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1. Introduction. An abelian variety B/Q is called an abelian Q-variety
if for each σ ∈ GQ = Gal(Q/Q) there exists an isogeny µσ : σB → B com-
patible with the endomorphisms of B, i.e. such that ϕ ◦ µσ = µσ ◦ σϕ
for all ϕ ∈ End0

Q(B) = EndQ(B) ⊗Z Q. A building block is an abelian
Q-variety B whose endomorphism algebra End0

Q(B) is a central division
algebra over a totally real number field F with Schur index t = 1 or
t = 2 and t[F : Q] = dimB. In the case t = 2 the quaternion alge-
bra is necessarily totally indefinite. The interest in the study of the build-
ing blocks comes from the fact that they are the absolutely simple fac-
tors up to isogeny of the non-CM abelian varieties of GL2-type (see [Py])
and therefore, as a consequence of a generalization of Shimura–Taniyama,
they are the non-CM absolutely simple factors of the modular jacobians
J1(N).

In [Ri1] and in [Py], Ribet and Pyle investigated the possible fields of
definition of a building block up to isogeny; in fact, and to be more precise,
their results concern the field of definition of the variety together with its
endomorphisms. The main result in this direction is that every building
block B/Q is isogenous over Q to a variety B0 defined over a polyquadratic
number field (1) K, and with all the endomorphisms of B0 also defined over
K (this is [Py, Theorem 5.1]). Moreover, from the proof of this result one
can deduce the structure of minimal polyquadratic number fields with this
property. In particular, each of these minimal number fields must contain
a certain field KP that can be calculated from a cohomology class γ in
H2(GQ, F

×) canonically attached to B.
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(1) That is, a composition of quadratic extensions of Q.
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If B is a building block whose endomorphism algebra End0
Q(B) is a

number field F and if B is defined over a number field K, then all the endo-
morphisms of B are also defined over K; this follows easily from the compat-
ibility of the isogenies and from the commutativity of End0

Q(B). Therefore,
in this case it is not a restriction to require a field of definition of B to be
also a field of definition of its endomorphisms. But if B has quaternionic
multiplication, that is, if End0

Q(B) is a quaternion algebra, then a field of
definition of B is not necessarily a field of definition of End0

Q(B). In this
situation, it can occur that B is indeed isogenous to a variety B0 defined
over a field L smaller than the minimal ones given by Ribet and Pyle,
but of course with End0

L(B0) strictly contained in End0
Q(B0). The easiest

case where this happens is in the abelian varieties of GL2-type that are
absolutely simple and have quaternionic multiplication over Q. They are
building blocks and any field of definition of their endomorphisms is big-
ger than Q, but clearly Q can be taken to be a field of definition of these
varieties up to isogeny. In Section 4 we will give more involved examples
of this phenomenon, in the sense that it will not be obvious a priori if the
building block can be defined up to isogeny over a smaller field than its
endomorphisms.

The goal of this article is to characterize the fields of definition of quater-
nionic building blocks up to isogeny, and to determine under what conditions
it is possible to define them over a field strictly contained in the minimal ones
given by Ribet and Pyle for the variety and the endomorphisms. The plan
of the paper is as follows. In Section 2 we characterize the fields of definition
of B up to isogeny as those K such that the restriction of γ to GK lies in
the image of a certain map δ : Hom(GK ,B×/F×)→ H2(GK , F×), where B
is the quaternion algebra End0

Q(B). In Section 3 we compute the image of δ
for the kind of quaternion algebras B that appear as endomorphism algebras
of building blocks. Finally, in Section 4 we apply these results and compu-
tations to determine the field of definition of several concrete examples of
building blocks.

2. Building blocks and fields of definition. We begin this section
by recalling the main tools used in the study of fields of definition of building
blocks. The main references for this part are [Ri1] and [Py] (and see also [Qu,
Section 1] for a similar account of this material).

Let K be a number field. We will say that a building block B is defined
over K if the variety B (but not necessarily all of its endomorphisms) is
defined over K. If B is isogenous to a building block defined over K, we will
say that K is a field of definition of B up to isogeny, or that B is defined
over K up to isogeny. Note that this is a modification of the terminology
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used in [Py], where a field of definition of a building block was defined to be
a field of definition of the variety and of all its endomorphisms.

Our study of the fields of definition of a building block up to isogeny will
be based on the following theorem of Ribet (cf. [Ri2, Theorem 8.1]) that
characterizes such fields.

Theorem 2.1 (Ribet). Let L/K be a Galois extension of fields, and
let B be an abelian variety defined over L. There exists an abelian variety
B0 defined over K such that B and B0 are isogenous over L if and only if
there exist isomorphisms in the category of abelian varieties up to isogeny
{φσ : σB → B}σ∈Gal(L/K) satisfying φσ ◦ σφτ ◦ φ−1

στ = 1.

Given a building block B we fix for every σ ∈ GQ a compatible isogeny
µσ : σB → B. Since B has a model defined over a number field, we can
choose the collection {µσ} to be locally constant. For σ, τ ∈ GQ the isogeny
cB(σ, τ) = µσ ◦ σµτ ◦ µ−1

στ lies in the center F of End0
Q(B), and the map

(σ, τ) 7→ cB(σ, τ) is a continuous 2-cocycle of GQ with values in F×

(equipped with the trivial GQ-action). Its cohomology class [cB] is an el-
ement of H2(GQ, F

×) that does not depend on the particular choice of
the compatible isogenies µσ, and if B ∼Q B′ are isogenous building blocks
then we can identify their associated cohomology classes [cB] and [cB′ ].
An important property of [cB] is that it belongs to the 2-torsion subgroup
H2(GQ, F

×)[2]; that is, there exists a continuous map σ 7→ dσ : GQ → F×

such that c(σ, τ)2 = dσdτd
−1
στ . The cohomology class [cB] gives all the in-

formation about the field of definition of a building block together with
its endomorphisms up to isogeny, thanks to the following consequence of
Theorem 2.1, which is [Py, Proposition 5.2].

Proposition 2.2 (Ribet–Pyle). Let B be a building block and γ = [cB]
its associated cohomology class. There exists a variety B0 defined over a
number field K and with all its endomorphisms defined over K that is Q-
isogenous to B if and only if ResKQ (γ) = 1, where ResKQ is the restriction
map ResKQ : H2(GQ, F

×)→ H2(GK , F×).

This characterization of the fields of definition of B and its
endomorphisms up to isogeny in terms of [cB] is useful because the group
H2(GQ, F

×)[2] has a particularly simple structure, that we now recall. A sign
map for F is a group homomorphism sign: F× → {±1} such that sign(−1) =
−1. A sign map gives a group isomorphism F× ' P × {±1}, where P =
F×/{±1}. From now on we fix a sign map for F by fixing an embedding
of F in R, and then taking the usual sign. The corresponding isomorphism
F× ' P × {±1} then gives a decomposition of H2(GQ, F

×)[2].

Proposition 2.3. Let F be a totally real number field, and let P be the
group F×/{±1}. There exists a (non-canonical) isomorphism of groups
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(2.1) H2(GQ, F
×)[2] ' H2(GQ, {±1})×Hom(GQ, P/P

2).

If γ = [c] ∈ H2(GQ, F
×)[2], we denote by γ± ∈ H2(GQ, {±1}) and γ ∈

Hom(GQ, P/P
2) its two components under the isomorphism (2.1). They can

be computed in the following way:

(1) The cohomology class γ± is represented by the cocycle (σ, τ) 7→
sign(c(σ, τ)).

(2) If c(σ, τ)2 = dσdτd
−1
στ is an expression of c2 as a coboundary, the

map γ is given by σ 7→ dσ mod {±1}F ∗2.

Proof. This is essentially the content of Propositions 5.3 and 5.6 in [Py].

Let B be a building block and γ = [cB] its associated cohomology class.
A field K is a field of definition up to isogeny of B and of its endomorphisms
if and only if K trivializes both components γ and γ± (that is, if and only
if the restriction of both components to GK is trivial). Let KP be the fixed
field of ker γ, which is a polyquadratic extension of Q. Then K trivializes
γ if and only if it contains KP . Since H2(GQ, {±1}) is isomorphic to the
2-torsion of the Brauer group of Q, we can identify γ± with a quaternion
algebra over Q, and K trivializes γ± if and only if it is a splitting field
of the quaternion algebra represented by γ±. If KP already trivializes γ±,
then KP is the minimum field of definition of B and of its endomorphisms
up to isogeny. Otherwise, there is no such a minimum field: all the fields of
definition of B and of its endomorphisms up to isogeny must contain KP and
are splitting fields of γ±. For instance, for each maximal subfield K± of the
quaternion algebra given by γ±, the field K±KP is a minimal polyquadratic
number field with the property of being a field of definition of B and of its
endomorphisms up to isogeny.

We can also use the cohomology class [cB] to study the fields of definition
of B up to isogeny, in a similar way as for the fields of definition of B and
of its endomorphisms. From now on we assume that B = End0

Q(B) is a
quaternion algebra. Before stating our cohomological version of Theorem 2.1
for building blocks, we recall that the exact sequence of trivial GK-modules

1→ F× → B× → B×/F× → 1

gives rise to the cohomology exact sequence of pointed sets (cf. [Se, p. 125])

· · · → H1(GK , F×)→ H1(GK ,B×)→ H1(GK ,B×/F×) δ−→ H2(GK , F×).

Since we consider the trivial GK-action, we can identify H1(GK ,B×/F×)
with Hom(GK ,B×/F×) up to conjugation. The explicit description of the
connecting map δ is given in terms of cocycles by

(2.2)
δ : Hom(GK ,B×/F×)→ H2(GK , F×),

[σ 7→ ψσF
×] 7→ [(σ, τ) 7→ ψσ ◦ ψτ ◦ ψ−1

στ ].
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Proposition 2.4. Let B be a building block and γ = [cB] ∈ H2(GQ, F
×)

its associated cohomology class. There exists a variety B0 defined over a
number field K that is Q-isogenous to B if and only if there exists a contin-
uous morphism ψ : GK → B×/F× such that ResKQ (γ) = δ(ψ).

Proof. By Theorem 2.1 the existence of a variety B0 defined over K and
isogenous to B is equivalent to the existence of isomorphisms of abelian
varieties up to isogeny φσ : σB → B such that

(2.3) φσ ◦ σφτ ◦ φ−1
στ = 1

for all σ, τ ∈ GK . If µσ : σB → B is a compatible isogeny, then φσ is equal
to ψσ ◦µσ for some ψσ belonging to B×. Using the compatibility of the µσ’s
we observe that (2.3) is then equivalent to

µσ ◦ σµτ ◦ µ−1
στ ◦ ψσ ◦ ψτ ◦ ψ−1

στ = 1

for all σ, τ ∈ GK . Since cB(σ, τ) = µσ ◦ σµτ ◦µστ belongs to F×, we see that
the map σ 7→ ψσF

× is a morphism ψ : GK → B×/F×, and that ResKQ ([cB]) ·
δ(ψ) = 1. From this the result follows, because [cB] is a 2-torsion element.

Now suppose that K is a minimal polyquadratic field of definition of B
and of all its endomorphisms. As we have seen, there might exist a variety
B0 defined over a subfield L of K that is isogenous to B, but in this case
with End0

L(B0)  End0
Q(B0). An interesting occurrence of this situation is

when the endomorphisms of B0 are defined over K, but then the field L
cannot be much smaller than K, as we can see in the following

Proposition 2.5. Let B be a building block such that B and its endo-
morphisms are defined over a minimal polyquadratic field K. Let L  K and
let B0 be an abelian variety over L. The abelian variety B0 is K-isogenous to
B and has all of its endomorphisms defined over K if and only if there exists
a continuous homomorphism ψ : GL → B×/F× such that ResLQ(γ) = δ(ψ)
and GK ⊆ ker(ψ). In particular Gal(K/L) ' C2 or Gal(K/L) ' C2 × C2.

Proof. Let κ : B → B0 be an isogeny defined over K, where B0 is defined
over L and End0

Q(B0) = End0
K(B0). For σ ∈ GL let νσ = κ−1 ◦ σκ, and let

ψσ = νσ◦µ−1
σ where µσ is a compatible isogeny for B. Since νσ◦σντ ◦ν−1

στ = 1
for all σ, τ ∈ GL, we see that ResLQ(γ) = δ(ψ). Moreover, for σ ∈ GK the
isogeny µσ lies in F× and νσ = 1, so ψσ belongs to F×.

For the other implication, for σ ∈ GL let νσ = ψσ ◦ µσ, with µσ a
compatible isogeny. Under the conditions of the proposition, there exists
a variety B0 defined over L and an isogeny κ : B → B0 such that νσ =
κ−1 ◦ σκ. Then any endomorphism of B0 is of the form κ ◦ ϕ ◦ κ−1 for some
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ϕ ∈ End0
Q(B). Then for σ ∈ GK we have

σ(κ ◦ ϕ ◦ κ−1) = σκ ◦ σϕ ◦ σκ−1 = κ ◦ ψσ ◦ µσ ◦ σϕ ◦ µ−1
σ ◦ ψ−1

σ ◦ κ−1

= κ ◦ ψσ ◦ ϕ ◦ ψ−1
σ ◦ κ−1 = κ ◦ ϕ ◦ κ−1.

Finally, the last statement follows because Gal(K/L) must be isomorphic
to a subgroup of B×/F×, and all abelian groups of exponent 2 contained in
B×/F× are isomorphic to either C2 or C2 × C2 (see Proposition 3.1 below
for a classification of all finite subgroups of B×/F×).

3. The image of δ. This section is devoted to compute all the elements
in H2(GK , F×)[2] that are of the form δ(ψ) for some continuous morphism
ψ : GK → B×/F×, and to determine their components δ(ψ)± and δ(ψ)
under the isomorphism H2(GK , F×)[2] ' H2(GK , {±1})×Hom(GK , P/P 2)
(this isomorphism is just the restriction of (2.1) to GK). The image of a
continuous morphism ψ : GK → B×/F× is a finite subgroup of B×/F×.
In [CF, Section 2] these subgroups are studied and, in particular, we have
the following result.

Proposition 3.1 (Chinburg–Friedman). Let B be a totally indefinite
division quaternion algebra over a field F . The finite subgroups of B×/F×
are cyclic or dihedral. There always exist subgroups of B×/F× isomorphic
to C2 and C2 × C2. For n > 2, if ζn is a primitive nth root of unity in F ,
then B×/F× contains a subgroup isomorphic to the cyclic group Cn of order
n if and only if ζn+ ζ−1

n belongs to F and F (ζn) is isomorphic to a maximal
subfield of B. In this case, B×/F× always contains a subgroup isomorphic
to the dihedral group D2n of order 2n.

In order to compute the cohomology classes δ(ψ) we will consider four
separate cases, depending on whether imψ is isomorphic to C2, C2 × C2,
Cn or D2n for n > 2. The following notation may be useful: if G is a group,
we denote by ∆G the elements γ ∈ H2(GK , F×)[2] that are of the form
γ = δ(ψ) for some morphism ψ with imψ ' G.

As usual we will identify the elements in H2(GK , {±1}) with quaternion
algebras over K, and we will use the notation (a, b)K for the quaternion
algebra generated over K by i, j with i2 = a, j2 = b and ij + ji = 0. As
for the elements in Hom(GK , P/P 2) we will use the symbol (t, d)P with
t ∈ K and d ∈ F× to denote (the inflation of) the morphism that sends
the non-trivial automorphism of Gal(K(

√
t)/K) to the class of d in P/P 2.

Every element in Hom(GK , P/P 2) is the product of morphisms of this kind,
and therefore it can be expressed in the form (t1, d1)P · . . . ·(tn, dn)P for some
ti ∈ K, di ∈ F×. We remark that, although they are convenient for their
compactness, these expressions for the elements of Hom(GK , P/P 2) are not
unique.
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Proposition 3.2. An element γ ∈ H2(GK , F×)[2] belongs to ∆C2 if
and only if

• γ = (t, b)P for some t ∈ K \ K2 and b ∈ F× such that F (
√
b) is

isomorphic to a maximal subfield of B,
• γ± = (t, sign(b))K .

Proof. Let ψ be a morphism whose image is isomorphic to C2. Then the
fixed field of kerψ is K(

√
t) for some t ∈ K \K2, and ψ is the inflation of

a morphism (that we also call ψ) from Gal(K(
√
t)/K), which is determined

by the image of a generator σ of the Galois group. If ψ(σ) = y (here y
means the class of y in B×/F×), then y2 = b ∈ F× and y /∈ F×. That is,
F (
√
b) is isomorphic to a maximal subfield of B. From the explicit description

of δ given in (2.2), a straightforward computation shows that a cocycle c
representing δ(ψ) is given by

c(1, 1) = c(1, σ) = c(σ, 1) = 1, c(σ, σ) = b.

By taking the sign of this cocycle we obtain a representative for δ(ψ)±,
and it corresponds to the quaternion algebra (t, sign(b))K . The cocycle c2

is the coboundary of the map 1 7→ 1, σ 7→ b, and by Proposition 2.3 the
component δ(ψ) is (t, b)P .

Now, for t ∈ K \ K2 and b ∈ F× such that F (
√
b) is isomorphic to

a maximal subfield of B, take y ∈ B with y2 = b. Then the morphism
ψ : Gal(K(

√
t)/K) → B×/F× that sends a generator σ to y has image

isomorphic to C2, and by the previous argument the components of δ(ψ)
are δ(ψ)± = (t, sign(b))K and δ(ψ) = (t, b)P .

Proposition 3.3. An element γ ∈ H2(GK , F×)[2] lies in ∆C2×C2 if and
only if

• γ = (s, a)P · (t, b)P for some s, t ∈ K \K2 and a, b ∈ F such that a is
positive and B ' (a, b)F ,
• γ± = (sign(b)s, t)K .

Proof. If ψ is a morphism with image isomorphic to C2×C2, it factorizes
through a finite Galois extension M/K with Gal(M/K) ' C2×C2. We write
M as M = K(

√
s,
√
t), and let σ, τ be the generators of the Galois group

such that M 〈σ〉 = K(
√
t) and M 〈τ〉 = K(

√
s). If x = ψ(σ) and y = ψ(τ),

we know that x2 = a ∈ F×, y2 = b ∈ F× and xy = εyx for some ε ∈ F×.
In fact, multiplying this expression on the left by x we see that necessarily
ε = −1, and hence B ' (a, b)F .

Let γs,a be the cocycle in Z2(Gal(M/K), F×) defined as the inflation of
the cocycle

γs,a(1, 1) = γs,a(σ, 1) = γs,a(1, σ) = 1, γs,a(σ, σ) = a;
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in a similar way we define the cocycle γt,b by means of

γt,b(1, 1) = γt,b(τ, 1) = γt,b(1, τ) = 1, γt,b(τ, τ) = b.

Let χs and χt be the elements in Hom(Gal(M/K),Z/2Z) given by ρ√s/
√
s

= (−1)χs(ρ) and ρ
√
t/
√
t = (−1)χt(ρ), and let γs,t be the 2-cocycle defined by

γs,t(ρ, µ) = (−1)χs(µ)χt(ρ). Then a direct computation shows that a cocycle
representing δ(ψ) is the product of these three 2-cocycles: c = γs,t ·γs,a ·γt,b.
The cocycle γs,t represents the quaternion algebra (s, t)K , and then we have
δ(ψ)± = (s, t)K · (s, sign(a))K · (t, sign(b))K . Since B is totally indefinite, we
can suppose that a is positive, and then δ(ψ)± = (sign(b)s, t)K . Arguing as
in the proof of 3.2, the component δ(ψ) is easily seen to be (s, a)P · (t, b)P .

Finally, suppose that B ' (a, b)F where the element a is positive. Let
s, t be in K \ K2, and let x, y ∈ B be such that x2 = a, y2 = b and
xy = −yx. With the same notation as before for Gal(K(

√
s,
√
t)/K), the

map ψ that sends σ to x and τ to y satisfies δ(ψ)± = (sign(b) s, t)K and
δ(ψ) = (s, a)P · (t, b)P .

Proposition 3.4. Suppose that B×/F× contains a subgroup isomorphic
to Cn for some n > 2, and let ζn be a primitive nth root of unity in F and
α = 2 + ζn + ζ−1

n . An element γ ∈ H2(GK , F×) lies in ∆Cn if and only if
there exists a cyclic extension M/K, with Gal(M/K) = 〈σ〉 such that

• γ = (t, α), where M(
√
t) = M 〈σ

2〉,
• γ± is represented by the cocycle

(3.1) c±(σi, σj) =
{

1 if i+ j < n,
−1 if i+ j ≥ n.

We note that if n is odd then ∆Cn = {1}.
Proof. Let ψ be a morphism with image isomorphic to Cn. Then the

fixed field for kerψ is a cyclic extension M/K with Gal(M/K) = 〈σ〉. The
element x ∈ B× such that ψ(σ) = x has the property that a = xn lies in F×.
Since ψ(σi) = xi, a straightforward computation shows that δ(ψ) is given
by

(3.2) c(σi, σj) =
{

1 if i+ j < n,
a if i+ j ≥ n.

By [CF, Lemma 2.1] we can suppose that x = 1 + ζ with ζ ∈ B× an
element of order n. We identify ζ with ζn and then by Proposition 3.1
we see that ζ + ζ−1 ∈ F×. From (1 + ζ)2ζ−1 = 2 + ζ + ζ−1 we see that
(1 + ζ)2n = (2 + ζ+ ζ−1)n, and if we define α = (2 + ζ+ ζ−1) ∈ F×, we have
a2 = x2n = (1 + ζ)2n = αn. Therefore, the cocycle c2 is the coboundary of
the map σi 7→ αi, 0 ≤ i < n, and by Proposition 2.3 the component δ(ψ) is
the map that sends σ to the class of α in P/P 2. Clearly σ2 is in the kernel
of this map, and since 〈σ〉 = 〈σ2〉, it follows that if n is odd, then δ(ψ) is
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trivial in this case, while if n is even and K(
√
t) is the fixed field of M under

〈σ2〉, then δ(ψ) = (t, α)P .
A cocycle representing δ(ψ)± is the sign of (3.2). If n is odd, the coho-

mology class of this cocycle is always trivial (it is the coboundary of the
map σi 7→ (sign a)i for 0 ≤ i < n). If n is even then a is negative because

a = xn = (1 + ζ)n = (2 + ζ + ζ−1)n/2ζn/2 = −(2 + ζ + ζ−1)n/2,

and 2 + ζ + ζ−1 is positive due to the identification of ζ with ζn. This shows
that δ(ψ)± is given by (3.1).

Finally, if t, M , σ and α are as in the statement of the proposition, the
map ψ sending σ to (1 + ζ) with ζ ∈ B× an element of order n gives a δ(ψ)
with the predicted components.

Proposition 3.5. Suppose that B×/F× contains a subgroup isomorphic
to D2n for some n > 2. Let ζn be a primitive nth root of unity in F , α = 2+
ζn+ζ−1

n and d = (ζn+ζ−1
n )2−4. A cohomology class γ ∈ H2(GK , F×) lies in

∆D2n if and only if there exists a dihedral extension M/K with Gal(M/K) =
〈σ, τ | σn = 1, τ2 = 1, στ = τσ−1〉 such that

• γ = (s, α)P · (t, b)P , where L(
√
s) = M 〈σ

2,τ〉, L(
√
t) = M 〈σ〉 and

b ∈ F× satisfies that B ' (d, b)F ,
• γ± is given by the cocycle

c±(σiτ, σi
′
τ j

′
) =

{
1 if i− i′ ≥ 0,
−1 if i− i′ < 0,

(3.3)

c±(σi, σi
′
τ j

′
) =

{
1 if i+ i′ < n,
−1 if i+ i′ ≥ n.

We note that if n is odd, then γ = (t, b)P and γ± = 1.

Proof. Let ψ be a morphism with image isomorphic to D2n. It factorizes
through a dihedral extension M with Gal(M/K) = 〈σ, τ〉 and the relations
between the generators as in the proposition. If we call x = ψ(σ), y = ψ(τ),
we know that xn = a ∈ F×, y2 = b ∈ F× and there exists some ε ∈ F× such
that xy = εyx−1. Multiplying on the left by xn−1 we find that xny = εnyx−n

and hence εn = a2. Now we show that, in fact, ε can be identified with α.
Indeed, x = 1 + ζ with ζ ∈ B× of order n that we identify with ζn, and
so x−1 = (1 + ζ−1)(2 + ζ + ζ−1)−1. Since F (ζ) is a maximal subfield of B
different from F (y), the conjugation by y is a non-trivial automorphism of
F (ζ)/F . The only such automorphism is complex conjugation, which sends
ζ to ζ−1, and therefore y−1ζy = ζ−1. This implies that (1+ζ)y = y(1+ζ−1),
and this is xy = (2 + ζ + ζ−1)yx−1, which proves that ε = (2 + ζ + ζ−1),
which is identified with α.
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To give a compact expression for δ(ψ) we first define a cocycle γb:

γb(σiτ j , σi
′
τ j

′
) =

{
1 if j + j′ < 2,
b if j + j′ = 2,

and a cocycle e:

e(σiτ, σi
′
τ j

′
) =

{
αi

′
if i− i′ ≥ 0,

αi
′
a−1 if i− i′ < 0,

e(σi, σi
′
τ j

′
) =

{
1 if i+ i′ < n,
a if i+ i′ ≥ n.

To compute a cocycle that represents δ(ψ), we take the lift ψ̃ from B×/F×
to B given by ψ̃(σiτ j) = xiyj for 0 ≤ i < n, 0 ≤ j < 2. Then

(δ(ψ))(σiτ, σi
′
τ j

′
) = ψ̃(σiτ)ψ̃(σi

′
τ j

′
)ψ̃(σiτσi

′
τ j

′
)−1

= ψ̃(σiτ)ψ̃(σi
′
τ j

′
)ψ̃(σi−i

′
τ1+j′)−1

=
{
xiyxi

′
yj

′
(xi−i

′
y(1+j′)mod 2)−1 if i− i′ ≥ 0,

xiyxi
′
yj

′
(xn+(i−i′)y(1+j′)mod 2)−1 if i− i′ < 0

=
{
αi

′
xi−i

′
y1+j′y−(1+j′)mod 2 x−(i−i′) if i− i′ ≥ 0,

αi
′
xi−i

′
y1+j′y−(1+j′)mod 2 x−(i−i′)x−n if i− i′ < 0

=
{
γb(σiτ, σi

′
τ j

′
)αi

′
if i− i′ ≥ 0,

γb(σiτ, σi
′
τ j

′
)αi

′
a−1 if i− i′ < 0,

(δ(ψ))(σi, σi
′
τ j

′
) = ψ̃(σi)ψ̃(σi

′
τ j

′
)ψ̃(σiσi

′
τ j

′
)−1

= ψ̃(σi)ψ̃(σi
′
τ j

′
)ψ̃(σi+i

′
τ j

′
)−1

=
{
xixi

′
yj

′
(xi+i

′
yj

′
)−1 if i+ i′ < n,

xixi
′
yj

′
(x(i+i′)−nyj

′
)−1 if i+ i′ ≥ n

=
{
xi+i

′
yj

′
y−j

′
x−(i+i′) if i+ i′ < n,

xi+i
′
yj

′
y−j

′
x−(i+i′)xn if i+ i′ ≥ n

=
{
γb(σi, σi

′
τ j

′
) if i+ i′ < n,

γb(σi, σi
′
τ j) · a if i+ i′ ≥ n.

From these expressions we see that δ(ψ) is represented by the cocycle γb · e.
Clearly γb is 2-torsion since γ2

b is the coboundary of the map dγ(σi) = 1,
dγ(σiτ) = b. The cocycle e is 2-torsion as well, and a coboundary for e2 is
given by the map de(σiτ j) = αi. If we view dγ and de as taking values in
P/P 2, then by Proposition 2.3 we see that δ(ψ) is the map de · dγ . Note
that 〈σ2, τ〉 ⊆ ker de. If n is odd, then 〈σ2, τ〉 = Gal(M/K) and the only
contribution to δ(ψ) comes from dγ , and it is the map (t, b)P . If n is even,
then the contribution from de is (s, α), and in this case δ(ψ) = (s, α)P ·(t, b)P .

The component δ(ψ)± comes from taking the sign in the cocycle γb·e. The
element b is positive, since by [CF, Lemma 2.3] we know that B ' (d, b)F ,
and d is negative. To determine the sign of a, note that from αn = a2 we
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find that if n is even then αn/2 = ±a. The case αn/2 = a is not possible since
otherwise F (xn/2, y) would be a subfield of B of dimension 4 over F . Then
αn/2 = −a, and the fact that α is totally positive forces a to be negative.
This shows that δ(ψ)± is represented by the cocycle (3.3). If n is odd then
c± is the coboundary of the map σiτ j 7→ (−1)i.

As usual, given an extension M/K, elements b ∈ F×, s, t ∈ K× and
c± ∈ Z2(Gal(M/K), {±1}) with the properties described in the proposition,
one can easily construct a map ψ with the prescribed δ(ψ) just defining
ψ(σ) = x and ψ(τ) = y, where x, y generate a subgroup of B× isomorphic
to D2n and y2 = b.

4. Examples. In this section we illustrate with some examples the use of
the techniques developed so far in studying the field of definition of building
blocks up to isogeny. We will use the information provided by the building
block table of [Qu, Section 5.1 of the Appendix]. These data can also be
obtained directly by means of the Magma functions implemented by Jordi
Quer, which are based on the packages of William Stein for modular abelian
varieties.

Example. Let B be the only building block of dimension 2 with quater-
nionic multiplication that is associated to a newform f of level N = 243 and
trivial Nebentypus, and let γ = [cB] be its cohomology class. The compo-
nents of γ are γ± = 1 and γ = (−3, 6)P , and KP = Q(

√
−3) is a minimum

field of definition of B and of its endomorphisms up to isogeny. The dimen-
sion of B is 2, as it is the dimension of Af ; therefore, we know a priori that Q
is a field of definition of B up to isogeny. Let us see now how this can also be
deduced using our results. The endomorphism algebra B is the quaternion
algebra over Q ramified at the primes 2 and 3. The field Q(

√
6) is isomorphic

to a maximal subfield of B, and by Proposition 3.2 there exists a morphism
ψ : GQ → B×/Q× such that δ(ψ) = (−3, 6)P and δ(ψ)± = (−3, 1)Q, which
is trivial in H2(GQ, {±1}). Therefore γ = δ(ψ) and we deduce the existence
of an abelian variety defined over Q and isogenous to B.

Example. Let B be the only quaternionic building block of dimension
2 associated to a modular form f of level N = 60 with Nebentypus of
order 4. In this case the variety Af is 4-dimensional and the cohomology class
associated to B has components γ = (5, 2)P ·(−3, 5)P , and γ± the quaternion
algebra over Q ramified at the primes 3 and 5. The field KP = Q(

√
5,
√
−3)

is the minimum field of definition of the variety and of its endomorphisms up
to isogeny, and the algebra B = End0

Q(B) is the quaternion algebra over Q
ramified at 2 and 5, which is isomorphic to (−2, 5)Q. Hence, by Proposition
3.3 there exists a ψ : GQ → B×/Q× such that δ(ψ) = (5,−2)P · (−3, 5)P and
δ(ψ)± = (5, 3)Q, which is the quaternion algebra ramified at 3 and 5. Hence
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γ = δ(ψ) and by Proposition 2.5 there exists a variety B0 defined over Q
and with all its endomorphisms defined over KP that is isogenous to B.

Example. Let B be the only quaternionic building block of dimension
2 associated to a newform f of level N = 80 and Nebentypus of order 4.
Now γ = (5, 2)P · (−4, 3)P and γ± is the quaternion algebra over Q ramified
at 2 and 5. Again KP , which in this case is Q(

√
5,
√
−1), is the minimum

field of definition of B and of its endomorphisms up to isogeny.
First, we observe that there does not exist a variety B0 defined over Q

and with all its endomorphisms defined over KP . By 2.5 the existence of
such a variety would be equivalent to the existence of a ψ : GQ → B×/Q×
with image isomorphic to C2 × C2 such that δ(ψ) = γ and δ(ψ)± = γ±.
By 3.3, δ(ψ) = (s, a)P · (t, b)P with B ' (a, b)Q. If we want δ(ψ) = γ, the
only possibilities for a, b modulo squares are the following: a = 2 and b = 3,
a = 2 and b = −3, a = −2 and b = 3, or a = −2 and b = −3. Since B is the
quaternion algebra of discriminant 6, only the first two options are possible.
But if δ(ψ) = (5, 2)P ·(−4, 3)P , from 3.3 we see that δ(ψ)± = (5,−4)Q, which
is not equal to γ±, and if δ(ψ) = (5, 2)P ·(−4,−3)P then δ(ψ)± = (−5,−4)Q,
which is not equal to γ± either. Hence there does not exist such a ψ.

Now we will see that there exists a ψ : GQ → B×/F× with image iso-
morphic to D2·4 such that γ = δ(ψ). This will tell us that there exists an
abelian variety B0 defined over Q that is isogenous to B, but that does not
have all its endomorphisms defined over KP . First of all, we observe that
B ' (−1, 3)Q, and so B contains a maximal subfield isomorphic to Q(i),
where i =

√
−1. This implies that B×/Q× contains subgroups isomorphic

to D2·4. More precisely, if x, y are elements in B such that x2 = −1, y2 = 3,
and xy = −yx, then the subgroup of B×/Q× generated by 1 + x and y is
isomorphic to D2·4.

The number field M = Q( 4
√

5, i) has Gal(M/Q) ' D2·4, generated by the
automorphisms σ : 4

√
5 7→ i 4

√
5, i 7→ i, and τ : 4

√
5 7→ 4

√
5, i 7→ −i. We define

ψ : GQ → B×/F× as the morphism sending σ to 1 + x and τ to y. From the
expressions given in Proposition 3.5 we show that δ(ψ) = (−1, 3)P · (5, 2)P ,
which is equal to γ. It only remains to show that δ(ψ)± = γ±. Let D be the
quaternion algebra associated to δ(ψ)±. Since δ(ψ)± ∈ Z2(Gal(M/Q), {±1})
and the extension M/Q only ramifies at the primes 2 and 5, D can only ram-
ify at the places 2, 5 and ∞ (see [Pi, Proposition 18.5]). We will see that
D ⊗Q Q(i) is not trivial in the Brauer group (and therefore D ramifies at
some prime), and that D ⊗Q Q(

√
5) is trivial (and therefore D does not

ramify at ∞). These two conditions imply that D ramifies exactly at 2
and 5.

Since Gal(M/Q(i)) = 〈σ〉, a 2-cocycle c representing D ⊗Q Q(i) is the
restriction to the subgroup 〈σ〉 ⊆ Gal(M/Q) of a cocycle representing δ(ψ)±.
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From (3.3) we obtain

c(σi, σj) =
{

1 if i+ j < 4,
−1 if i+ j ≥ 4.

By [Pi, Lemma 15.1] the algebra associated to this cocycle is trivial if and
only if −1 ∈ NmM/Q(i)(M), where NmM/Q(i) refers to the norm in the ex-
tension M/Q(i). But −1 is not a norm of this extension, hence D ⊗Q Q(i)
is non-trivial in the Brauer group.

Since Gal(M/Q(
√

5)) = 〈σ2, τ〉, a 2-cocycle c representing D ⊗Q Q(
√

5)
is the restriction to 〈σ2, τ〉 ⊆ Gal(M/Q) of a cocycle representing δ(ψ)±.
Again from (3.3) we obtain the following:

c(1, 1) = 1, c(σ2, 1) = 1, c(τ, 1) = 1, c(σ2τ, 1) = 1,

c(1, σ2) = 1, c(σ2, σ2) = −1, c(τ, σ2) = −1, c(σ2τ, σ2) = 1,

c(1, τ) = 1, c(σ2, τ) = 1, c(τ, τ) = 1, c(σ2τ, τ) = 1,

c(1, σ2τ) = 1, c(σ2, σ2τ) = −1, c(τ, σ2τ) = −1, c(σ2τ, σ2τ) = 1.

To see that the cohomology class of this cocycle in H2(Gal(M/Q(
√

5)),M×)
is trivial (where now the action is the natural Galois action), we define a map
λ by λ(1) = 1, λ(σ2) = i, λ(τ) = i and λ(σ2τ) = −i. Now a computation
shows that c(ρ, µ) = λ(ρ) · ρλ(µ) · λ(ρµ)−1 for all ρ, µ ∈ Gal(M/Q(

√
5)).

Example. Consider the building block B in the table associated with
a newform of conductor 336. For this variety γ = (−3, 11)P and γ± is the
quaternion algebra ramified at 2 and 3. Hence KP = Q(

√
−3) and since

ResKP
Q (γ±) = 1 we see that KP is the minimum field of definition of B and

of its endomorphisms up to isogeny. We will show that B is not isogenous
to any variety defined over Q.

As KP is a quadratic number field and γ± 6= 1, the only morphisms ψ we
know to consider are those with image isomorphic to C2 or to Cn for some
even n > 2. The only such values of n with B×/Q× containing a subgroup
isomorphic to Cn are n = 4 and n = 6. Since the component δ(ψ) associated
to a ψ with image Cn has the form (t, 2+ζn+ζ−1

n ), and for n = 4, 6 we know
that 2 + ζn + ζ−1

n is not congruent to 11 modulo {±1}Q∗2, it turns out that
there does not exist any ψ with image C4 or C6 such that γ = δ(ψ). If ψ has
image C2, the only possibilities are δ(ψ) = (−3, 11) or δ(ψ) = (−3,−11).
In the first case we would have δ(ψ)± = (−3, 1)Q and in the second case
δ(ψ)± = (−3,−1). In both cases δ(ψ)± 6= γ±, and thus there does not exist
a ψ with image C2 such that γ = δ(ψ).
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Universitat Politècnica de Catalunya
Carrer Colom 11
08222 Terrassa, Spain
E-mail: xevi.guitart@gmail.com

Received on 21.1.2010
and in revised form on 13.9.2011 (6276)

http://dx.doi.org/10.5802/aif.1807
http://dx.doi.org/10.1090/S0025-5718-08-02132-7

	Introduction
	Building blocks and fields of definition
	The image of 
	Examples

