fp with |A|, |B| > pε for some ε > 0. Then

(3)
∣∣∣ ∑
x∈B, y∈A

χ(x+ y)
∣∣∣ ≤ c(ε)|A| |B|p−δ, where δ = δ(ε) > 0.

Clearly, Conjecture D is the strongest one and implies the others. Triv-
ially, Conjecture A follows from Conjecture B or C. It is known that the
corresponding functional version of Conjecture C is false: see e.g. Section 5.

In this paper we give a partial result on Conjecture A. Let us formulate
our main theorem.

Theorem 1.2. Let p be a prime number, R ⊆ Fp be the set of all
quadratic residues and A ⊆ Fp be a set.

(i) If A+A = R then p = 3 and A = {2}.
(ii) If A +̂ A = R then p = 3, 7, 13 and there are just four possibilities

for A: see Example 4.1.

Also, we improve Theorem 1.1 a little as well as consider the cases of
approximate equalities, in some sense, that is, A+A ≈ R and A+̂A ≈ R (see
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Sections 3, 4). Note that an improvement of Sárközy’s theorem was obtained
independently by I. Shparlinski [21] using Karatsuba’s bound from [14]. As
for Conjecture B, we reprove a recent result of C. Bachoc, M. Matolcsi and
I. Z. Ruzsa [1] in this direction. Interestingly, our method does not use the
main lemma of [1].

In their proof the authors of [17, 7, 21] used the well-known Weil bound
for exponential sums with multiplicative characters (see e.g. [12])

(4)
∣∣∣∑
x

χ(x)χ(x+ x1) . . . χ(x+ xd)
∣∣∣ ≤ (d− 1)

√
p

for distinct nonzero x1, . . . , xd ∈ Fp and any nonprincipal character χ, as
well as some combinatorial tools. Our main idea exploits the fact that
quadratic residues are “more random than a random set”, and hence are
far from being random. The last statement is the most transparent in the
case p ≡ 3 (mod 4) (or, equivalently,

(−1
p

)
= −1, in terms of the Legendre

symbol). It is known that R is then a perfect difference set (see e.g. Lemma
2.8 from Section 2), that is, the number of solutions x = a− b with a, b ∈ R
does not depend on x 6= 0. Of course a random set of density 1/2 has this
property with probability zero. So, since we use these properties of R instead
of its random behavior it is very natural that perfect difference sets appear
in our proofs. For example, all sets A from the second part of Theorem 1.2
turn out to be perfect difference sets.

2. Notation and auxiliary results. We start with definitions and
notation used in the paper. Let G be a finite abelian group. It is well-
known [16] that the dual group Ĝ is isomorphic to G. Let f be a function

from G to C. We denote the Fourier transform of f by f̂ ,

(5) f̂(ξ) =
∑
x∈G

f(x)e(−ξ · x),

where e(x) = e2πix. We rely on the following basic identities:∑
x∈G

f(x)g(x) =
1

|G|
∑
ξ∈Ĝ

f̂(ξ) ĝ(ξ),(6)

∑
y∈G

∣∣∣∑
x∈G

f(x)g(y − x)
∣∣∣2 =

1

|G|
∑
ξ∈Ĝ

|f̂(ξ)|2|ĝ(ξ)|2.(7)

Set

(f ∗ g)(x) :=
∑
y∈G

f(y)g(x− y),

(f ◦ g)(x) :=
∑
y∈G

f(y)g(y + x) = (g ◦ f)(−x).
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Then

(8) f̂ ∗ g = f̂ ĝ and f̂ ◦ g = f̂ ĝ = f̂ cĝ.

Note also that

(9)
(f ∗ g)(x) = (f c ◦ g)(x) = (f ◦ gc)(−x),

(f ◦ g)(x) = (f c ∗ g)(x) = (f ∗ gc)(−x),

where for a function f : G→ C we put f c(x) := f(−x). Clearly, (f ∗g)(x) =
(g ∗ f)(x) for all x ∈ G. By 〈f, g〉 denote the scalar product of two complex
functions f and g. Put 〈f〉 = 〈f, 1〉, where 1 is the constant function on G.
We will write

∑
x and

∑
ξ instead of

∑
x∈G and

∑
ξ∈Ĝ for simplicity.

We use the same letter to denote a set S ⊆ G and its characteristic
function S : G → {0, 1}. We let |S| denote the cardinality of S. Given
a ∈ G we write δa(x) for the delta function at a. For a positive integer n,
we set [n] = {1, . . . , n}. All logarithms are of base 2. The signs � and �
are the usual Vinogradov symbols.

For a sequence s = (s1, . . . , sk) ∈ Gk put As = A∩(A−s1)∩· · ·∩(A−sk).
Let

(10) Ek+1(A) =
∑
x∈G

(A ◦A)k+1(x) =
∑

s1,...,sk∈G
|As|2.

If k = 1 then E2(A) is denoted by E(A) and is called the additive energy of A
(see [22]). Some results on the quantities Ek(A) can be found in [18, 20]. For
any complex function f and positive integer k denote

Ck+1(f)(x1, . . . , xk) =
∑
z

f(z)f(z + x1) . . . f(z + xk).

The next lemma is a very special case of [19, Lemma 4] and is the simplest
generalization of the second formula from (10).

Lemma 2.1. Let f, g be complex functions on an abelian group G, and
k a positive integer. Then∑

x1,...,xk

Ck+1(f)(x1, . . . , xk)Ck+1(g)(x1, . . . , xk) =
∑
z

(f ◦ g)k+1(z).

Now consider the case when G is a field. If q = ps with p a prime number
then we write Fq for the finite field of order q. In the case q = p we denote by
R and N the sets of quadratic residues and nonresidues of Fp, respectively.
Clearly, |R| = |N | = (p− 1)/2 =: t, and 0 /∈ R, 0 /∈ N . Let χ0 denote the
principal character, and χ the character induced by the Legendre symbol
on Fp. Given a nonzero λ ∈ Fp and a set A ⊆ Fp we will write

λ ·A := {λ · a : a ∈ A}.
Thus 2A := A+A 6= 2 ·A in general.
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Definition 2.2. Let ϕ,ψ be characters on Fq. The Jacobi sum J(χ, ψ)
is defined by

J(ϕ,ψ) =
∑
x

ϕ(x)ψ(1− x).

We need a lemma (see [2, Chapters 1, 2]).

Lemma 2.3. For any nonprincipal character ψ, we have

(11) J(ψ,ψ) = −ψ(−1).

Hence

(12) (ψ ◦ ψ)(x) = pδ0(x)− 1, (ψ ∗ ψ)(x) = χ(−1)(pδ0(x)− 1).

Further

G(p) :=
∑
x

χ(x)e2πix/p =

{√
p if p ≡ 1 mod 4,

i
√
p if p ≡ −1 mod 4.

In particular, |R̂(x)| ≤ (
√
p+ 1)/2 for any x 6= 0.

Proof. Indeed, by the definition of the Gauss sum, for all x ∈ Fp we have

R̂(x) = 1
2(pδ0(x)− 1 +G(p)χ(−x)),

and the result follows.

The following formulas are well-known and can also be derived from
Lemma 2.3.

Lemma 2.4. Let g, h : Fp → C be any functions. Then

(13)
∣∣∣∑
x,y

g(x)h(y)χ(x+ y)
∣∣∣ ≤ ‖g‖2(p‖h‖22 − |〈h〉|2)1/2 ≤ ‖g‖2‖h‖2√p,

and

(14) ((g ◦ χ) ◦ (h ◦ χ))(x) = p(h ◦ g)(x)− 〈g〉 · 〈h〉.
In particular

(15)
∑
z

(g ◦ χ)(x) (h ◦ χ)(x) = p〈g, h〉 − 〈g〉 · 〈h〉.

Note that inequality (13) is sharp (see e.g. Section 5). Formula (15) of
the lemma above implies the “Cauchy–Schwarz” inequality in Fp:

Corollary 2.5. For any complex function f : Fp → C, we have

(16) ‖f‖22 =
|〈f〉|2

p
+

1

p

∑
x

|(f ◦ χ)(x)|2 ≥ |〈f〉|
2

p
.

Also, using Lemma 2.4 one can obtain simple upper bounds for the car-
dinalities of sets A,B such that A+B ⊆ R or A+B ⊆ N (see e.g. the proof
of Theorem 3.2 below or [3, 6]).
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Applying Lemma 2.1 we can easily improve [17, Theorem 1.1] (a similar
result was obtained in [21]).

Corollary 2.6. Let A+B = R. Then as p→∞,

(1/6− o(1))
√
p ≤ |A|, |B| ≤ (3 + o(1))

√
p.

Proof. We can assume that the sets A and B are sufficiently large (see
[17]). By Lemma 2.1, we have

|A|4|B| =
∑
x∈B

(χ◦A)4(x) ≤
∑
x

(χ◦A)4(x) =
∑
x,y,z

C4(χ)(x, y, z)C4(A)(x, y, z).

Formula (4) gives

|C4(χ)(x, y, z)| ≤ 3
√
p

with three exceptions: x = y 6= 0, z = 0; x = z 6= 0, y = 0; and y = z 6= 0,
x = 0. Thus

|A|4|B| ≤ 3
√
p |A|4 + 3p|A|2

and we infer that |A|, |B| ≤ (3 + o(1))
√
p. Because |A| |B| ≥ t = (p − 1)/2,

we get |A|, |B| ≥ (1/6− o(1))
√
p.

To end this section, we recall the notion of perfect difference sets.

Definition 2.7. Let G be a group. A set A ⊆ G is called a perfect
difference set if the convolution (A ◦A)(x) does not depend on the choice of
x 6= 0.

Since (A ◦ A)(0) = |A|, the definition above says that (A ◦ A)(x) =
(|A| − λ)δ0(x) + λ, where λ ≥ 1 is some constant. We will say that A is a
λ-perfect difference set in this case and just a perfect difference set for λ = 1.
Generally speaking, let L be the algebra of functions of the form aδ0(x) + b,
where a and b are some complex constants. Clearly, ϕ ∈ L iff ϕ̂ ∈ L.

Denote by D the set of all perfect difference functions, that is, all func-
tions ϕ such that ϕ ◦ ϕ, or equivalently ϕ̂c · ϕ̂, belongs to L. For example,
Lemma 2.3 says that χ ∈ D. It is easy to check that D is closed under both
convolutions ∗ and ◦. Moreover, if ϕ ∈ D with ϕ̂(x) 6= 0 for all x ∈ G and
ϕ ◦ ψ or ϕ ∗ ψ is in D then ψ ∈ D. Finally, if f ∈ D then α + βf ∈ D for
any α, β ∈ C.

We need a simple lemma.

Lemma 2.8. For all x 6= 0, we have

(17) (R ◦R)(x) =
p− 3

4
− χ(x)

4
(1 + χ(−1)) .
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Proof. Since R(x) = 1
2(χ0(x) + χ(x)), it follows that for x 6= 0,

(R ◦R)(x) =
1

4

∑
z

(χ0(z) + χ(z))(χ0(z + x) + χ(z + x))

=
p− 2

4
− 1

4
(χ(x) + χ(−x)) +

1

4

∑
z

χ(z(z + x)),

and the result follows from Lemma 2.3.

In particular, if p ≡ −1 (mod 4) then R ∈ D.

Let A ⊆ ZP be a perfect difference set. A residue m is called a multiplier
of A if mA = A. We recall the multiplier theorem (see e.g. [11]).

Theorem 2.9. Let A ⊆ ZP be a λ-perfect difference set and m be any
prime number such that m | (|A| − λ), (m,P ) = 1 and m > λ. Then m is a
multiplier of some translation of A.

Clearly, the set of multipliers of A forms a group and, moreover, one can
choose a translation of A fixed by the group (see [11]).

Recall also a beautiful theorem of Singer (see e.g. [11]) related to finite
projective geometries.

Theorem 2.10. Suppose that P is a number of the form P = n2+n+1,
n = qs, where s ≥ 1 and q is a prime number. Then there is a perfect
difference set A ⊆ ZP such that (A ◦A)(x) = 1 for all x 6= 0.

3. Sumsets and differences. We begin with a simple lemma.

Lemma 3.1. Let c be an integer and ψ : G→ Z be a function. Then

(18) ‖ψ‖22 ≥ c
∣∣∣∑
x

ψ(x)
∣∣∣− (c− 1) ·

∣∣∣ ∑
x: 0<|ψ(x)|<c

ψ(x)
∣∣∣.

Further

(19) ‖ψ‖22 = c
∑
x

ψ(x) +
∑
k

|{x : ψ(x) = k}| · (k2 − ck).

Proof. Let σ =
∑

x ψ(x). We can suppose that σ > 0, otherwise consider
the function −ψ. For any integer k put

pk = |{x : ψ(x) = k}|.

Then

σ =
∑
k

kpk =
∑

k: |k|≥c

kpk +
∑

k: 0<|k|<c

kpk =: σ1 + σ2,
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and hence

‖ψ‖22 =
∑
k

k2pk =
∑

k: |k|≥c

k2pk +
∑

k: 0<|k|<c

k2pk ≥ cσ1 + σ2 = cσ − (c− 1)σ2

≥ cσ − (c− 1)|σ2|

as required. Formula (19) follows similarly.

Now we can prove a minor generalization of the first part of our main
Theorem 1.2.

Theorem 3.2. Let p be a prime number, R ⊆ Fp be the set of quadratic
residues and A ⊆ Fp be a set. If A + A = R then p = 3 and A = {2}.
Moreover for all sufficiently large p, we have

(20) max
{
|R \ (A+A)|,

∑
x∈(A+A)\R

(A ∗A)(x)
}
≥ (1/6− o(1))|A|.

Proof. Suppose that A,B are sets such that A + B ⊆ R. Let a = |A|
and b = |B|. Define the function ε(x) by the formula

(21) (A ◦ χ)(x) = aB(x) + ε(x).

We have ε(x) = 0 for all x ∈ B. Using Lemma 2.4, we get

(22) ‖ε‖22 = pa− a2 − a2b.

Further

(23) 〈ε〉 = −ab,

thus, by the Cauchy–Schwarz inequality,

a2b2 ≤ (p− b)(pa− a2 − a2b),

that is,

(24) p+
ab

p
≥ ab+ a+ b.

On the other hand, by formula (13) of Lemma 2.4 or just by equality (22),
one has ab < p.

Now suppose that A = B and A + A = R. If a = 1 then (p− 1)/2 = 1,
whence p = 3 and clearly A = {2}. Thus, suppose that a > 1. From A+ A
= R, we obtain

(
a
2

)
+ a ≥ (p− 1)/2, so a2 + a ≥ p− 1. Using this estimate,

the fact that a2 < p and inequality (24), we get

p+ 1 > p+
a2

p
≥ a2 + 2a ≥ p− 1 + a,

a contradiction.
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Now, let us prove the “moreover” part of the theorem. Put

|R \ (A+A)| =: ζ1a and
∑

x∈(A+A)\R

(A ∗A)(x) =: ζ2a.

Let also ζ = max{ζ1, ζ2}. We will obtain a lower bound for ζ. Suppose that
ζ ≤ 1/6 + o(1) as p→∞. We have(

a

2

)
+ a ≥ p− 1

2
− ζ1a ≥

p− 1

2
− ζa,

so that

(25) a2 + a(1 + 2ζ) ≥ p− 1.

Put
(A ◦ χ)(x) = aA(x) + ε(x).

As in (23), the average value of ε equals −a2, and we compute the l2-norm
of ε as in (22):

‖ε‖22 =
∑
x

((A ◦ χ)(x)− aA(x))2 = pa− a2 + a3 − 2a
∑
x∈A

(A ◦ χ)(x)(26)

= pa− a2 − a3 + 2a
∑
x

(1− χ(x))(A ∗A)(x)

= pa− a2 − a3 + 2a
∑

x∈(A+A)\R

(1− χ(x))(A ∗A)(x)

≤ pa− a2 − a3 + 4ζa2.

By the Cauchy–Schwarz inequality,

(27) a4/p ≤ ‖ε‖22 ≤ pa− a2 − a3 + 4ζa2.

Note that this yields a � √p. Using (27) and (25), after some calculations
we obtain ζ ≥ 1/6− o(1). This completes the proof.

Now we reprove a result of C. Bachoc, M. Matolcsi and I. Z. Ruzsa
from [1].

Theorem 3.3. Let p be a prime number, R ⊆ Fp be the set of quadratic
residues and A ⊆ Fp be a set. If A−A ⊆ R t {0} then

p ≥
{
|A|2 + |A| − 1 if |A| is even,

|A|2 + 2|A| − 2 if |A| is odd.

Proof. Put |A| = a. Clearly, p ≡ 1 (mod 4). As in the previous theorem,
we have

(28) (A ∗ χ)(x) = (a− 1)A(x) + ε(x),

where ε(x) = 0 for x ∈ A. As above

‖ε‖22 = pa− a2 − a(a− 1)2 and 〈ε〉 = −a(a− 1).
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Further

(29) ε(x) = |R ∩ (x−A)| − |N ∩ (x−A)| = 2|R ∩ (x−A)| − a
for all x /∈ A. First of all consider the case where a is even. By (29) the
values of ε(x) are even for all x (recall that ε(x) = 0 on A). Using Lemma
3.1 with c = 2, we obtain

‖ε‖22 = pa− a2 − a(a− 1)2 ≥ 2a(a− 1),

so p ≥ a2 + a− 1, as required.
Now suppose that a is odd and a > 1. Of course ε(x) = 0 on A, and

by (29) all other values of ε(x) are odd. Note that there is x /∈ A such that
ε(x) 6= −1. Indeed, otherwise, applying (28), we get

(30) 〈A,χ〉 = 〈ε, χ〉 = pA(0)− a− (a− 1)〈A,χ〉.
Shifting, we can suppose that 0 ∈ A, and hence 〈A,χ〉 = a− 1. Substituting
into (30) gives p = a2, a contradiction. (Note that nevertheless there is no
contradiction for the field Fq with q a prime power, and moreover our result
does not hold for the field, see [1].)

Another proof of the fact that there is x /∈ A with ε(x) 6= −1 is the
following. Put pk := |{x ∈ Fp : ε(x) = k}| for k ∈ Z. Consider ε(x) (mod p)
and note that χ(x) ≡ x(p−1)/2 (mod p). Then we see that the quantity p−1
does not exceed (p− 1)/2.

As before, using formula (19) of Lemma 3.1 with c = −2 and the bound
p−1 ≤ (p− 1)/2, we obtain

‖ε‖22 = pa− a2 − a(a− 1)2 = −2〈ε〉+
∑
k

(k2 + 2k)pk

≥ 2a(a− 1)− p−1 + 3
∑

k 6=−1,0
pk

= 2a(a− 1) + 3p− 4p−1 − 3a ≥ 2a(a− 1) + p+ 2− 3a,

so

p ≥ a2 + a− 4 +
p+ 2

a
.

After some calculations we get p ≥ a2 + 2a− 2, provided a > 1.

4. Restricted sumsets. The aim of the section is to prove the second
part of our main Theorem 1.2.

Write any prime p as p = n2 +∆, 1 ≤ ∆ ≤ 2n. We are interested in sets
A ⊆ Fp such that A +̂A = R. Let us consider some examples.

Example 4.1. The following are examples of perfect difference sets
A ⊆ Fp with A +̂A = R:

(a) p = 3, A = {0, 1},
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(b) p = 7, A = {3, 5, 6},
(c) p = 13, A = {0, 1, 3, 9}, A = {0, 4, 10, 12}.

Note that in all these examples p = n2+n+1, |A| = n+1, n = qs, q is a prime
number or 1. In particular ∆ = n+ 1. The existence of a perfect difference
set in Fp for p of such a form is guaranteed by Singer’s Theorem 2.10. Note
also that it is easy to check using the multiplier theorem and other tools
(see the beginning of the proof of Proposition 4.2 and Theorem 4.3 below)
that the sets above form a complete list of (perfect difference) sets A ⊆ Fp
with A +̂A = R for p = 3, 7, 13.

In our proof of the second part of Theorem 1.2 we begin with the situ-
ation when A is a perfect difference set. Surprisingly, it turns out that this
is the most important case.

Proposition 4.2. Let p be a prime number, p = n2 + n+ 1, R ⊆ Fp be
the set of quadratic residues and A ⊆ Fp be a perfect difference set. Suppose
that A +̂A = R. Then A is one of the sets in Example 4.1.

Proof. Let a = |A|. Because A is a perfect difference set, we have a =
n+ 1. First, (A +̂ A) ∩ 2 · A = ∅ and so R ∩ 2 · A = ∅. In particular, either
A ⊆ Rt{0} or A ⊆ N . Second, by Theorem 2.9 there is s ∈ Fp such that the
set A+s is fixed by a multiplier m 6= 1. Then (A+s) +̂ (A+s) = R+2s and
hence m(R + 2s) = mR + 2sm = R + 2s. If m ∈ R, we have automatically
s = 0. If m ∈ N then mR = N , and hence N(x) = R(x + 2s(m − 1)). In
other words

χ0(x)− χ(x) = χ0(x+ 2s(m− 1)) + χ(x+ 2s(m− 1)).

Clearly, the case s = 0 is impossible. Multiplying by χ(x), summing and
using Lemma 2.3, we get

p− 1 = 1− χ(−2s(m− 1)).

That implies p = 1 or p = 3. The case p = 3 is Example 4.1(a). Thus for
p > 3, any multiplier of A belongs to R. Below we assume that n > 1,
and hence p > 3. By Theorem 2.9 and the previous arguments any prime
factor of n is a quadratic residue, which implies that n belongs to R itself.
We have p = n2 + n + 1, n3 ≡ 1 (mod p) and hence the order of n is
three (in particular p ≡ 1 (mod 3)). The same follows from the fact that
n ≡ 0 (mod 3) if 0 ∈ A, and n ≡ −1 (mod 3) if 0 /∈ A. Take an arbitrary
nonzero x ∈ A. Because n > 1, we see that x, xn, xn2 are different and
belong to A. Hence x+ xn2 ≡ x− (n+ 1)x ≡ −nx ∈ R, so x ∈ −R. This is
equivalent to A \ {0} ⊆ −R.

Our arguments rest on the identity

(31) R(x) = 1
2((A ∗A)(x)− (2 ·A)(x)),

which is a consequence of the fact that A is a perfect difference set.
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First of all suppose that A ⊆ N . Then A ⊆ −R, and hence −1 ∈ N ,
p ≡ −1 (mod 4) and 2 ∈ R. Since R ∈ D and simultaneously A ∈ D, it
follows from (31) that ((A ∗ A) ◦ 2 · A)(x) + (2 · A ◦ (A ∗ A))(x) ∈ L. Using
identity (31) again, we see that (R ◦ (2 · A))(x) + ((2 · A) ◦ R)(x) ∈ L. It
follows that

(32) |R ∩ (2 ·A+ x)|+ |R ∩ (2 ·A− x)| = a, ∀x 6= 0.

We know that 2 belongs to R. If x ∈ 2 ·A then

|R ∩ (2 ·A+ x)| = |R ∩ (A+ x/2)| = a− 1,

because x/2 ∈ A and A +̂ A = R. On the other hand, using the fact that
2 ∈ R again, we get

(33)
∑
x∈2·A

|R ∩ (2 ·A− x)| =
∑
x

R(x)(A ◦A)(x) = t,

and hence there is x ∈ 2 · A such that |R ∩ (2 · A − x)| ≥ t/a. Combining
this with (32), we obtain

a− 1 + t/a ≤ a,
or t ≤ a, and hence a ≤ 3. This is Example 4.1(b).

It remains to consider the situation A ⊆ R t {0}. In this case we have
p ≡ 1 (mod 4) and 2 ∈ N but, unfortunately, R /∈ D, and thus we need
more delicate arguments. Using (31), one can see that

(R◦R)(x) = 1
4

(
((A∗A)◦(A∗A))(x)+((2·A)◦(2·A))(x)−((2R+2·A)◦2·A)(x)

− 2 ·A ◦ (2R+ 2 ·A)
)

= 1
4

(
((A ∗A) ◦ (A ∗A))(x)− ((2 ·A) ◦ (2 ·A))(x)

− 2(R ◦ 2 ·A)(x)− 2(2 ·A ◦R)(x)
)
.

Because E(A) = 2a2 − a and A ∗A ∈ D, we have

((A ∗A) ◦ (A ∗A))(x) =
a4 − E(A)

p− 1
=
a4 − 2a2 + a

p− 1
= a2 + a− 1, ∀x 6= 0.

Combining this with Lemma 2.8 and the fact that A ∈ D, we obtain

p− 3− 2χ(x) = a2 + a− 1− 1− 2(R ◦ 2 ·A)(x)− 2(2 ·A ◦R)(x), ∀x 6= 0.

In other words

(34) a+ χ(x) = (R ◦ 2 ·A)(x) + (2 ·A ◦R)(x), ∀x 6= 0.

Let A∗ = A \ {0}. Using arguments similar to (32)–(33), we see that for all
x ∈ 2 ·A∗ the following holds: |R ∩ (2 ·A+ x)| = |N ∩ (A+ x/2)| = 1 and∑

x∈2·A∗
|R ∩ (2 ·A− x)| =

∑
x

N(x)(A∗ ◦A)(x)

=
∑
x

N(x)(A ◦A)(x)− |A ∩N | = t.
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Hence there is x ∈ 2 · A∗ such that |R ∩ (2 · A − x)| ≤ t/(a − 1). For any
x ∈ 2 ·A∗, we have χ(x) = −1. Applying (34), we obtain

a− 1 ≤ 1 +
t

a− 1
,

so a ≤ 4 (if 0 /∈ A then it is easy to check similarly that a ≤ 3). This is
Example 4.1(c). Indeed, A ⊆ R t {0}, R = {1, 3, 4, 9, 10, 12} and it is easy
to see that A is either {0, 1, 3, 9} or {0, 4, 10, 12} (note that |A| − 1 = 3 is a
multiplier of A).

Note that Example 4.1 shows the possibility of the cases ∆ = 2, 3 as well
as ∆ = n+ 1.

Now we can consider the general situation. Of course, the third part of
the theorem below is the main one but it follows from the first part. The
second part shows that A with A +̂A = R is close to a perfect difference set
in some sense.

Theorem 4.3. Let p be a prime number, p = n2 + ∆, 1 ≤ ∆ ≤ 2n,
R ⊆ Fp be the set of quadratic residues and A ⊆ Fp be a set.

(i) If A +̂ A = R and A is not from Example 4.1(a) then |A| = n + 1,
3 ≤ ∆ ≤ n+1 and |2 ·A∩R| ≤

√
|A|∆− 3|A|+ 1/2. If 0 /∈ A then χ(2) = 1

and |A| ≤ 6. If 0 ∈ A then χ(2) = −1, and if ∆ = n+ 1 then A is a perfect
difference set.

(ii) If A +̂A = R then A is close to a perfect difference set in the sense
that

(35) E(A) = 2|A|2 − |A|+ E1,
where

E1 ≤ 6(|A| −∆) + 2|A|+ min{(|A| −∆)|A|, |A|
√

3(|A| −∆), (|A| −∆)2},
and

(36) (A ◦A)(x) = (|A| − 1)δ0(x) + 1 + E2(x),

where
∑

x E2(x) = |A| −∆ and ‖E2‖22 = E1 +∆− |A|.
(iii) If A +̂ A = R then A is a perfect difference set such that if |A| is

even then |A| ≤ 6, and if |A| is odd then |A| ≤ 5.

Proof. (i) Put a = |A|. The assumption A +̂ A = R implies that
(
a
2

)
≥

(p− 1)/2, so a2− a ≥ p− 1. This is equivalent to a ≥ n+ 1. We can assume
that a ≥ 3 because otherwise we have Example 4.1(a). One can also check
that for a ≥ 3 the case p = 5 is impossible, and hence we will assume that
p ≥ 7. Below we will use the fact that A +̂A ⊆ R only. Put

d :=
∑
x∈A

(χ(2x)− 1) = ηa.
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Clearly, η ∈ [−2, 0]. We will further estimate d and η. By Lemma 2.4, we
get

(37)
∑
x

(A ◦ χ)2(x) = pa− a2.

Further, similarly to (21), we have

(38) (A ◦ χ)(x) = (a− 1 + χ(2x))A(x) + ε(x)

where ε(x) = 0 for all x ∈ A. Hence

a(a− 1)2 + 2(a− 1)(d+ a) + a− ω =
∑
x∈A

(a− 1 + χ(2x))2 ≤ pa− a2

where ω = 1 if 0 ∈ A and ω = 0 otherwise. The last inequality and the
bound a2 − a ≥ p− 1 easily imply that

(39) d ≤ −a− a− ω
2(a− 1)

< −a.

In particular, η ∈ [−2,−1).

In the case 0 /∈ A, we have

(d+ a)2 + a(a− 1)2 + 2(a− 1)(d+ a) + a ≤ pa− a2

and after some manipulations, we obtain

(40) d ≤ −2a+ 1 +
√
a2 − 3a+ 1,

and

(41) d ≤ −2a+ 1 +
√
a∆− 3a+ 1

in the case p = (a− 1)2 +∆. Note that in this case ∆ ≥ 3.

Now suppose that 0 ∈ A. Write A∗ = A t {0}. Then A∗ ⊆ R, and the
set 2 · A∗ is included in either R or N . In the first case d = −1, which is
impossible by (39). If 2 · A∗ ⊆ N then d = −2a + 1, χ(2) = −1 and (40),
(41) hold. Thus in any case

(42) |2 ·A ∩R| ≤
√
a2 − 3a+ 1

2
,

and

(43) |2 ·A ∩R| ≤
√
a∆− 3a+ 1

2

in the case p = (a − 1)2 + ∆. One of the main ideas of the further proof is
to exploit inequalities (39), (42), (43). They mean that the distribution of
the intersections |R ∩ (A+ x)| for x ∈ Fp is somewhat asymmetric.

Returning to (38), for all x /∈ A we get

(44) ε(x) = |R ∩ (A+ x)| − |N ∩ (A+ x)| = 2|R ∩ (A+ x)| − a+A(−x).
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Clearly,

(45) 〈ε〉 = −a2 − d.
As above, we have∑
x∈A

(a−1+χ(2x))2 = a(a−1)2 +2(a−1)(d+a)+a−ω = a3 +2(a−1)d−ω

where, as before, ω = |A ∩ {0}|. As in Theorem 3.2, we obtain an analog
of (22),

(46) ‖ε‖22 = pa− a2 − a3 − 2(a− 1)d+ ω.

Thus by the Cauchy–Schwarz inequality and identity (45), we get

(47)
(a2 + d)2

p− a
≤ pa− a2 − a3 − 2(a− 1)d+ ω.

In other words

(48) a2(p− 1) + ab(η)− c(η)

:= a2(p− 1) + a(η2 + 2η + 2ηp+ 2p)− 2ηp− p2 − ωp− a
a
≤ 0.

It is easy to check that the formula for the right root of (48), namely,

x(η) =
−b(η) +

√
b2(η) + 4(p− 1)c(η)

2(p− 1)

contains a decreasing function −b(η) and an increasing function

g(η) := b2(η) + 4(p− 1)c(η)

= η4 + (4 + 4p)η3 + (4 + 4p2 + 12p)η2 + 16ηp2 + 4p3 + ω
4(p− 1)(p− a)

a

of η ∈ [−2,−1). Indeed, one can see that g′(−2) = 0 and g′′ grows on
[−2,−1). Put e = ω4(p− 1)(p− a)/a. Because a ≥ √p, we have e ≤ 4p3/2.
Hence, we should substitute η = −2 into b(η), η = −1 into g(η), and check
that

(49) a ≤ 2p+
√

4p3 − 12p2 + 8p+ 1 + e

2(p− 1)
≤ √p+ 1 < n+ 2.

Indeed, one can check that the second bound from (49) holds provided that
p ≥ 7. Thus, for any η, we have a = n + 1. Recalling a2 − a ≥ p − 1, we
obtain

(50) a2 − a = n2 + n ≥ p− 1 = n2 +∆− 1.

Hence 3 ≤ ∆ ≤ n+1 and in the case ∆ = n+1, all sums a′+a′′ are different
for different a′, a′′ ∈ A. Using the arguments above, we see that if 0 ∈ A and
∆ = n+ 1 then A is a perfect difference set.
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Finally, consider the case 0 /∈ A. We will prove, in particular, that
χ(2) = 1 in this situation. By (38) one has

ε(0) =
∑
x∈A

χ(x) = χ(2)
∑
x∈A

χ(2x) = χ(2)(d+ a).

Identity (38) and the last formula imply∑
x

ε(x)χ(x) = −a− χ(2)(a2 + da− d).

Hence, as in (47), considering the function ε(x) restricted to Fp \ {0} only,
and additionally using Corollary 2.5, we get

(51)
(a2 + d+ χ(2)(d+ a))2 + (a+ χ(2)(a2 + da− d))2

p

≤ pa− a2 − a3 − 2(a− 1)d− (d+ a)2.

After some manipulations, for χ(2) = −1 we obtain

(52) ha,d(∆) := a∆2 + (a3 − 6a2 + 2a− 4da+ 2d− d2)∆
− 6a4 + 13a3− 8a2 + 14a2d− 2d2a2− 6da3 +a− 10da+ 4d2a+ 2d− 2d2 ≥ 0.

The maximum of ha,d(∆) is attained at ∆ = a and is equal to

−(2a2 − 3a+ 2)d2 − (6a3 − 10a2 + 8a− 2)d− 5a4 + 8a3 − 6a2 + a.

The integer maximum of the last expression is attained at d ∈ [−1.5a,
−1.5a + 1]. Substituting the integer values of d from this interval into the
last expression, we obtain a contradiction with the nonnegativity of (52).

Almost the same is true in the case χ(2) = 1. In this situation

(53) h∗a,d(∆) := a∆2 + (a3 − 6a2 + 2a− 4da+ 2d− d2)∆
+ a− 2d2a2 − 6d2 + 5a3 − 8a2 + 2d− 6a4 + 4d2a− 10da+ 6a2d− 6da3 ≥ 0.

Again the maximum of h∗a,d(∆) is attained at ∆ = a and is equal to

−(2a2 − 3a+ 6)d2 − (6a3 − 2a2 + 8a− 2)d− 5a4 − 6a2 + a ≥ 0.

Here the integer maximum is attained at d ∈ (−1.5a−3,−1.5a]. Substituting
the integer values of d from this interval into the last inequality, we obtain
a contradiction for a ≥ 7. Thus, we have proved (i).

Let us make some additional remarks which we will use later. If a = 3
then p = 7, χ(2) = 1, ∆ = a, |A +̂A| =

(
3
2

)
= 3, R = {1, 2, 4}. If A ∩R = ∅

then A is from Example 4.1(b). Further, it is easy to see that 0 /∈ A, and
A can intersect R at just one point. If 1 ∈ A then we have a contradiction
because 5, 6 cannot belong to A in this case. The same is true for 2 ∈ A and
4 ∈ A. Thus A is from Example 4.1(b), provided that a = 3. Finally, if a = 5
then p = 19 because ∆ ≥ 3. Hence χ(2) = −1, 0 ∈ A, d = −2a + 1 = −9.
Substituting this into (47), we obtain a contradiction. The remaining cases
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a = 4, 6 as well as the situation 0 ∈ A will be considered in the third part
of the proof.

(ii) The fact that R = A +̂A implies

(54) (A ∗A)(x) = 2R(x) + (2 ·A)(x) + Z(x),

where Z(x) ≥ 0. It is easy to see that suppZ ⊆ R. Summing (54), we obtain

‖Z‖1 = a2 − 2t− a = n+ 1−∆ = a−∆ := z.

Using this, the Gauss sum bound of Lemma 2.3, the inequality ∆ ≥ 3 and
identity (54), we get

(55) |Â(x)|2 ≤ 3n+ 2 < 3a, ∀x 6= 0.

Further, multiplying (54) by (A ∗A)(x) and summing, we have

E(A) =
∑
x

(2R(x) + (2 ·A)(x))(A ∗A)(x) +
∑
x

Z(x)(A ∗A)(x)

= 4t+a+2z+4
∑
x

R(x)(2 ·A)(x)+
∑
x

(2 ·A)(x)Z(x)+
∑
x

Z(x)(A∗A)(x).

Applying the Fourier transform and estimates (39), (41), (43), (55), we get

E(A) = 2p− 2 + a+ 2z + 4〈2 ·A,R〉+ 〈2 ·A,Z〉(56)

+ θ1(min{za, a2z/p+ a
√

3z})
≤ 2a2 − a+ θ2(4(a−∆) + 2a+ min{az, a

√
3z}),

where |θ1|, |θ2| ≤ 1. Thus E1 ≤ 4z + 2a + min{az, a
√

3z}. Squaring (54),
summing and using (41), (43), we obtain

E(A) = 4t+ a+ 4z + 2〈2 ·A,Z〉+ 4〈2 ·A,R〉+ ‖Z‖22
= 2a2 − a+ θ3(6(a−∆) + 2a+ z2),

where 0 ≤ θ3 ≤ 1. Hence E1 ≤ 6z + 2a+ z2.

Finally,

(a− 1)2 +
∑
x

E22 (x) = (a− 1)2 +
∑
x 6=0

((A ◦A)(x)− 1)2(57)

=
∑
x

((A ◦A)(x)− 1)2 = E(A)− 2a2 + p.

From p = (a−1)2+∆, the last identity and formula (35), we obtain ‖E2‖22 =
E1 +∆− a.

(iii) Let a be even. Recalling (44) we see that ε(x) is even for x /∈ −A.
Using Lemma 3.1 with c = −2, we get

‖ε‖22 = pa− a2 − a3 − 2(a− 1)d+ ω ≥ 2(a2 + d)− (a− ω).
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After some computations, we obtain

(58) 2 +∆− 2d ≥ 5a.

Thus, either ∆ = a = n + 1 and d = −2a + 1,−2a, or ∆ = a − 1, a − 2
and d = −2a. In the first case A is a perfect difference set. Now suppose
that A is not a perfect difference set and consider the second case. Because
d = −2a, we see that 0 /∈ A. Returning to (50), we get ∆ = a− 2 = n− 1.
This means, in particular, that inequality (58) is actually an equality. Using
formula (19) of Lemma 3.1, we see that ε(x) = 0 on A, ε(x) = −1 on −A
and ε(x) = 0,−2 on the rest. But 2 · A ⊆ N , hence A ⊆ R or A ⊆ N , and
thus by (44), we have ε(0) = ±a, a contradiction. In particular, we have
thus considered the remaining cases a = 4, 6.

Now we deal with the case when a is odd and 0 ∈ A. Hence d = −2a+ 1
and we can suppose that ∆ ≤ a − 1 because A is a perfect difference set
otherwise. Using (19) with c = −2, and applying the arguments from the
proof of Theorem 3.3, we obtain

‖ε‖22 = pa− a3 + 3a2 − 6a+ 3 ≥ 2(a2 − 2a+ 1) +
∑
k

(k2 + 2k)pk

≥ 2(a2 + 2a− 1)− p−1 + 3
∑

k 6=0,−1,−2
pk

= 2(a2 − 2a+ 1) + 3p− 4p−1 − 3(p0 + p−2).

Here, again pk := |{x ∈ Fp : ε(x) = k}| for k ∈ Z. Clearly, p0 +p−2 ≤ 2a−1.
As above, p−1 ≤ (p− 1)/2. Hence

pa− a3 + 3a2 − 6a+ 3 ≥ 2(a2 − 2a+ 1) + p+ 2− 6a+ 3.

In other words,

∆(a− 1)− 2a2 + 7a− 5 ≥ 0,

a contradiction for a ≥ 5 because A is not a perfect difference set by our
assumption and hence ∆ ≤ a− 1. This completes the proof.

Clearly, combining the third part of Theorem 4.3 with Proposition 4.2
we get the second part of the main Theorem 1.2.

Remark 4.4. The method of proving Theorem 4.3 above is analytical,
so we can say something about the structure of the set A in a somewhat
more general situation. This was the reason to include the second part of
the theorem. More precisely, suppose that

(59) (A ∗A)(x) = 2R(x) + (2 ·A)(x) + Z(x)

with a “small” function Z. Then summing (59), we have

p− 1 + |A| − ‖Z‖1 ≤ |A|2 ≤ p− 1 + |A|+ ‖Z‖1 and 〈Z〉 = |A|2 − 2t− a.
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Further, for all x 6= 0,

|Â(x)|2 ≤ √p+ 1 + |A|+ ‖Z‖1,
and

E(A) =
∑
x

(
2R(x) + (2 ·A)(x)

)
(A ∗A)(x) +

∑
x

Z(x)(A ∗A)(x)(60)

≤ 4t+ 5a+ 3‖Z‖1 +
∑
x

Z(x)(A ∗A)(x)

≤ 4t+ 6a+ 3‖Z‖1 + (
√
p+ 1 + |A|+ ‖Z‖1)1/2|A|1/2‖Z‖2,

provided that 〈Z〉 ≤ pa−1, say. Similarly, if we put

(A ◦A)(x) = (|A| − 1)δ0(x) + 1 + E2(x)

then, as in (57), by (60) we get∑
x

E22 (x) =
∑
x

(
(A ◦A)(x)− 1

)2 − (a− 1)2 = E(A)− 2a2 + p− (a− 1)2

≤ 3p− 3 + 8a− 3a2 + 3‖Z‖1
+ (
√
p+ 1 + |A|+ ‖Z‖1)1/2|A|1/2‖Z‖2.

Thus, if |R∆(A +̂A)| is small then A is close to a perfect difference set.

5. Concluding remarks. Now we describe an alternative way to obtain
the results of Sections 3, 4.

Our aim is to define an analog of “Fourier transform” with respect to a
multiplicative character χ. Put

f(x) =
1
√
p

(
χ(x)− 1

√
p

)
.

Clearly, f is a perfect difference function. Note that

(61) ‖f‖∞ ≤
1
√
p

(
1 +

1
√
p

)
.

Let g be an arbitrary function. We write gs(x) for g(x+ s). By Lemma 2.3,

(62) 〈fs, ft〉 = δs,t and
∑
y

fy(s)fy(t) = δs,t,

for all s, t ∈ Fp. Further 〈fs, 1〉 = 〈1, fs〉 = −1 and

(63) (fs ◦ ft)(x) =
∑
z

fs(z)ft(x+ z) = 〈fs, ft+x〉 = δs,t+x.

For an arbitrary function g, write gλ(x) = g(λx). We have

(64) fλs (x) = χ(λ)fs/λ(x) +
χ(λ)− 1

p
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for all λ ∈ Fp \ {0}. Applying (12) once more, we obtain

(65) (fλs ◦ f
µ
t )(x) = χ(λ)χ(µ) · δs/λ,x+t/µ +

1− χ(λ)χ(µ)

p
.

Now we can define the “Fourier transform” corresponding to the char-
acter χ.

Definition 5.1. Let ϕ : Fp → C be a function. Denote by ϕ̃ the function

(66) ϕ̃(x) =
∑
y

ϕ(y)fx(y) = 〈ϕ, fx〉 = (ϕ ◦ f)(x).

For example 1̃ = −1, δ̃s(x) = fs(x) and f̃s(x) = δs(x).

Because D is closed under the convolutions ∗, ◦, and f̂(x) 6= 0 for x ∈ Fp,
we see that ϕ ∈ D iff ϕ̃ ∈ D (formula (70) below also implies this fact). The
next lemma follows from the definitions.

Lemma 5.2. Let ϕ,ψ : Fp → C be any functions. Then

(ϕs)̃ = (ϕ̃)−s, ∀s ∈ Fp,(67)

(ϕ̃)̃ (x) = ϕ(x) and (ϕ̃)̃ (x) = ϕ(x) if χ ∈ R,(68)

(ϕλ)̃ (x) = χ(λ)ϕ̃λ(x) +
〈ϕ〉(χ(λ)− 1)

p
, ∀λ 6= 0,(69)

ϕ(x) =
∑
y

ϕ̃(y)fx(y),(70)

∑
x

ϕ(x)ψ(x) =
∑
y

ϕ̃(y)ψ̃(y),(71)

(ϕ ◦ ψ)̃ (x) = (ϕ ∗ ψ̃)(x).(72)

Further for any λ, µ 6= 0, we have

(73) (ϕλ ◦ ψµ)(x) = χ(λ)χ(µ) · (ψ̃µ ◦ ϕ̃λ)(x) +
1− χ(λ)χ(µ)

p
· 〈ϕ〉〈ψ〉.

In particular

(ϕ ◦ ψ)(x) = (ϕ̃ ◦ ψ̃)(−x) = (ψ̃ ◦ ϕ̃)(x),(74)

(ϕ ∗ ψ)(x) = χ(−1)(ϕ̃ ∗ ψ̃)(−x) +
1− χ(−1)

p
〈ϕ〉〈ψ〉.(75)

Proof. We just need to check (73) because the other formulas are almost
trivial. Applying (69), (70) and the fact that 〈fs〉 = −1 for all s ∈ Fp, we
obtain
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(ϕλ ◦ ψµ)(x) =
∑
z

ϕλ(z)ψµ(z + x)

=
∑
y,y′,z

(
χ(λ)ϕ̃λ(y) +

〈ϕ〉(χ(λ)− 1)

p

)

×
(
χ(µ)ψ̃µ(y′) +

〈ψ〉(χ(µ)− 1)

p

)
fz(y)fz+x(y′)

= χ(λ)χ(µ) ·
∑
y

ϕ̃λ(y)ψ̃µ(y − x) +
1− χ(λ)χ(µ)

p
· 〈ϕ〉〈ψ〉

= χ(λ)χ(µ) · (ψ̃µ ◦ ϕ̃λ)(x) +
1− χ(λ)χ(µ)

p
· 〈ϕ〉〈ψ〉.

In particular, formula (74) says that E(A) = E(Ã). The transform above
can be used to obtain the results of Sections 3, 4. Indeed, the arguments
here are just calculation of Ã, B̃. Similarly, one can define the “Fourier
transform” with respect to any perfect difference set as well as a function
from D.

There is a general question about “Fourier coefficients” of subsets of Fp.
Partial answers to this question are given by the proofs of the statements of
Sections 3, 4.

Suppose that A ⊂ Fp is a set, and χ is an arbitrary character. Consider
the function

E(x) = EA(x) = EA,χ(x) := (A ◦ χ)(x).

Alternatively, one can take convolutions of A with the function f above, that
is, Ã. Our question is the following: what can we say about the function
E(x)? There is a list of simple properties of E(x). Clearly,

〈EA〉 = 0 and ‖EA‖22 = p|A| − |A|2.
Higher moments of E can be estimated using the Weil bound (4) and
Lemma 2.1, as in the proof of Corollary 2.6. Of course, there is the “co-
cycle” property of E(x), namely,

EA(xy) = χ(x)Ex−1A(y), x 6= 0.

In particular, |EA(x)| is fixed by the multiplier group of A, that is, the set
{x ∈ Fp : xA = A}. Further,∑

x,y

χ(x+ y)A(x)EA(y) =
∑
z

(A ◦ χ)2(z) = p|A| − |A|2,

and hence

(76)
∣∣∣∑
x,y

χ(x+ y)A(x)EA(y)
∣∣∣� √p ‖A‖2‖EA‖2
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provided |A| � p. In particular, formula (76) shows that inequality (13) of
Lemma 2.4 is tight. Using estimate (61) and Lemma 5.2 one can easily prove
an uncertainty principle for any function g (in particular for A),

p(1 + 1/
√
p)−2 ≤ |supp g| · |supp g̃|.

If A is a Singer perfect difference set then the character χ can be represented
as the convolution (A ∗ EA,χ)(x). Indeed,

(A ∗ EA)(x) = (A ∗ (A ◦ χ))(x) = (χ ∗ (A ◦A))(x)

=
(
χ ∗ ((|A| − 1)δ0 + 1)

)
(x) = (|A| − 1)χ(x).

Finally, the size of each level set

Lc := {x ∈ Fp : EA(x) = c}, c ∈ Fp,
is bounded by (p − 1)/2 because E(x) (mod p) is a nonzero polynomial
from Fp[x] of degree (p − 1)/2 with leading term |A|x(p−1)/2. Are there
further properties of E(x)? For example, what can we say about the maxi-
mum/minimum value of E(x)?
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