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Heights of powers of Newman and Littlewood polynomials

by

Artūras Dubickas (Vilnius)

1. Introduction. Let P (x) = a0+a1x+· · ·+anxn ∈ C[x], where an 6= 0.
As usual, we say that n = deg(P ) is the degree of P , H(P ) = max0≤i≤n |ai|
is its height, and L(P ) =

∑n
i=0 |ai| is its length. Let also N(P ) be the number

of nonzero coefficients of P. Recall that P (x) is called a Newman polynomial

(after [18]) if its coefficients all belong to the set {0, 1}. There are a variety
of problems related to Newman polynomials. See, for instance, [4], [5], [6],
[9], [12], [13], [20], [21] for some of them.

Recently, Yu [22] considered the quantity

lim inf
k→∞

deg(Pk)H(P 2
k )/N(Pk)

2,

where Pk, k = 1, 2, . . . , is a sequence of Newman polynomials with deg(P1) <
deg(P2) < · · · . He conjectured (see Conjecture 2 in [22]) that this limit
is always at least 1 if N(Pk)/deg(Pk) → 0 as k → ∞. This conjecture, if
proved, would give a sharp bound for the so-called B2[g] sets which generalize
classical Sidon sets B2[1]. (See Section 4 for some definitions and a discussion
concerning Bh[g] sets.) Berenhaut and Saidak [2] proved that the condition
limk→∞ N(Pk)/deg(Pk) = 0 is indeed necessary in this conjecture. More
precisely, they showed that there is a sequence of Newman polynomials for
which the above limit is 8/9. (In fact, they obtained this limit by considering
the sequence of Newman polynomials Pk(x) = 1 + x + · · · + xk−1 + x2k +
x2k+1 + · · ·+x4k, k = 1, 2, . . . .) In conclusion, they asked whether 8/9 is the
smallest possible limit, and, if no, how small the limit can be. Below, we shall
give a sequence of Newman polynomials with a limit 5/6, thus answering
this question in the negative. Moreover, they asked what happens for higher
powers of Newman polynomials and also for Littlewood polynomials, i.e.,
those with coefficients in {−1, 1}. This paper is also devoted to the study of
these questions.
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For any fixed positive integer m, we shall consider the following quantity:

Qm(P ) = (deg(P ) + 1)H(Pm)/N(P )m.

Obviously, the fact that deg(P )+1 is taken instead of deg(P ) does not make
any difference to the above problem for m = 2, because deg(P )/(deg(P )+1)
→ 1 as deg(P ) → ∞. So we can restate the problem considered in [2] as
follows: find the smallest possible limit lim infk→∞ Q2(Pk) over all sequences
of Newman polynomials Pk, k=1, 2, . . . , satisfying deg(P1)<deg(P2)< · · · .

In the next section we state our main results. Their proofs will be given
in Section 3. Some further examples and an additional motivation for the
study of the quantity Qm(P ) which was introduced above will be given in
Section 4.

2. Results. Note that, for any positive integer m, and any Newman
polynomial P , we have

Qm(P ) ≥ 1/m.

Indeed, let P (x) = a0+a1x+· · ·+anxn be a Newman polynomial of degree n.
Since ai ∈ {0, 1} for each i = 0, 1, . . . , n, we have

N(P )m = P (1)m = L(P )m = L(Pm)

≤ (deg(Pm) + 1)H(Pm) = (nm + 1)H(Pm).

Hence Qm(P ) = (n + 1)H(Pm)/N(P )m ≥ (n + 1)/(nm + 1) ≥ 1/m, as
claimed.

This bound is sharp for m = 1, because Q1(1 + x + · · · + xn) = 1 for
any nonnegative integer n. It seems likely that this bound is not sharp for
m ≥ 2 (see Section 4).

Our next theorem explains the advantage of considering the factor deg(P )
+ 1 instead of deg(P ) in the definition of Qm(P ).

Theorem 1. Let m ≥ 2 be a fixed integer , and let P be a Newman poly-

nomial. Then there is a sequence of Newman polynomials Pk, k = 1, 2, . . . ,
with increasing degrees such that Qm(Pk) ≤ Qm(P ) for each k ≥ 1. More-

over , for m = 2, there is a sequence of Newman polynomials Pk, k = 1, 2, . . . ,
with increasing degrees such that Q2(Pk) = Q2(P ) for each positive integer k.

By Theorem 1, instead of working with sequences of Newman polyno-
mials P1, P2, . . . with increasing degrees and with lim infk→∞ Qm(Pk) small,
it is sufficient to find a single Newman polynomial P with Qm(P ) small.
Then Theorem 1 guarantees that there is a sequence of Newman polynomi-
als P1, P2, . . . with increasing degrees such that

lim inf
k→∞

Qm(Pk) ≤ Qm(P ).
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The problem studied in [2] and [22] thus reduces to finding the infimum
of the quantity Q2(P ), where P runs over all Newman polynomials. More
generally, for higher powers, one may look for

inf
P Newman

Qm(P ),

where m ≥ 2 is a fixed integer.

Obviously, Qm(P )=Qm(P ∗), where P (0) 6= 0 and P ∗(x)=xdeg P P (1/x)
is a polynomial reciprocal to P. So, if there is a polynomial P at which the
infimum infP Newman Qm(P ) is attained, then this P is not unique.

In particular, for m = 2, let us take P (x) = 1 + x + x3. Then deg(P ) =
N(P ) = 3, H(P 2) = H(1+2x+x2+2x3+2x4+x6) = 2, giving Q2(P ) = 8/9.
Combined with Theorem 1 this implies the main result of [2]. Note that
the polynomial 1 + x2 + x3 (which is reciprocal to 1 + x + x3) already
features as extremal in the following well-known problem: find f(n) =
supN(P )=n, P Newman inf |z|=1 |P (z)|. It is shown in [6] that f(3) is attained

at the polynomial 1 + x2 + x3. It seems that this is a mere coincidence,
because the polynomial 1 + x2 + x3 + x4 maximizing f(4) (see [13]) is of no
use in the study of “small” Qm(P ).

The value 8/9 is not the smallest value attained by Q2(P ), where P is a
Newman polynomial. We have computed Q2(P ) for all Newman polynomials
of degree at most 20. The smallest value is obtained for the polynomial

P (x) = 1 + x + x2 + x3 + x4 + x5 + x8 + x9 + x12 + x14 + x18 + x19

of degree 19 with 12 nonzero coefficients. Since H(P 2) = 6, we find that
Q2(P ) = 20 · 6/122 = 5/6. Of course, this answers the question raised in
[2] in the negative. Combined with Theorem 1, this example shows that the
limit considered in [22] and [2] can be at least as small as 5/6. This limit is
attained by the sequence of polynomials Pk(x) = (1 + x + · · ·+ xk−1)P (xk)
of degree 20k − 1, where k = 1, 2, . . . , since Q2(Pk) = 5/6 for each positive
integer k (see the proof of Theorem 1).

We also calculated the minimal value of Qm(P ), where P is a Newman
polynomial of degree ≤ 20, for each m ∈ {2, 3, 4, 5, 6}. The extremal poly-
nomials P (to be precise, one of them, since there are at least two if P is not
reciprocal) with corresponding values for Qm(P ) are given in the following
table:

m P deg P N(P ) H(P m) Qm(P )

2 11000101001100111111 19 12 6 5/6 = 0.83333333 . . .

3 111011100011010011111 20 14 84 9/14 = 0.64285714 . . .

4 11010001010001101111 19 11 404 8080/14641 = 0.55187487 . . .

5 101010001000010000111 20 8 750 7875/16384 = 0.48065185 . . .

6 101010000010000011 17 6 1110 185/432 = 0.42824074 . . .



170 A. Dubickas

In this table, the polynomial is given by the string of its coefficients in
descending order. For instance, the string 101010000010000011 corresponds
to the Newman polynomial P (x) = 1 + x + x7 + x13 + x15 + x17. We have
N(P ) = 6, H(P 6) = 1110, where 1110 is the coefficient of x53 in P 6, so
Q6(P ) = 18 · 1110/66 = 185/432. According to our computations, this poly-
nomial gives the minimal value for Q6(P ), where P runs over all Newman
polynomials of degree at most 20.

For a Littlewood polynomial P (with coefficients ±1), we have N(P ) =
deg(P ) + 1, so

Qm(P ) = H(Pm)/(deg(P ) + 1)m−1.

Since H(P ) = 1, we obtain Q1(P ) = 1 for every Littlewood polynomial P.
In our next theorem we construct a sequence of Littlewood polynomials

P1, P2, P3, . . . with increasing degrees such that limk→∞ Q2(Pk) = 0. For
any integer a and any prime number p, we denote by

(

a
p

)

the Legendre

symbol which is equal to 0 if p | a and, if a and p are coprime, it is equal to
1 or −1 depending on whether or not the congruence X2 ≡ a (mod p) has
an integer solution.

Theorem 2. Let k ≥ 2 be a fixed positive integer , and let p be a prime

number satisfying 2k + 3 ≤ p < 4k + 6. Then Pk(x) =
∑k

i=0

(

i+1
p

)

xi is

a Littlewood polynomial which satisfies H(P 2
k ) < c

√
k log k, where c is an

absolute positive constant.

From this theorem, we will derive that

inf
P Littlewood

Qm(P ) = 0

for any integer m ≥ 2.

Corollary 3. Let m ≥ 2 be a fixed positive integer. Then there is a

sequence of Littlewood polynomials Pk, k = 1, 2, . . . , with increasing degrees

such that limk→∞ Qm(Pk) = 0.

The idea of using Fekete type polynomials (whose coefficients are Le-
gendre or Jacobi symbols as in Theorem 2) in this kind of problems is not
new. Such polynomials are known to give “large” asymptotic merit fac-

tor, that is, the quantity MF(P ) = ‖P‖4
2/(‖P‖4

4 − ‖P‖4
2), where ‖P‖s =

((2π)−1
T2π
0 |P (eiθ)|s dθ)1/s, i =

√
−1. See, for instance, [14] and [3].

Note that ‖P‖2 =
√

k + 1 for any Littlewood (and, more generally, uni-

modular) polynomial P of degree k. Writing P (x)2 =
∑2k

j=0 Ajx
j , we have

‖P‖4 = (
∑2k

j=0 A2
j )

1/4. As the norm ‖P‖s is nondecreasing in s (for any fixed

P (x) ∈ C[x]), we deduce that
√

k + 1 = ‖P‖2 ≤ ‖P‖4 ≤ ((2k + 1) max
0≤j≤2k

A2
j )

1/4 = ((2k + 1)H(P 2)2)1/4.
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Squaring the last inequality yields

H(P 2) ≥
√

(k + 1)/2

for any Littlewood (and any unimodular) polynomial P of degree k. Com-
pare to Theorem 2, where there is an extra factor log k.

It seems likely that there is a sequence of Littlewood polynomials Pk,
k = 1, 2, . . . , where deg Pk = k, such that H(P 2

k ) < c
√

k with an absolute
positive constant c. This would give a sharp (up to a constant) version
of Theorem 2. Such an improvement would be related to the still open
conjecture of Littlewood on flat polynomials on the unit circle claiming
that, for any k, there exist Littlewood polynomials Pk of degree k such that

c1

√
k + 1 < |Pk(z)| < c2

√
k + 1

on |z| = 1 with some absolute positive constants c1 and c2. A version of
this problem for polynomials Pk with unimodular coefficients was settled
by Kahane [16] (with c1 = 1 − ε and c2 = 1 + ε for k large enough). Beck
[1] proved Littlewood’s conjecture for polynomials whose coefficients are ℓth
roots of unity, where ℓ = 400.

3. Proofs. For the proof of Theorem 1 we need the following lemma.

Lemma 4. Let k, m be two positive integers, and let

(1 + x + x2 + · · · + xk−1)m = b0 + b1x + · · · + bm(k−1)x
m(k−1).

Set

Bj = bj + bj+k + bj+2k + · · · .

Then Bj = km−1 for each j = 0, 1, . . . , k − 1.

Proof. Let µ be a primitive kth root of unity. Since 1 +x + · · ·+ xk−1 =
(xk − 1)/(x − 1) vanishes at x = µi, where i = 1, . . . , k − 1, and is equal
to k at x = 1, we deduce that B0 + B1µ

i + · · · + Bk−1µ
i(k−1) = 0 for

i = 1, . . . , k − 1 and B0 + B1 + · · · + Bk−1 = km. This linear system of k
equations in k unknowns B0, B1, . . . , Bk−1 has a unique solution, because
the corresponding Vandermonde determinant is nonzero. On the other hand,
B0 = B1 = · · · = Bk−1 = km−1 is a solution of this system. Hence it is the
only solution. This completes the proof of the lemma.

Proof of Theorem 1. Given a Newman polynomial P (x), we set

Pk(x) = (1 + x + x2 + · · · + xk−1)P (xk)

for k = 1, 2, . . . . It is clear that each Pk is a Newman polynomial of degree
deg(Pk) = k deg(P ) + k − 1. Thus deg(P1) < deg(P2) < · · · . Furthermore,
from the definition of Pk it follows that N(Pk) = N(P )k. Hence Qm(Pk) =
(deg(Pk)+1)H(Pm

k )/N(Pk)
m = (deg(P )+1)H(Pm

k )/(N(P )mkm−1), giving

Qm(Pk) = Qm(P )H(Pm
k )/(H(Pm)km−1).
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It remains to prove that H(Pm
k ) ≤ H(Pm)km−1 for positive integers k

and m, where equality holds for m = 1 and m = 2. (Clearly, for m = 1, we
have H(Pk) = H(P ) = 1.)

For m ≥ 2, by Lemma 4, we write

(1 + x + · · · + xk−1)m = b0 + b1x + · · · + bm(k−1)x
m(k−1).

Setting

P (x)m = c0,m + c1,mx + · · · + cmn,mxmn,

where n = deg(P ), we obtain

Pk(x)m = (b0+b1x+· · ·+bm(k−1)x
m(k−1))(c0,m+c1,mxk+· · ·+cmn,mxmnk)

=

m(nk+k−1)
∑

s=0

hsx
s.

Here hs =
∑

i+kj=s bicj,m, where 0 ≤ i ≤ m(k − 1) and 0 ≤ j ≤ mn. Set
bi = 0 for i > m(k − 1) and cj,m = 0 for j > mn. Then

hs = bsc0,m + bs−kc1,m + bs−2kc2,m + · · · + bs−[s/k]kc[s/k],m.

(Here and below, [. . . ] stands for the integer part.) Now, since all bi and all
cj,m are nonnegative integers, using Lemma 4, we obtain

|hs| = hs ≤ (bs + bs−k + · · · + bs−[s/k]k) max
0≤j≤[s/k]

cj,m ≤ km−1 max
0≤j≤mn

|cj,m|

= km−1H(Pm).

This implies that H(Pm
k ) ≤ H(Pm)km−1, as claimed.

In particular, for m = 2, we have

(1 + x + x2 + · · · + xk−1)2

= 1 + 2x + 3x2 + · · · + kxk−1 + (k − 1)xk−2 + · · · + 2x2k−3 + x2k−2.

Let j be an index satisfying cj,2 = H(P 2). It follows that the coefficient of
xk−1+j in Pk(x)2 = (1 + x + · · · + xk−1)2P (xk)2 is greater than or equal
to kH(P 2). Hence H(P 2

k ) ≥ H(P 2)k. On the other hand, setting m = 2 in
the inequality H(Pm

k ) ≤ H(Pm)km−1, which is already proved, we obtain
H(P 2

k ) ≤ H(P 2)k. Thus H(P 2
k ) = H(P 2)k for each positive integer k. This

completes the proof of the theorem.

In the proof of Theorem 2 we shall need an upper bound for an incom-
plete sum of multiplicative characters. The following lemma is extracted
from Theorem 2 in [17]:

Lemma 5. Let p ≥ 3 be a fixed prime, and let χ be a multiplicative

character modulo p of order m ≥ 2. Suppose that M and K are integers

with 1 ≤ K < p. If f(x) is a polynomial in Fp[x] with d distinct roots which
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is not the mth power then

∣

∣

∣

M+K
∑

j=M+1

χ(f(j))
∣

∣

∣
< Cd

√
p log p,

where C > 0 is an absolute constant.

In particular, for the Legendre symbol, which is a multiplicative character
of order 2, by taking f(x) = x2 − lx − l − 1 = (x + 1)(x − l − 1), we obtain

∣

∣

∣

∣

M+K
∑

j=M+1

(

j2 − lj − l − 1

p

)
∣

∣

∣

∣

< 2C
√

p log p

for any prime number p ≥ 3 and any integer l satisfying 0 ≤ l < p − 2.
Indeed, then f(x) is not a square, because its roots −1 and l + 1 treated as
elements of the field Fp are distinct. So the above inequality follows from
Lemma 5.

Proof of Theorem 2. None of the numbers 1, . . . , k + 1 is divisible by p,
so Pk(x) =

∑k
i=0

(

i+1
p

)

xi is indeed a Littlewood polynomial. Its square is

equal to Pk(x)2 =
∑2k

l=0 glx
l, where, by the multiplicative property of the

Legendre symbol and
(

−1
p

)

= (−1)(p−1)/2, we have

gl =
∑

j+t=l

(

j + 1

p

)(

t + 1

p

)

=
∑

j+t=l

(

jt + j + t + 1

p

)

=

min{l,k}
∑

j=max{l−k,0}

(

j(l − j) + l + 1

p

)

= (−1)(p−1)/2

min{l,k}
∑

j=max{l−k,0}

(

j2 − lj − l − 1

p

)

.

Now, since l ≤ 2k and 2k + 3 ≤ p, we have l < p − 2. Hence min{l, k} −
max{l−k, 0}+1 < p, and one can apply the estimate given below Lemma 5
which yields H(P 2

k ) = max0≤l≤2k |gl| < 2C
√

p log p. Consequently, for each
k ≥ 2, using p < 4k + 6, we obtain

H(P 2
k ) < 2C

√
4k + 6 log(4k + 6) < c

√
k log k,

where c is an absolute positive constant.

Proof of Corollary 3. It is sufficient to prove that, for the sequence of
polynomials P2, P3, . . . , where Pk(x) =

∑k
i=0

(

i+1
p

)

xi and p is a prime num-

ber satisfying 2k + 3 ≤ p < 4k + 6, we have limk→∞ Qm(Pk) = 0.

Note that

Qm(Pk) = H(Pm
k )(k + 1)1−m

for each m ≥ 2, because Pk is a Littlewood polynomial of degree k. Using
the inequalities H(PQ) ≤ L(P )H(Q) and L(PQ) ≤ L(P )L(Q), which hold
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for any complex polynomials P and Q, we obtain

H(Pm
k ) = H(Pm−2

k P 2
k ) ≤ L(Pm−2

k )H(P 2
k ) ≤ L(Pk)

m−2H(P 2
k ).

Next, by Theorem 2, H(P 2
k ) < c

√
k log k. Evidently, L(Pk) = k + 1. Hence

H(Pm
k ) < (k + 1)m−2c

√
k log k < c(k + 1)m−3/2 log k. This implies that

0 < Qm(Pk) = H(Pm
k )(k + 1)1−m < c(k + 1)−1/2 log k,

giving limk→∞ Qm(Pk) = 0.

4. Examples and sumset related problems. Let us consider the
Newman polynomial P (x) = 1 + x. Then deg(P ) = 1, N(P ) = 2, H(Pm) =
(

m
[m/2]

)

, so

Qm(1 + x) = 21−m

(

m

[m/2]

)

.

By Stirling’s formulae,
(

m
[m/2]

)

= m!/([m/2]!(m− [m/2])!) ∼ 2m+1/
√

2πm as

m → ∞. Thus Qm(1 + x) ∼ 4/
√

2πm as m → ∞. Combined with the lower
bound for Qm(P ), this shows that

1/m ≤ inf
P Newman

Qm(P ) ≤
√

8/πm + ε

for any positive number ε and any fixed integer m ≥ m(ε).
The problem of minimizing Qm(P ) has applications to sumset related

problems and vice versa this quantity can be studied via such problems.
Take, for instance, the Newman polynomial P (x) = 1 + xr1 + · · · + xrn−1,
where 0 = r0 < r1 < · · · < rn−1 = D and n ≥ 2. Its degree is deg(P ) =
rn−1 = D. Clearly, P has n nonzero coefficients, so N(P ) = n. It is easy
to see that H(P 2) = 2 if and only if all n(n + 1)/2 sums ri + rj , where
0 ≤ i ≤ j ≤ n−1, are distinct. The set {r0, r1, . . . , rn−1} with this property is
called a Sidon set. The cardinality n of the largest Sidon set in {0, 1, . . . , D}
is known to be of the order

√
D+O(Dc), where 0 < c < 1/2, as D → ∞ (see

[10], [11]). This implies that, for any ε > 0, the inequality Q2(P ) > 2 − ε
holds for any Newman polynomial P of sufficiently large degree satisfying
H(P 2) = 2.

More generally, one can consider the sets A ⊂ {1, . . . , D} such that every
integer n has at most g distinct representations as n = a1 + · · · + ah with
aj ∈ A. Unfortunately, different authors define Bh[g] sets in a different way.
Below, we follow the notation of O’Bryant [19]. He defines a sequence A
to be a B∗

h[g] sequence if the coefficients of (
∑

a∈A xa)h are bounded above
by g. Then a Bh[g] sequence is defined as a B∗

h[h!g] sequence, and Rh(g, D) is
defined as the largest cardinality of a B∗

h[g] sequence contained in {1, . . . , D}.
With this notation, since P (x) = x−1

∑

a∈A xa is a Newman polynomial of

degree ≤ D − 1, we have Qh(P ) ≤ Dg/Rh(g, D)h. The bound Qh(P ) ≥ ch
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is thus equivalent to Rh(g, D)/(Dg)1/h ≤ c
−1/h
h . In particular, the question

of whether Q2(P ) ≥ c2 (where, by our example of degree 19 polynomial, c2

is known to be ≤ 5/6) for any Newman polynomial P is equivalent to the

question of whether R2(g, D)/
√

Dg ≤ c
−1/2
2 for any B∗

2 [g] set contained in
{1, . . . , D}. See, for instance, the papers [7], [8], [15], [22] and the survey
paper [19] for various inequalities concerning upper and lower bounds for
the cardinality of Bh[g] sets contained in {1, . . . , D}.

Using the definitions of B2[g] and B∗
2 [g] sets given above, from the lit-

erature quoted in [19], one can easily derive bounds for the cardinality of,
say, B∗

2 [g] sets and via them bounds for Q2(P ). Usually, these bounds hold
under some additional restrictions on the set of Newman polynomials. For
example, one of the results of Green [15], rewritten in the terminology of
Newman polynomials, implies that Q2(P ) > 0.7619 for any Newman poly-
nomial P of sufficiently large degree satisfying H(P 2) = 4. The main result
of Yu [22] is equivalent to the inequality Q2(P ) > 0.625 for any Newman
polynomial P such that H(P 2) is fixed and deg(P ) is large enough. Recall
that his conjecture (Conjecture 2 in [22]) asserts that for any ε > 0 there is
a δ > 0 such that Q2(P ) > 1 − ε for any Newman polynomial P satisfying
N(P ) < δ deg(P ).

This research was supported by INTAS grant no. 03-51-5070. I thank
Jonas Jankauskas who performed the calculations presented in the table.
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