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Dedicated to W. M. Schmidt on the occasion of his 75th birthday

1. Introduction. In this paper our goal is to study pseudorandomness
of sequences

U(k)
M = (u1, . . . ,uM )(1)

of k-dimensional binary vectors un ∈ {−1,+1}k. In one dimension a con-
structive and quantitative theory of pseudorandomness has been developed
in two directions: pseudorandomness of sequences of real numbers from the
interval [0, 1) (see e.g. [2, 15, 16, 17, 20]) and pseudorandomness of binary
sequences of elements of {−1,+1} (see e.g. [1, 3, 9, 10, 12, 13, 23]) have been
studied; see also [8] for the connection between the two fields. We will show
that these two theories can be extended and combined to study the pseudo-
randomness of sequences of binary vectors. In particular, we will show that
the measures of pseudorandomness used in the two fields can be extended
in this direction, we will present principles to extend the one-dimensional
constructions and utilize the one-dimensional estimates in this multidimen-
sional situation, and we will also study special constructions obtained by
using these principles.

2. Discrepancy, a construction principle, examples. In the theory
of pseudorandomness of real numbers the most frequently used measure
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of pseudorandomness is the discrepancy. This can be easily extended to
sequences of binary vectors.

Consider the sequence (1) of k-dimensional binary vectors (with un ∈
{−1,+1}k), and for c ∈ {−1,+1}k write

A(u(k)
M , c) = #{n ∈ Z : 1 ≤ n ≤M, un = c}.

Definition 1. The discrepancy of the sequence U(k)
M is defined as

D(U(k)
M ) = max

c∈{−1,+1}k

∣∣∣∣A(U(k)
M , c)− M

2k

∣∣∣∣.
Now we will present a general principle for constructing pseudorandom

sequences of binary vectors. For a prime power q, we let Fq denote the finite
field of order q. We refer to [7, Chapter 5] and [25, Chapter II] for the theory
of characters of finite fields.

Construction 1. Let h, k,M ∈ N, k ≤ h, γ1, . . . , γM ∈ F2h , let
ψ : F2h → {−1,+1} be a nontrivial additive character of F2h , and let
β(1), . . . , β(k) ∈ F2h be linearly independent over F2. Then define the se-
quence U(k)

M = (u1, . . . ,uM ) by

un = (ψ(β(1)γn), . . . , ψ(β(k)γn)) ∈ {−1,+1}k for n = 1, . . . ,M.(2)

Theorem 1. For the sequence U(k)
M = (u1, . . . ,uM ) defined by (2), we

have

D(U(k)
M ) ≤

(
1− 1

2k

)
max
ϕ6=ϕ0

∣∣∣ M∑
n=1

ϕ(γn)
∣∣∣,(3)

where the maximum is taken over all additive characters ϕ of F2h different
from the trivial character ϕ0.

Proof. Let c = (c(1), . . . , c(k)) ∈ {−1,+1}k. Then by (2), un = c if and
only if

ψ(β(i)γn) = c(i) for i = 1, . . . , k.

Since c(i) ∈ {−1,+1} and ψ : F2h → {−1,+1} is nontrivial, there is thus an
α(i) ∈ F2h with c(i) = ψ(α(i)). Then un = c if and only if

ψ(β(i)γn + α(i)) = 1 for i = 1, . . . , k.

It follows that

A(U(k)
M , c) =

1
2k

M∑
n=1

k∏
i=1

(1 + ψ(β(i)γn + α(i))),
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whence

(4)
∣∣∣∣A(U(k)

M , c)− M

2k

∣∣∣∣
=

1
2k

∣∣∣ k∑
r=1

∑
1≤i1<···<ir≤k

M∑
n=1

ψ((β(i1) + · · ·+ β(ir))γn + (α(i1) + · · ·+ α(ir)))
∣∣∣

≤ 1
2k

k∑
r=1

∑
1≤i1<···<ir≤k

∣∣∣ M∑
n=1

ψ((β(i1) + · · ·+ β(ir))γn + (α(i1) + · · ·+ α(ir)))
∣∣∣

=
1
2k

k∑
r=1

∑
1≤i1<···<ir≤k

∣∣∣ M∑
n=1

ψ((β(i1) + · · ·+ β(ir))γn)
∣∣∣.

Now consider the innermost sum. Since β(1), . . . , β(k) are linearly indepen-
dent over F2, we have

β(i1) + · · ·+ β(ir) 6= 0.

Thus if we write

ϕ(γ) = ψ((β(i1) + · · ·+ β(ir))γ) for all γ ∈ F2h ,

then ϕ is a nontrivial additive character of F2h , and the innermost sum in
(4) can be rewritten as

M∑
n=1

ϕ(γn).

Thus, it follows from (4) that

D(U(k)
M ) = max

c∈{−1,+1}k

∣∣∣∣A(U(k)
M , c)− M

2k

∣∣∣∣
≤ 1

2k

k∑
r=1

∑
1≤i1<···<ir≤k

max
ϕ6=ϕ0

∣∣∣ M∑
n=1

ϕ(γn)
∣∣∣

=
2k − 1

2k
max
ϕ6=ϕ0

∣∣∣ M∑
n=1

ϕ(γn)
∣∣∣,

which completes the proof of Theorem 1.

There are certain important special sequences γ1, . . . , γM which can be
generated in a fast and simple way, and for which good estimates are known
for the maximum

mM := max
ϕ6=ϕ0

∣∣∣ M∑
n=1

ϕ(γn)
∣∣∣

in (3).
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Example 1. Let γ1, γ2, . . . ∈ F2h be an inversive sequence, that is, with
some α, β ∈ F2h , α 6= 0, we have

γn =
{
αγ−1

n−1 + β if γn−1 6= 0,
β if γn−1 = 0,

(5)

for n = 2, 3, . . . , with an initial value γ1. Let t be the least period of this
sequence. Then by Theorem 5 (with s = 1) in [19] we have

mM ≤ 2.1M1/22h/4 + 2h/2 for 1 ≤M ≤ t.
Note that t can be as large as 2h.

Example 2. For arbitrary r ∈ N, let γ1, γ2, . . . ∈ F2h be an rth-order
linear recurring sequence which is purely periodic with least period t. Then
by Theorem 3 and Lemma 2 in [14] we have

mM ≤ 2hr/2(1 + log t) for 1 ≤M ≤ t.
Note that t can be as large as 2hr − 1.

3. The well-distribution measure and the correlation measure.
Now we will consider binary sequences of the form

EN = (e1, . . . , eN ) ∈ {−1,+1}N .(6)

Mauduit and Sárközy [10] introduced the following measures of pseudoran-
domness for sequences of this type.

Definition 2. The well-distribution measure of the sequence (6) is de-
fined by

W (EN ) = max
a,b,t

∣∣∣ t−1∑
j=0

ea+jb

∣∣∣,
where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤
a+ (t− 1)b ≤ N .

Definition 3. The correlation measure of order s of the sequence (6)
is defined as

Cs(EN ) = max
M,D

∣∣∣ M∑
n=1

en+d1 · · · en+ds

∣∣∣,
where the maximum is taken over all D = (d1, . . . , ds) ∈ Zs and M ∈ N
such that 0 ≤ d1 < · · · < ds ≤ N −M .

Definition 4. The combined (well-distribution-correlation) measure of
order s of the sequence (6) is defined as

Qs(EN ) = max
a,t,D

∣∣∣ t−1∑
j=0

eja+d1 · · · eja+ds

∣∣∣,
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where the maximum is taken over all D = (d1, . . . , ds), a, and t such that
d1, . . . , ds, a, t ∈ N and d1 < · · · < ds, (t− 1)a+ ds ≤ N .

In several papers, constructions have been given for binary sequences
with strong pseudorandomness properties in terms of these measures of
pseudorandomness. The best sequences EN = (e1, . . . , eN ) constructed are,
perhaps, the following ones.

Example 3. Mauduit and Sárközy [10] studied the sequence defined by

en =
(
n

p

)
for n = 1, . . . , p− 1,(7)

where p is an odd prime and
(
n
p

)
denotes the Legendre symbol. Goubin,

Mauduit, and Sárközy [3] extended (7) to

en =


(
f(n)
p

)
for 1 ≤ n ≤ p, gcd(f(n), p) = 1,

+1 for 1 ≤ n ≤ p, p | f(n),
(8)

for certain polynomials f ∈ Fp[x]. (See also [22, 24].)

Example 4. Sárközy [23] studied the sequence defined by

en =

{
+1 if 1 ≤ indn ≤ (p− 1)/2,

−1 if (p+ 1)/2 ≤ indn ≤ p− 1,
(9)

for n = 1, . . . , p − 1, where p is an odd prime and indn denotes the mod p
index (or discrete logarithm) of n with respect to a fixed primitive root
mod p. Gyarmati [4, 5, 6] extended this to

(10) en =


+1 if gcd(f(n), p) = 1 and 1 ≤ ind f(n) ≤ (p− 1)/2,

−1 if gcd(f(n), p) = 1 and (p+ 1)/2 ≤ ind f(n) ≤ p− 1

or p | f(n),
for n = 1, . . . , p, with certain polynomials f ∈ Fp[x].

Example 5. Mauduit and Sárközy [13] studied the sequence with

en =


+1 if gcd(f(n), p) = 1 and 1 ≤ (f(n))−1 < p/2,

−1 if gcd(f(n), p) = 1 and p/2 < (f(n))−1 < p

or p | f(n),

(11)

for n = 1, . . . , p, with certain polynomials f ∈ Fp[x], where p is an odd prime
and b−1 denotes the multiplicative inverse of b ∈ F∗p.

In each of the three examples above, it has been shown that both W (EN )
and (for small s) Cs(EN ) are small. (See also [9] and [21].)

Later Mauduit and Sárközy [11] extended the study of pseudorandom-
ness of binary sequences to sequences over a set of K symbols. Let K ∈ N,
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K ≥ 2, let A = {a1, . . . , aK} be a finite set (“alphabet”) of K symbols
(“letters”), and consider a sequence

EN = (e1, . . . , eN ) ∈ AN(12)

of these symbols. Then a natural requirement towards pseudorandomness is
that any fixed l-tuple (“word”) (ai1 , . . . , ail) ∈ Al occurs with the expected
frequency in certain positions in EN . This approach leads to Definitions 5
and 6 below. Write

x(EN , a,M, u, v) = #{j ∈ Z : 0 ≤ j ≤M − 1, eu+jv = a}
for a ∈ A and u, v,M ∈ N with u+(M−1)v ≤ N , and for w = (ai1 , . . . , ail) ∈
Al and D = (d1, . . . , dl) with nonnegative integers d1 < · · · < dl ≤ N −M ,

g(EN , w,M,D) = #{n ∈ Z : 1 ≤ n ≤M, (en+d1 , . . . , en+dl
) = w}.

Definition 5. The f-well distribution (“f” for “frequency”) measure of
the sequence (12) is defined as

δ(EN ) = max
a,M,u,v

∣∣∣∣x(EN , a,M, u, v)− M

K

∣∣∣∣,
where the maximum is taken over all a ∈ A and u, v,M ∈ N with u +
(M − 1)v ≤ N .

Definition 6. The f-correlation measure of order l of the sequence (12)
is defined as

γl(EN ) = max
w,M,D

∣∣∣∣g(EN , w,M,D)− M

K l

∣∣∣∣,
where the maximum is taken over all w ∈ Al, D = (d1, . . . , dl), and M such
that d1, . . . , dl ∈ Z, M ∈ N, and 0 ≤ d1 < · · · < dl ≤ N −M .

Note that in [11] another type of well-distribution measure, resp. corre-
lation measure, was also introduced, but then it was shown that the corre-
sponding types of measures are nearly equivalent. Besides, the definitions
above are more suitable for our purpose, thus we will use only these defini-
tions.

Observe that our problem described in Section 1 is a special case of this
K-symbol situation: the sequence in (1) is composed of k-dimensional vec-
tors in {−1,+1}k, so now these 2k vectors are the “symbols”. Correspond-
ingly, we may adapt Definitions 5 and 6 (with {−1,+1}k in place of A) to
study sequences of binary vectors of the type (1).

The f-well distribution measure δ is closely related to the discrepancy
measure introduced in Section 2, but it is slightly more general than that.
However, its estimation is usually similar to the estimation of the discrep-
ancy. On the other hand, the estimation of the f-correlation measure is
usually much more difficult. Thus, in many cases the best we can do is
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to estimate the discrepancy (or δ). Typically, this is the case in recursive
constructions where it is usually very difficult to control the “long-range”
correlation. However, in the next section we will present a principle to ex-
tend one-dimensional constructions to k-dimensional constructions, so that
if there are good estimates for the measures of pseudorandomness in one di-
mension (as in Examples 3–5), then one may expect that the k-dimensional
measures can be estimated equally well. We will show that this is the case
when extending Examples 3–5. We will also present a one-dimensional con-
struction which is of recursive type, but the measures of pseudorandomness
(including the correlation) are well controlled, and this property is also pre-
served in its k-dimensional extension.

4. Constructing sequences of binary vectors from binary se-
quences. Now we will show that if

EN = (e1, . . . , eN ) ∈ {−1,+1}N(13)

is a binary sequence with strong pseudorandomness properties and k ∈ N
(we assume that k is fixed and N is “large”, or at least k grows slowly in
terms of N), then starting out from EN one can construct a sequence

U = U(EN ) = (u1, . . . ,uM )(14)

of k-dimensional binary vectors which has pseudorandomness properties
nearly equal to those of EN .

Construction 2. Let M = bN/kc and define the vectors un in (14)
for n = 1, . . . ,M by

un = (u(1)
n , . . . , u(k)

n ), u(j)
n = e(n−1)k+j for j = 1, . . . , k.(15)

A related idea was used also in [8]. We will show that δ(U(EN )) and
γl(U(EN )) can be estimated in terms of the measures of pseudorandomness
of EN if U(EN ) is given by (14) and (15).

Theorem 2. For every binary sequence EN of the form (13), we have

δ(U(EN )) ≤ 1
2k

k∑
r=1

(
k

r

)
Qr(EN ),(16)

where Qr(EN ) is the combined measure of order r of the sequence EN .

Proof. If un is of the form (15) and

a = (ε1, . . . , εk) ∈ {−1,+1}k,(17)

then clearly

1
2k

k∏
j=1

(1 + u(j)
n εj) =

1
2k

k∏
j=1

(1 + e(n−1)k+jεj) =
{

1 if un = a,
0 if un 6= a.

(18)
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It follows that

x(U(EN ),a, H, s, t)

=
H−1∑
n=0

1
2k

k∏
j=1

(1 + e(s+nt−1)k+jεj)

=
H

2k
+

1
2k

k∑
r=1

∑
1≤j1<···<jr≤k

εj1 · · · εjr
H−1∑
n=0

e(s+nt−1)k+j1 · · · e(s+nt−1)k+jr ,

whence∣∣∣∣x(U(EN ),a, H, s, t)− H

2k

∣∣∣∣
≤ 1

2k

k∑
r=1

∑
1≤j1<···<jr≤k

∣∣∣H−1∑
n=0

e(s+nt−1)k+j1 · · · e(s+nt−1)k+jr

∣∣∣
≤ 1

2k

k∑
r=1

∑
1≤j1<···<jr≤k

Qr(EN ) =
1
2k

k∑
r=1

(
k

r

)
Qr(EN ),

which proves (16).

Theorem 3. For l ∈ N, l ≥ 2, and every binary sequence EN of the
form (13), we have

γl(U(EN )) ≤ 1
2kl

kl∑
r=1

(
kl

r

)
Qr(EN ),(19)

where Qr(EN ) is the combined measure of order r of the sequence EN .

Proof. Write
w = (v1, . . . ,vl)

with
vs = (ε(s)1 , . . . , ε

(s)
k ) ∈ {−1,+1}k for 1 ≤ s ≤ l.

If ui is of the form (15), then by (18) we have

g(U(EN ),w, H,D)
= #{n ∈ Z : 1 ≤ n ≤ H, (un+d1 , . . . ,un+dl

) = (v1, . . . ,vl)}

=
H∑
n=1

1
2kl

l∏
s=1

k∏
j=1

(1 + e(n+ds−1)k+jε
(s)
j ),

whence writing

G = {(s, j) : s ∈ {1, . . . , l}, j ∈ {1, . . . , k}}
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we obtain∣∣∣∣g(U(EN ),w, H,D)− H

2kl

∣∣∣∣
=

1
2kl

∣∣∣ H∑
n=1

∑
F⊆G
F6=∅

∏
(s,j)∈F

ε
(s)
j e(n+ds−1)k+j

∣∣∣

=
1

2kl

∣∣∣ ∑
F⊆G
F6=∅

( ∏
(s,j)∈F

ε
(s)
j

)( H∑
n=1

∏
(s,j)∈F

e(n+ds−1)k+j

)∣∣∣

≤ 1
2kl

∑
F⊆G
F6=∅

∣∣∣ H∑
n=1

∏
(s,j)∈F

e(n+ds−1)k+j

∣∣∣ ≤ 1
2kl

∑
F⊆G
F6=∅

Q|F|(EN )

=
1

2kl

|G|∑
r=1

(
|G|
r

)
Qr(EN ) =

1
2kl

kl∑
r=1

(
kl

r

)
Qr(EN ),

which proves (19).

By Theorems 2 and 3, the estimation of the measures of pseudorandom-
ness of binary vector sequences U = U(EN ) of the type described in (14)
and (15) can be reduced to the estimation of the combined measures of EN .
In many cases, the upper bounds on these measures are similar to the upper
bounds on the correlation measures and, in particular, this is the situation
in Examples 3–5. First we will study Example 3. Since the estimation will
be very much similar to the estimation of the correlation measure, we will
give a sketch of the proof only.

Theorem 4. Assume that p is an odd prime, f ∈ Fp[x] is a polynomial
of degree D ≥ 1 which has no multiple root in Fp, and the binary sequence Ep
is defined by (8). Let r ∈ N and suppose that one of the following conditions
holds:

(i) r = 2;
(ii) (4r)D < p;

(iii) 2 is a primitive root mod p and r < p, D < p.

Then for the combined measure Qr(Ep) of order r of the sequence Ep we
have

Qr(Ep) < 10Drp1/2 log p.(20)

Combining Theorems 2 and 4, resp. Theorems 3 and 4, we obtain the
following two corollaries.
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Corollary 1. Assume that k ∈ N with k ≥ 2, that f , D, and Ep are
defined as in Theorem 4, and that one of the following conditions holds:

(i) k = 2;
(ii) (4k)D < p;
(iii) 2 is a primitive root mod p and k < p, D < p.

Then for the sequence U(Ep) defined by (14) and (15) we have

δ(U(Ep)) <
10D
2k

k∑
r=1

r

(
k

r

)
p1/2 log p = 5Dkp1/2 log p.

Corollary 2. Assume that k, l ∈ N with k ≥ 2 and l ≥ 2, that f , D,
and Ep are defined as in Theorem 4, and that one of the following conditions
holds:

(i) (4kl)D < p;
(ii) 2 is a primitive root mod p and kl < p, D < p.

Then for the sequence U(Ep) defined by (14) and (15) we have

γl(U(Ep)) <
10D
2kl

kl∑
r=1

r

(
kl

r

)
p1/2 log p = 5Dklp1/2 log p.

Proof of Theorem 4. We shall first show that combining Theorems 1
and 2 in [3], under the assumptions of Theorem 4 here, one gets

Cr(Ep) < 10Drp1/2 log p,(21)

so that we obtain the same upper bound for Cr as the one for Qr in (20) to
be proved. The proof of (20) is also very similar to the proofs in [3]. Indeed
write f = bf1 with b ∈ F∗p, where f1 is a monic polynomial. Then, on putting(

0
p

)
= 0, the proof in [3] starts with

(22)
∣∣∣ H∑
n=1

en+d1 · · · en+dr

∣∣∣
≤
∣∣∣∣ H∑
n=1

(
f(n+ d1)

p

)
· · ·
(
f(n+ dr)

p

)∣∣∣∣+Dr

=
∣∣∣∣(brp

) H∑
n=1

(
f1(n+ d1) · · · f1(n+ dr)

p

)∣∣∣∣+Dr

=
∣∣∣∣ H∑
n=1

(
h(n)
p

)∣∣∣∣+Dr,

where h(x) = f1(x + d1) · · · f1(x + dr). Then the following is shown in
[3, Lemma 2].
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Lemma 1. If f , D, r are defined as in Theorem 4, then the polynomial
h has at least one root in Fp whose multiplicity is odd.

This lemma ensures the applicability of the following consequence of
Weil’s theorem [26], [25], [3, Lemma 1].

Lemma 2. Suppose that p is a prime, χ is a multiplicative character of
Fp of order d ≥ 2, and g ∈ Fp[x] has positive degree and a factorization
g(x) = b(x − x1)d1 · · · (x − xs)ds (where xi 6= xj for i 6= j) in Fp[x] with
b ∈ F∗p and

gcd(d, d1, . . . , ds) = 1.

Let X, Y be real numbers with 0 < Y ≤ p. Then∣∣∣ ∑
X<n≤X+Y

χ(g(n))
∣∣∣ < 9 deg(g)p1/2 log p.

By using this lemma, it follows from (22) that

Cr(Ep) = max
H,d1,...,dr

∣∣∣ H∑
n=1

en+d1 · · · en+dr

∣∣∣ ≤ max
H,d1,...,dr

∣∣∣∣ H∑
n=1

(
h(n)
p

)∣∣∣∣+Dr

< 9Drp1/2 log p+Dr < 10Drp1/2 log p,

which proves (21).
The “Q-analog” of this argument starts out from

(23)
∣∣∣ H∑
n=1

ena+d1 · · · ena+dr

∣∣∣
≤
∣∣∣∣ H∑
n=1

(
h(na)
p

)∣∣∣∣+Dr =
∣∣∣∣ H∑
n=1

(
ha(n)
p

)∣∣∣∣+Dr,

where h(n) is defined as in (22) and ha(n) = h(na). By Lemma 1, h has
at least one root x0 ∈ Fp of odd multiplicity. Then a−1x0 is a root of the
same multiplicity of ha(x) = h(xa), thus ha ∈ Fp[x] also has a root of odd
multiplicity. Then again we may apply Lemma 2 (with

(
n
p

)
and ha(n) in

place of χ(n) and g(n), respectively), and we deduce from (23) that

Qr(Ep) = max
a,H,d1,...,dr

∣∣∣ H∑
n=1

ena+d1 · · · ena+dr

∣∣∣
≤ max

a,H,d1,...,dr

∣∣∣∣ H∑
n=1

(
ha(n)
p

)∣∣∣∣+Dr

< 9Drp1/2 log p+Dr < 10Drp1/2 log p,

which completes the proof of Theorem 4.
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In the cases of the k-dimensional constructions obtained from (10) and
(11) in Examples 4 and 5, respectively, the situation is similar: one may
estimate Qr(Ep) by a small modification of the estimation of Cr(Ep) in [4]
and [13], respectively, thus we leave the details to the reader.

At the end of Section 3 we mentioned a one-dimensional construction of
recursive type with good control over the measures of pseudorandomness.
This is the following construction of Niederreiter and Rivat [18].

Example 6. Consider the sequence R1, R2, . . . of rational functions over
Fq defined by

R1(X) = X, Ri(X) = Ri−1(αX−1 + β) for i = 2, 3, . . . ,

where α ∈ F∗q and β ∈ Fq. In [18, Lemma 1] it is proved (improving results
of [19]) that the sequence of rational functions R1, R2, . . . (actually we have
shifted the indices by 1 in the present paper for the sake of consistency) is
purely periodic with least period T ≤ q + 1, and that there exist distinct
elements ε2, . . . , εT of Fq such that

Ri(X) =
(β − εi)X + α

X − εi
for 2 ≤ i ≤ T.

For 2 ≤ i ≤ T , we will consider the permutations of Fq defined by

ψi(γ) =

{
Ri(γ) if γ 6= εi,

β − εi if γ = εi.

Now if we also assume that β ∈ F∗q and that γ1 ∈ Fq satisfies

γ2
1 6= βγ1 + α,

then by Lemma 2 of [18] we know that the sequence γ1, γ2, . . . of elements
of Fq, defined by

γi = ψi(γ1) for 2 ≤ i ≤ T
and extended with period T , has least period T and contains at least T − 1
distinct elements of Fq.

Now we consider the special case where q = p is an odd prime number,
and we define a binary sequence

EN = (e1, . . . , eN ), 1 ≤ N ≤ T,(24)

by

en :=

{
+1 if 0 ≤ γn ≤ (p− 1)/2,

−1 if (p+ 1)/2 ≤ γn ≤ p− 1.
(25)

Niederreiter and Rivat [18] gave upper bounds on W (EN ) and Cs(EN ) under
the conditions in Example 6. In particular, they showed that for 1 ≤ N ≤ T
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we have

(26) Cs(EN )

< 2s((14s)1/2N1/2p1/4 + sp1/2 + 8s)
(

4
π2

log p+ 1.72
)s

+
s2sN
p

.

We will generalize this result to the combined measure Qs(EN ).

Theorem 5. Under the assumptions above, we have, for s ∈ N and
1 ≤ N ≤ T ,

Qs(EN ) < 2s((14s)1/2N1/2p1/4 + sp1/2 + 8s)
(

4
π2

log p+ 1.72
)s

+
s2sN
p

.

Again, combining this theorem with Theorem 2 and Theorem 3, respec-
tively, one could estimate the measures of pseudorandomness of the vector
sequence U(EN ) composed from the binary sequence EN defined by (24)
and (25); we leave the details of this to the reader.

Proof of Theorem 5. We extend the sequence (γn)Tn=1 to a doubly-infinite
sequence (γn)∞n=−∞ with period T . As in the proof of Theorem 5 of [18], we
only need to show Lemma 3 below which holds for arbitrary finite fields Fq.

Lemma 3. For a nontrivial additive character ϕ of Fq, for s ∈ N, for
integers 1 ≤ d1 < · · · < ds ≤ T , and for integers a ≥ 1 and t ≥ 1 with
a(t − 1) + ds ≤ T , if µ1, . . . , µs ∈ Fq are not all 0, then for the character
sum

St :=
t−1∑
n=0

ϕ
( s∑
i=1

µiγan+di

)
we have

|St| < (14s)1/2t1/2q1/4 + sq1/2 + 8s.

Proof. By the argument at the beginning of the proof of Theorem 2 of
[18], we have, for any integer L with 1 ≤ L ≤ T (see formula (12) of [18]),

L|St| ≤W (t, L) + L2/2(27)

where

W (t, L) :=
∣∣∣ t−1∑
n=0

∑
l∈R(L)

ϕ
( s∑
i=1

µiγa(n+l)+di

)∣∣∣
with R(L) being the interval of integers l such that −L/2 < l ≤ L/2.
Let ψ1 be the identity map on Fq and for any k ∈ Z let ψk = ψr, where
r ∈ {1, . . . , T} is such that k ≡ r mod T . Then

W (t, L) ≤ U(t, L) + 2E(t, L),
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where

U(t, L) :=
t−1∑
n=0

∣∣∣ ∑
l∈R(L)

ϕ
( s∑
i=1

µiψdi+al(γan)
)∣∣∣

and E(t, L) is the number of pairs (n, l) with 0 ≤ n ≤ t − 1 and l ∈ R(L)
such that there exists i ∈ {1, . . . , s} with γan+di+al 6= ψdi+al(γan).

In order to apply the same arguments as in [18], we impose the condition
1 ≤ L ≤ t, which implies in particular that 1 ≤ a(L−1)+ds ≤ T . Obviously

E(t, L) ≤
s∑
i=1

Ei(t, L),

where for 1 ≤ i ≤ s we have

Ei(t, L) = #{(n, l)∈ {0, . . . , t−1} ×R(L) : γan+di+al 6= ψdi+al(γan)}
≤ #{(n, l)∈ {0, . . . , t−1} ×R(L) :

εan = γ1 or εan+di+al = γ1 or γan = εdi+al}
≤ #{(n, l) : εan = γ1}+ #{(n, l) : εan+di+al = γ1}

+ #{(n, l) : γan = εdi+al}.

Here εk = εr if k ≡ r mod T with r ∈ {2, . . . , T} and ε1 arbitrary but not
in Fq. We observe that the condition a(t−1)+ds ≤ T implies that the values
of an with n running through {0, . . . , t− 1} are all distinct modulo T . Since
ε1, . . . , εT are all distinct, each of the first two sets in the last expression
has at most L elements. Concerning the third set in the last expression,
since all but at most two of the γn with 0 ≤ n ≤ t− 1 are distinct and the
condition a(L − 1) + ds ≤ T implies that all the values al with l running
through R(L) are distinct modulo T , for each l except possibly one there is
at most one corresponding n, and in the exceptional case there are at most
two corresponding values of n. Hence the cardinality of the third set is at
most L+ 1. Therefore

E(t, L) ≤ (3L+ 1)s,

so that, as in formula (14) of [18], we get

W (t, L) ≤ U(t, L) + (6L+ 2)s ≤ U(t, L) + 8Ls.(28)

By the Cauchy–Schwarz inequality we obtain

U(t, L)2 ≤ t
t−1∑
n=0

∣∣∣ ∑
l∈R(L)

ϕ
( s∑
i=1

µiψdi+al(γan)
)∣∣∣2.

Since the γan with 0 ≤ n ≤ t − 1 are distinct except possibly two of them
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(see again Lemma 2 of [18]), we get

U(t, L)2 ≤ 2t
∑
φ∈Fq

∣∣∣ ∑
l∈R(L)

ϕ
( s∑
i=1

µiψdi+al(φ)
)∣∣∣2

≤ 2t
∑

l,m∈R(L)

∣∣∣ ∑
φ∈Fq

ϕ
( s∑
i=1

µi(ψdi+al(φ)− ψdi+am(φ))
)∣∣∣.

The contribution of the terms with l = m is 2Ltq. Next we consider the
pairs (l,m) ∈ R(L)2 with l 6= m for which there exist i, j ∈ {1, . . . , s} such
that

al − am ≡ di − dj mod T.

As we have noted above, the values al with l running through R(L) are
distinct modulo T , and so there are at most s(s − 1)L such pairs (l,m).
For each such pair, we use the trivial bound q for the last character sum.
The total contribution of these terms to the upper bound on U(t, L)2 is
2s(s− 1)Ltq.

It remains to consider the pairs (l,m) ∈ R(L)2 for which

al − am 6≡ di − dj mod T for all 1 ≤ i, j ≤ s.(29)

In [18, formula (15)] the authors fixed such a pair (l,m) and their proof can
be adapted to get∣∣∣ ∑

φ∈Fq

ϕ
( s∑
i=1

µi(ψdi+al(φ)− ψdi+am(φ))
)∣∣∣ ≤ 4sq1/2 + 2s ≤ 6sq1/2

for all pairs (l,m) ∈ R(L)2 satisfying (29).
By combining all cases for the pairs (l,m) ∈ R(L)2, we obtain

U(t, L)2 ≤ 2s2Ltq + 12sL2tq1/2.

If t ≤ 14sq1/2, then the result of the lemma is trivial, and so we can assume
that t > 14sq1/2. Then L := b2sq1/2c satisfies the condition 1 ≤ L ≤ t. With
this choice of L we have L > sq1/2, thus s2Lq < sL2q1/2, and so

U(t, L)2 < 2sL2tq1/2 + 12sL2tq1/2 = 14sL2tq1/2.

Then (28) yields

W (t, L) < (14s)1/2Lt1/2q1/4 + 8Ls,

and an application of (27) completes the proof of Lemma 3.
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