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1. Introduction. The classical Kronecker theorem in diophantine ap-
proximation, in one of its different versions, says that if θ1, . . . , θm ∈ R
are linearly independent over Q then (tθ1, . . . , tθm) is dense modulo 1. This
means, denoting by

πm : Rm → Rm/Zm = Tm

the canonical projection, that {πm(tθ1, . . . , tθm) : t ∈ R} is dense in Tm.
In this paper we estimate how much this results fails when the θi are

not all linearly independent, but of a special form. In particular, we give an
estimate, uniformly in m, when the θi are powers of an algebraic number α,
or more generally when they satisfy a general linear recurrence relation with
characteristic polynomial A(x) of degree d, a condition which is automati-
cally satisfied if θi = αi−1 and A(x) is the minimal integral polynomial of α.
We say that a sequence θ1, θ2, . . . is a recurrence sequence determined by
the polynomial adxd + · · ·+ a1x+ a0 when

∑d
i=0 θi+jai = 0 for each j > 1.

Before stating our main result, we give the definition of ε-density and
recall the notion of Mahler measure.

1.1. ε-density. For ε > 0 and a positive integer m, let Iε = [−ε/2, ε/2]m

be the cube with edge length ε centred at the origin, and let Cε = πm(Iε) ⊆
Tm be its projection on the torus.

Definition. A subset S ⊆ Tm is ε-dense if S+Cε̄ = Tm for each ε̄ > ε,
or equivalently if S+Cε is dense. A subset T ⊆ Rm is ε-dense if T +Iε̄ = Rm

whenever ε̄ > ε, or equivalently if T + Iε is dense.
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Alternatively, it is possible to consider on Tm the distance d∞(x, y) de-
fined as the infimum of the ∞-distance |x̃ − ỹ|∞ over all representatives
x̃, ỹ ∈ Rm of x, y. Since for each ρ > 0 the ρ/2-neighborhood of S with
respect to d∞(·, ·) is precisely S +Cρ, we see that S is ε-dense if and only if
its ε̄/2-neighborhood is the whole Tm for each ε̄ > ε (or, equivalently, if its
ε/2-neighborhood is dense).

1.2. Mahler measure. Let A(x) =
∑d

i=0 aix
i = ad

∏d
i=1(x − αi) be a

polynomial with complex coefficients such that a0 6= 0. The Mahler measure
of A(x) is defined as

M(A) = M(A(x)) = |ad|
d∏
i=1

max{1, |αi|}.

It is a notion of complexity that for the minimal polynomial of a ratio-
nal number p/q with (p, q) = 1 reduces to max(|p|, |q|). Furthermore, each
coefficient ai can be written as the sum of

(
d
i

)
products of some elements

among ad, α1, . . . , αd, each taken at most once, and we have ai ≤
(
d
i

)
M(A)

for i = 0, . . . , d.

1.3. Newton polygon. For a prime p let vp(·) be the p-adic valuation,
and let us recall that the Newton polygon of an integral primitive polynomial
A(x) is the boundary of the polygon in R2 obtained as the upper convex
envelope of the points with coordinates

(0, vp(a0)), (1, vp(a1)), . . . , (d, vp(ad)).

Suppose that the polygon has r edges with different slopes which connect the
consecutive pairs of points (wk, vp(awk

)) for 0 = w0 < w1 < · · · < wr = d,
let `k = wk − wk−1 be the length of the horizontal projection of the kth
edge, and let σk = (vp(awk

) − vp(awk−1
))/`k be its slope. We have σi < σj

whenever 1 ≤ i < j ≤ d.
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Newton polygon of A(x) = 9x4 − 3x3 − 9x2 − 2x + 3 for p = 3
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We will consider a splitting field K of A(x) over the field Qp of p-adic
numbers, and we extend the p-adic valuation and absolute value to K. As
usual, we write OK for the integral closure of Zp in K, which is the local ring
formed by the elements having non-negative valuation, with maximal ideal
m generated by the uniformizer π. As is well known, the polynomial A(x)
has precisely `k roots with p-adic valuation equal to −σk for 1 ≤ k ≤ r.

1.4. Main results. We now state our main results:

Theorem 1. Let m, d > 0 be positive integers, and let θ1, . . . , θm be
real numbers such that θ1, . . . , θd are linearly independent over Q, and the
remaining θd+1, . . . , θm are inductively defined by the linear recurrence re-
lation induced by a primitive integral polynomial A(x) of degree d and with
non-zero constant coefficient. Then

Sθ = Sθ,m = {πm(tθ1, . . . , tθm) : t ∈ R} ⊆ Tm

is ε-dense for all

ε ≥ min
{

1
M(A(x/2))

,
2d

M(A(2x))

}
.

In other terms, if ε is as stated, then for arbitrary real numbers x1, . . . , xm
it is possible to find a real number t and integers p1, . . . , pm such that

xi ≤ tθi − pi ≤ xi + ε for 1 ≤ i ≤ m.
The θi can clearly be taken to be the powers αi−1 of a real algebraic num-

ber α, and A(x) the minimal integral polynomial of α. But for each primitive
integral polynomial A(x) the allowed θi are any ‘sufficiently generic’ recur-
rence sequence determined by A(x), provided that θ1, . . . , θd are linearly
independent over Q.

We remark for convenience that

min
{

1
M(A(x/2))

,
2d

M(A(2x))

}
≤ 2[d/2]

M(A(x))
,

giving an estimate in terms of the Mahler measure of A(x); this inequality
will also be proved later.

Fixing the recurrence sequence θ1, θ2, . . . and varying m, the best εm
such that Sθ,m is εm-dense is initially equal to 0 by Kronecker’s theorem,
because Sθ,m is dense for m ≤ d, and then increases with m, since Sθ,m is
a projection of Sθ,m′ for m < m′. Theorem 1 gives an upper bound for the
sequence εm; a lower bound for the limit will be given in Theorem 2 below.

Some computational evidence actually makes us propose the following

Conjecture 1. In Theorem 1 we have ε-density for all ε≥1/M(A(x)).

The conjecture is supported by the apparent connection of the above
problem with algebraic dynamics (see [5]): as is well known, the toral auto-
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morphism determined by the companion matrix of the polynomial A(x) has
topological entropy equal to M(A(x)), a quantity controlling the growth of
orbits (which are recurrence sequences connected to A(x)). The ε-density
considered here is rather about how well the orbits in the toral dynamical
system can approximate a generic sequence modulo 1, but there may still
be some connection between the two questions.

This conjectured optimal density coefficient is not very far from what
is obtained in Theorem 1. Such a result would be optimal because of the
following lower bound for the ε-density, for large m:

Theorem 2. Let θ1, θ2, . . . and A(x) be as in Theorem 1. Then for each
ε < 1/M(A(x)) the set Sθ,m is not ε-dense for sufficiently large m.

Should it be possible to prove, for some ε > 1, that Sθ,m is ε-dense for
all recurrence sequences θ such that the corresponding A(x) is not a cyclo-
tomic polynomial, then a positive solution of Lehmer’s problem [5, Chap. 1]
would follow. This is because the existence of a sequence of polynomials
with Mahler measure approaching 1 from above would be automatically
ruled out.

During the proof of Theorem 2 a result about the structure of the mod-
ule of linear recurrences of fixed length is obtained. In particular, fixing a
prime p, denoting by Λ(p)

m ⊂ Zmp the module of linear recurrences of length m
in Zp determined by A(x), and keeping the notation of §1.3 for the Newton
polygon of A(x), we have

Theorem 3. For each prime p there exists a unique basis of Λ(p)
m such

that the d×m matrix M = (Mi,j) having the basis vectors as rows satisfies:

(1) The submatrix (Mi,j)1≤i≤d, 1≤j≤d (resp. (Mi,j)1≤i≤d,m−d+1≤j≤m) is
block upper (resp. lower) triangular, with blocks B1, . . . , Br (resp.
C1, . . . , Cr) on the diagonal; the number r of blocks is equal to the
number of edges of the Newton polygon of A(x), and Bk and Ck are
square matrices of size equal to the length `k of the kth side of the
polygon for each 1 ≤ k ≤ r.

(2) Let 1 ≤ s ≤ r be the smallest integer such that σs ≥ 0 (or, alterna-
tively, σs > 0). Then B1, . . . , Bs−1, Cs, . . . , Cr are identity matrices,
Ck has determinant with valuation −σk`k(m− d) for 1 ≤ k ≤ s− 1,
and Bk has determinant with valuation σk`k(m− d) for s ≤ k ≤ r.

(3) Moving t steps to the right from the element Mj,j = 1 on the diagonal
of the kth identity block Bk for 1 ≤ k ≤ s−1 (resp. to the left from an
Mj+m−d,j = 1 on the diagonal of the identity block Ck for s ≤ k ≤ r)
we find an element with p-adic valuation at least −tσk (resp. at least
tσk).
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In other words, the matrix M can be taken of the following form:

1 . . . . . . C0

1 . . . . . . C1 0
. . . . . .

1 . . . . . . . . . Cs−1

Bs . . . . . . . . . 1
. . . . . .

0 Br−1 . . . . . . 1
Br . . . . . . 1


and the behaviour of the p-adic valuation on the rows is controlled by the
slope of the segments of the Newton polygon of A(x).

For instance, if A(x) = 9x4− 3x3− 9x2− 2x+ 3 and we take p = 3, then
for recurrence length m = 10 the matrix M is

1 480
887

4203
16853

3861
33706

2511
33706

243
16853

729
33706 0 0 0

0 −7722
887

−5049
16853

−3339
33706

−76419
33706

33378
16853

−51543
33706 1 0 0

0 729
887

−44658
16853

42822
16853

−27306
16853

19179
16853

3489
16853 0 1 0

0 0 0 729
1078

243
1078

405
539

675
1078

423
539 48/49 1

 .

All denominators are prime to 3, the 3-adic valuations are
0 1 2 3 4 5 6 ∞ ∞ ∞
∞ 3 3 2 2 1 3 0 ∞ ∞
∞ 6 3 3 2 2 1 ∞ 0 ∞
∞ ∞ ∞ 6 5 4 3 2 1 0

 ,

and these valuations increase from left to right in the first row, slowly in-
crease from right to left in the second and third rows, and increase from
right to left in the last row.

2. Preliminaries. For a complex polynomial A(x) = adx
d + · · · + a1x

+ a0 with ad, a0 6= 0 let us define, for each ` ≥ 1, the rectangular `× (`+ d)
matrix

JAK`
def=



a0 a1 . . . ad

a0 a1 . . . ad

a0 a1 . . . ad
. . . . . . . . .

a0 a1 . . . ad


.
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JAK` is also the multiplication matrix for sections of power series by the
polynomial A(x), in the sense that if

F (x) =
∞∑
i=0

fix
i, G(x) =

∞∑
i=0

gix
i

are complex power series such that G(x) = A(x) · F (x), then

(gd+`−1, . . . , gd+1, gd)> = JAK` · (fd+`−1, . . . , fd+1, fd, . . . , f0)>,

indeed the range of the coefficients with index 0, 1, . . . , d + ` − 1 of F (x)
uniquely determines the coefficients with index d, d + 1, . . . , d + ` − 1 of
G(x).

Moreover, if A(x) factors as

A(x) = B(x)C(x), B(x) =
s∑
i=0

bix
i, C(x) =

t∑
i=0

cix
i,

then we have

JAK` = JBK` · JCK`+s = JCK` · JBK`+t,

as is easy to verify, observing that multiplying a power series by A(x) and
discarding the lowest d coefficients gives the same result as multiplying first
by C(x) and discarding the lowest t coefficients, and then by B(x) and
discarding the lowest s coefficients (and vice versa).

For each polynomial A(x) and positive integer m we will also need the
lower triangular m×m matrix

{A}m
def=



ad

ad−1 ad
...

...
. . .

a0 a1 . . . ad

a0 a1 . . . ad
. . . . . . . . .

a0 a1 ad


.

Note that JAK` is embedded in {A}`+d as the last ` rows. Similarly to the
previous case, if A(x) = B(x)C(x), then {A}m = {B}m{C}m. In particular,
if C(x) splits into linear factors as

C(x) =
t∏
i=1

(x− γi),
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we have

{C}m =
t∏
i=1

{x− γi}m.

3. Proof of Theorem 1. We will first show the inequality implicitly
stated in Theorem 1:

Proposition 1. Let A(x) be a polynomial. Then

min
{

1
M(A(x/2))

,
2d

M(A(2x))

}
≤ 2[d/2]

M(A(x))
.

Proof. We have

M(A(x/2)) =
|ad|
2d

d∏
j=1

max{1, |2αj |} = |ad|
d∏
j=1

max{1/2, |αj |},

while

2−dM(A(2x)) = |ad|
d∏
j=1

max{1, |αj/2|}

= |a0|
d∏
j=1

max{|α−1
j |, 1/2} = M(Ã(x/2)),

where we denoted by Ã(x) the conjugate polynomial
∑d

i=0 aix
d−i.

We have M(A(x/2)) ≥ 2−[d/2]M(A(x)) if A(x) has at least d/2 roots
≥ 1 in absolute value, while 2−dM(A(2x)) ≥ 2−[d/2]M(A(x)) if A(x) has at
least d/2 roots ≤ 1 in absolute value. Since at least one of these conditions
must hold, the proposition is proven.

Proof of Theorem 1. From Kronecker’s approximation theorem [3, pp.
53–54] the set Sθ,m is dense in the closed subgroup of the torus consisting
of the elements satisfying the same integral relations as the θ1, . . . , θm.

Let A(x) =
∑d

i=0 adx
d = ad

∏d
i=1(x−αi) be the primitive integral poly-

nomial defining the recurrence sequence θ1, θ2, . . . . If k0, . . . , km−1 is an in-
tegral linear relation satisfied by the θi (that is,

∑m
i=1 ki−1θi = 0), and

K(x) =
∑m−1

i=0 kix
i is the corresponding polynomial, we can consider the

remainder R(x) =
∑

i≥0 rix
i of the division of K(x) by A(x). It is a poly-

nomial of degree ≤ d − 1 and its coefficients r0, r1, . . . still define a linear
relation among the θi. But θ1, . . . , θd are linearly independent over Q, so
R(x) must be zero.

Consequently, K(x) must be a multiple of A(x) in Q[x], and thus in Z[x]
by the Gauss lemma, A(x) being primitive. This shows that for ` = m − d
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the rows of the matrix JAK` generate the Z-module of integral relations of
θ1, . . . , θm.

The closure of Sθ,m is thus the projection on Tm of the hyperplane

P = P (A) = {v ∈ Rm : JAK` · v = 0},

the kernel of the linear map JAK` : Rm → R`.
Its inverse image under the projection πm is P + Zm, and since we just

showed that the sublattice of Zm generated by the rows of the matrix JAK` is
the saturated sublattice of integral linear relations of θ1, . . . , θm, we conclude
that P + Zm is also equal to

Q = Q(A) = {v ∈ Rm : JAK` · v ∈ Z`}.

Indeed, the Z-linear map JAK` : Zm → Z` must be surjective (this is true
a fortiori as the above lattice is saturated, but it can also be seen directly
considering the `× ` minors modulo p for each prime p [4, Lemma 2, Chap.
1], which have gcd 1 because A(x) is primitive). Now, P + Zm ⊆ Q clearly,
and for each vector w ∈ Q there exists z ∈ Zm such that JAK` ·w = JAK` · z,
and consequently v = w − z is in P , so w = v + z ∈ P + Zm.

We are now reduced to proving that Q(A) is ε-dense in Rm for each ε
satisfying the inequality stated in the theorem. Applying the involution

(x1, x2, . . . , xm−1, xm) 7→ (xm, xm−1, . . . , x2, x1)

to Q(A) we obtain a set which clearly has the same ε-density properties as
Q(A), and which is Q(Ã), where Ã(x) is the conjugate polynomial Ã(x) =
a0x

d+ · · ·+ad−1x+ad. Consequently, we can just prove that Q(A) is ε-dense
for

ε ≥ 1/M(A(x/2)) =
(
|ad|

d∏
i=1

max{1/2, |αi|}
)−1

,

and the ε-density for ε ≥ 2d/M(A(2x)) = 1/M(Ã(x/2)) will follow from the
same estimate applied to Q(Ã).

To do so, note first that Q = Q(A) is ε-dense if and only if the image of
Iε = Iε,m = [−ε/2, ε/2]m via the map π` ◦ JAK` is the whole T`. Indeed, Q is
ε-dense if and only if every vector v ∈ Rm is contained in Q+ Iε, and

⇔ (v + Iε) ∩Q 6= ∅ ∀v ∈ Rm

⇔ (w + JAK` · Iε) ∩ Z` 6= ∅ ∀w ∈ R`,

by applying the matrix JAK` to the expression, and denoting by JAK` · Iε
the image of Iε under the map JAK`. This passage must be justified because
the matrix JAK` does not have rank m, but since Q contains all the vectors
that are mapped to Z`, the first intersection will be non-empty whenever
the second one is (the other direction is trivial).
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We will now factor A(x) as a product of polynomials B(x), C(x) ∈ R[x],
with a consequent factorization of JAK`, and prove two different estimates
for each of the two factors B(x) and C(x). We will select a posteriori the
factorization providing the best compound estimate.

So, let B(x) =
∑s

i=0 bixi and C(x) =
∑t

i=0 cixi with A(x) = B(x)C(x),
and recall the induced matrix factorization JAK` = JBK`JCK`+s. To prove
that

π` ◦ JAK` = π` ◦ JBK` ◦ JCK`+s

is surjective from Iε,m to T`, we can just prove that π` ◦ JBK` is surjective
from Iδ,`+s for some δ, and that JCK`+s · Iε,m contains Iδ,`+s. We anticipate
that C(x) will be chosen monic and with all roots < 1 in absolute value.

3.1. Estimate for B(x). We can take δ = 1/b0. Let us show that the
image of the cube Iδ,`+s under JBK` assumes each value modulo Z`, starting
with an arbitrary v = (v1, . . . , v`) ∈ R` and building inductively a vector
w = (w1, . . . , w`+s) in Iδ,`+s such that JBK` · w − v ∈ Z`. Suppose that
w ∈ Iδ,`+s is such that the components with index > i of JBK` · w − v
are in Z, and observe that while wi varies in the interval [−δ/2, δ/2], the
ith component of JBK` · w varies in an interval of width b0δ = 1, while all
components with index > i of JBK` · w stay fixed. Consequently, we can
select wi in [−δ/2, δ/2] to ensure that all components with index ≥ i of
JBK` · w − v are in Z. Repeating this procedure we construct a w with the
required properties and our claim follows.

3.2. Estimate for C(x). If C(x) =
∑t

i=0 cix
i =

∏t
i=1(x−γi), we prove

that it is possible to take

ε = δ

t∏
i=1

1
1− |γi|

as follows. Rather than working with JCK`+s we work with the non-singular
square matrix {C}m; if we prove that the image of Iε,m under {C}m contains
Iδ,m our claim will follow, since the image under JCKm is just the projection
on the last `+ s coordinates of the image under {C}m.

Now, rather than proving that the image of Iε,m under {C}m contains
Iδ,m, it is easier to prove that the image of Iδ,m under {C}−1

m is contained
in Iε,m. In particular, {C}m factors as

{C}m =
t∏
i=1

{x− γi}m,

and the inverse of a matrix of the form {x− γ}m for γ ∈ {γi}1≤i≤t is easily
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computed as

1
−γ 1

−γ 1

−γ . . .
. . . 1

−γ 1



−1

=



1
γ 1
γ2 γ 1

γ3 γ2 γ
. . .

...
...

. . . 1
γm−1 γm−2 . . . γ2 γ 1


.

This shows that if a (possibly complex) vector v = (v1, . . . , vm) has all
components with absolute value ≤ ρ for some ρ > 0, the vector w obtained
by applying the matrix {x− γ}−1

m will have components of the form

wr+1 =
r∑
i=0

γivr+1−i

for some 0 ≤ r < m, and their absolute value can be estimated as∣∣∣ r∑
i=0

γivr+1−i

∣∣∣ ≤ r∑
i=0

|γi| · |vr+1−i| ≤
r∑
i=0

|γi|ρ ≤ 1
1− |γ|

ρ.

Since ρ is arbitrary, applying iteratively {x − γi}−1
m for i = 1, . . . , t we find

that the set of complex vectors with all components < δ in absolute value
is mapped by {C}−1

m to complex vectors whose components have absolute
value at most ε. Consequently, Iδ,m is mapped into Iε,m, since {C}−1

m is a
matrix with real entries.

3.3. Conclusion. Let A(x) = B(x)C(x) be a real factorization of A(x),
with

B(x) =
s∑
i=0

bix
i = ad

s∏
i=1

(x− βi), C(x) =
t∑
i=0

cix
i =

t∏
i=1

(x− γi),

and with C(x) monic with all roots< 1 in absolute value. The above estimate
shows that Q is ε-dense for

ε ≥ 1
|ad|

s∏
i=0

1
|βi|
·
t∏
i=1

1
1− |γi|

,

and consequently for

ε ≥ 1
|ad|

d∏
i=0

min
{

1
|αi|

,
1

1− |αi|

}
=
(
|ad|

d∏
i=1

max{|αi|, 1− |αi|}
)−1

,

because we can take as γi precisely the αi with absolute value ≤ 1/2, and as
βi the remaining roots of A(x) (note that C(x) will have real coefficients).
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Since this last expression is clearly not greater than 1/M(A(x/2)), the proof
is complete.

Remark 1. While Theorem 1 gives an ε providing ε-density for Sm
which is good for each m, and by Theorem 2 this ε cannot be smaller than
1/M(A), a remark on the dependence on m of the best possible constant
εm should be added. Discarding the m ≤ d for which Sm is dense and hence
εm = 0, for m = d + 1 the matrix JAKd+1 is (a0, a1, . . . , ad) and since we
must have JAKd+1 · Iε + Z = R, ε should be at least

1∑d
i=0 |ai|

≥ 1∑d
i=0

(
d
i

)
M(A)

=
1

2dM(A)
.

Consequently, the first non-trivial example already requires a constant of
the order of 1/M(A), up to a constant depending only on d.

4. Integral linear recurrences of fixed length. In this section we
prove Theorem 3; it will be proved in full strength for its independent in-
terest, even if only a small corollary is required to prove Theorem 2. All
conclusions obtained in Zp can be lifted to Z with arbitrary approximation
with respect to the p-adic absolute value.

Let A(x) =
∑d

i=0 aix
i be a primitive integral polynomial of degree d with

a0 6= 0, and for m > d let Λm be the Z-module of integral vectors in Zm
forming a recurrence sequence determined by A(x). It is also the module of
integral vectors in the kernel of the matrix JAKm−d, so it has rank d. The
Zp-module Λm ⊗Z Zp over the ring Zp of p-adic integers is clearly equal to
the set of vectors in Zmp annihilated by JAKm−d and will be denoted by Λ(p)

m .

Proof of Theorem 3. Let N = (Ni,j) be the rational d ×m matrix ob-
tained by putting Ni,j = δij for 1 ≤ i, j ≤ d, and inductively defining the
remaining elements in each row to form a linear recurrence determined by
A(x). We prove that the square matrix Nξ = (Ni,ξj )1≤i,j≤d is non-singular
for ξ = (1, 2, . . . , w,m− d+w+ 1, . . . ,m), for all w = w0, . . . , wr which are
the ordinate of a vertex of the Newton polygon of A(x).

If A(x) has distinct roots α1, . . . , αd the matrix N is given by V −1 · L,
where

V = (αj−1
i )1≤i,j≤d, L = (αj−1

i )1≤i≤d, 1≤j≤m.

To obtain a formula for the determinant of Nξ valid for general αi, let us
work over C and suppose for a moment that (1/ad)A(x) =

∏d
i=1(x − αi)

where the αi are algebraically independent over C. The determinant of Nξ =
(Ni,ξj )1≤i,j≤d is equal to the determinant of Lξ = (Li,ξj )1≤i,j≤d divided by
detV , and this turns out to be the Schur function sλ (see [10]) associated
to the partition λ defined as λd−1+i = ξi − i+ 1 for 1 ≤ i ≤ d, evaluated at
α1, . . . , αd. Applying the definition of N by linear recurrence, note that the
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entries of N are polynomial functions in the elementary symmetric functions
of the αi, and hence polynomials in the αi, and the determinant of each
submatrix is a polynomial function of the αi as well. For αi varying outside of
the closed algebraic set defined by

∏
i>j(αi−αj) = 0, the determinant of Nξ

is equal to the polynomial sλ(α1, . . . , αd), and consequently that expression
will hold for each value of the αi.

If ξ is defined as above, λ has precisely d − w parts all equal to m − d,
and its conjugate partition λ′ is formed by m−d parts equal to d−w. Recall
now Jacobi–Trudi’s identity

sλ = det (eλ′i−i+j)1≤i,j≤k,

where the ei’s are the elementary symmetric functions, which holds for each
k no smaller than the number of parts of λ′. We are reduced to proving that
a matrix of the form (ed−w−i+j)1≤i,j≤m−d is non-singular. After evaluation
at the roots we have ei = (−1)iad−i/ad, and flipping the sign of rows and
columns of even index we can consider the determinant of

U = (aw+i−j)1≤i,j≤m−d

possibly up to sign, and discarding a factor a−m+d
d . Note that all entries on

the diagonal are equal to aw.
If w = w0 = 0 (resp. w = wr = d) then the matrix is lower (resp. upper)

triangular with aw 6= 0 on the diagonal, and consequently non-singular. Sup-
pose w = wk for some 1 < k < r, let ρ ∈ K be an element with p-adic valua-
tion equal to σk, and let R be the diagonal matrix with 1, ρ, ρ2, . . . , ρm−d−1

on the diagonal. The matrix

1
aw
R−1 · U ·R =

(
aw+i−jρ

j−i

aw

)
1≤i,j≤m−d

has all entries in OK , and is upper unitriangular when reduced modulo
m because it has all 1’s on the diagonal, and starting from aw the p-adic
valuation increases at a rate higher than σk.

Consequently, Nξ is non-singular, and we can consider the matrix Q =
N−1
ξ · N . We deduce that the matrix M must be unique: indeed, assume

for contradiction that M ′ has the same properties, and suppose that the ith
rows differ. If (vj)1≤j≤m is the difference vector of those rows we must have
vj = 0 unless wk < j ≤ m − d + wk for some k, and taking w = wk we
see that (vj) cannot be a linear combination of the rows of Q. But Q has
rank d, and the existence of (vj) would imply that the module Λm ⊗Z Q of
linear recurrences has rank > d, which is absurd.

Suppose now that w = wk with 1 ≤ k < s, so that the slope σk is ≤ 0
by the definition of s. We show that all entries in the rows with indices
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wk−1 + 1, . . . , wk − 1, wk are integers, and that the valuation of Qi,j for
wk−1 < i ≤ wk and j ≥ i is at least −σk(j − i).

In fact, let ρ have valuation equal to σk and consider the polynomial

B(x) =
d∑
i=0

ρw−iai
aw

xi =
d∑
i=0

bix
i ∈ OK [x].

Note that the Newton polygon of B(x) is obtained from the Newton polygon
of A(x) by subtracting the linear affine function f(x) = σk(x−w) + vp(aw),
and the kth side of the Newton polygon is moved to lie on the horizontal
axis. In particular, the coefficients bwk−1

and bwk
of B(x) are 6≡ 0 mod m,

but bi ≡ 0 (mod m) for i < wk−1 or i > wk.
On the other hand, for each wk−1 < i ≤ wk the vector (ρj−iQi,j)1≤j≤m

is a linear recurrence determined by B(x), and we claim that all entries are
in OK . Indeed, suppose this is not the case, and multiply its entries by the
smallest power of the uniformizer π required to make all entries in OK . Some
entry will be in OK \ m, but the first `k = wk entries will be in m. When
reduced modulo m, the subvector (ρj−iQi,j)wk−1<j≤m−d+wk

is a recurrence
determined by the polynomial

C(x) =
`k∑
i=0

bwk−1+i x
i =

`k∑
i=0

cix
i ∈ (OK/m)[x].

This recurrence of order `k in OK/m is supposed to have non-zero entries,
while the first `k entries are zero. This is absurd, and the claim on the
integrality of the wk−1 + 1, . . . , wk − 1, wk is proved.

The matrix (ρj−iQi,j)wk−1<i≤wk,m−d+wk−1<j≤m−d+wk
is invertible, be-

cause modulo m it is obtained as the (m − d)th power of the companion
matrix 

0 −c0/c`k
1 0 −c1/c`k

1 0 −c2/c`k
. . . . . .

...
1 −c`k−1/c`k


of C(x), which is invertible. Hence (Qi,j)wk−1<i≤wk,m−d+wk−1<j≤m−d+wk

,
which is obtained by conjugating it with the diagonal matrix with diag-
onal 1, ρ, . . . , ρ`k−1 and multiplying by ρ−(m−d), has the same valuation as
ρ−`k(m−d), i.e. equal to −σk`k(m− d).

In this way we have built the rows from wk−1 + 1 to wk of M , and
proved that Ck = (Qi,j)wk−1<i≤wk,m−d+wk−1<j≤m−d+wk

has determinant
with valuation −σk`k(m − d), while Bk = (Qi,j)wk−1<i,j≤wk

is the iden-
tity. For s ≤ k ≤ r we can clearly proceed in a symmetrical way, taking Ck
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equal to the identity and proceeding on the left of Ck towards Bk, which
will have determinant equal to σk`k(m− d).

The matrix we have built by selecting at each step the rows with indices
from wk−1+1 to wk ofQ clearly satisfies all requirements forM . Furthermore
all rows are linearly independent, so the module they generate over Zp has
rank d.

To prove that the rows of M generate all of Λ(p)
m observe that they

generate a Zp-module contained in Λ
(p)
m , and suppose the containment is

strict. A basis of Λ(p)
m can be obtained by left multiplication by a matrix B

with determinant in Qp \ Zp. However the matrix Mξ = (Mi,ξj )1≤i,j≤d for
ξ = (1, . . . , ws,m− d+ ws + 1, . . . ,m) has determinant 1, and B ·Mξ (and
consequently B ·M) would not have coefficients in Zp, which is absurd.

Let us now turn to the Z-module Λm again. If E is a finitely generated
Z-module and F ⊆ E a submodule with index n, then the index of F ⊗Z Zp
in E ⊗Z Zp is precisely the largest power of p dividing n.

Let Θm ⊆ Zd ×Qm−d be Z-module of linear recurrences determined by
A(x) such that the first d coordinates are in Z, and similarly let Θ(p)

m =
Θm ⊗Z Zp. The matrix N in the proof of Theorem 1 is clearly a Z-basis
of Θm.

For each prime p the matrix M is Mξ · N where Mξ = (Mi,ξj )1≤i,j≤d
and ξ = (1, . . . , d), and as is immediately verified, detMξ has the same
p-adic valuation as am−dd , because for s ≤ k ≤ r, detBk has valuation
σk`k(m− d) = (vp(awk

)− vp(awk−1
))(m− d).

Consequently, (Θ(p)
m : Λ(p)

m ) is equal to the largest power of p dividing
am−dd , for each p. We have proved:

Corollary 1. The module Λm has index |ad|m−d in Θm.

5. Proof of Theorem 2. Before providing the proof of Theorem 2, let
us recall a few facts of linear algebra. Let 〈·, ·〉 be the standard inner product
on Rn, and u1, . . . , uk ∈ Rn for k ≤ n. The Gram matrix of the ui is the
k × k matrix defined as

G(u1, . . . , uk) = (〈ui, uj〉)1≤i,j≤k,

and its determinant can be geometrically interpreted as the square of the
volume of the parallelepiped formed by the vectors ui. If the ui can be
completed with uk+1, . . . , un ∈ Rn to a basis of Rn, and v1, . . . , vn ∈ Rn are
such that they form a pair of biorthonormal bases, then we have

G(u1, . . . , un)G(v1, . . . , vn) = I

(see [8, §66.2, p. 66-6]). Since G(u1, . . . , uk) is a minor of G(u1, . . . , un) and
its cofactor is G(vk+1, . . . , vn), if the u1, . . . , un form a parallelepiped of
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volume 1 (and consequently G(u1, . . . , un) has determinant 1) we have

detG(u1, . . . , uk) = detG(vk+1, . . . , vn).

This follows from the properties of compound matrices (see [6, Chap. 1, §4,
p. 21, equation (33) in particular]) related to what is sometimes also called
“Jacobi’s theorem” [7, §14.16].

We will also need the following technical lemma about the asymptotic
behaviour of the determinant of a perturbed Toeplitz matrix that arises
as the Gram matrix of particular sets of vectors (see Bump–Diaconis [2],
Tracy–Widom [11] and Lyons [9] for general results on this topic). Let B(x)
be a real polynomial of degree d, and let (Bi)1≤i≤` be the row vectors of the
matrix JBK`. Let f1, . . . , fq be a finite set of vectors in Rd, which will also
be considered as vectors in Rd+` with all extra coordinates 0.

Lemma 1. We have

detG(f1, . . . , fq, B1, . . . , B`) = O(M2`)

for each M > M(B).

Proof. Let us start by showing that

detG(B1, . . . , B`) = O(M2`)

for each M > M(B). The determinant of a banded Hermitian Toeplitz
matrix can be easily estimated via Trench’s formula [1, Theorem 2.10, p. 41].
Let C(x) =

∑s
j=−r cjx

j be a Laurent polynomial, and let gn(z) be the row

gn(z) = (1, z, z2, . . . , zr−1, zn+r, zn+r+1, . . . , zn+r+s−1).

Let ξ1, . . . , ξk be the distinct roots of C(x), and let µ1, . . . , µk be their mul-
tiplicities. Define Gn as the determinant of the (r + s)× (r + s) matrix Γn
whose first µ1 rows are gn(ξ1), g′n(ξ1), . . . , g(µ1−1)

n (ξ1), whose next µ2 rows
are gn(ξ2), g′n(ξ2), . . . , g(µ2−1)

n (ξ2), and so on.
Then G0 6= 0, and putting Dn−1(C) = det (ci−j)0≤i,j≤n−1 we have (by

Trench’s formula)

Dn−1(C) = (−1)nscns
Gn
G0

for every n ≥ 1.

Applying the formula to C(x) = B(x)B(x−1) and n = `, we just have
to show that cnsGn = O(Mn) for each M > M(C) = M(B)2, for some
K(M). But the determinant of the (r + s) × (r + s) matrix Γn can be
expanded as a sum of monomials in the ξi having polynomials in n as co-
efficients, where in each monomial, ξi appears with exponent smaller than
(n + r + s)µi. Consequently, by estimating each monomial the determi-
nant is ≤ P (n)M(c−1

s C)n+r+s for some polynomial P (n) in n. Therefore
cnsGn = O(Mn) for each M > M(C), as required.
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Now we know from Bump–Diaconis [2] that a minor of a Toeplitz ma-
trix obtained by deleting the first r columns and a fixed set of rows, i.e.
of the form Dλ

n−1(C) = det (cλi−i+j)1≤i,j≤n for some fixed partition λ =
(λ1, λ2, . . . ), is asymptotic for n→∞ to K ·Dn−1(C) for some constant K.
On the other hand, let us expand the determinant of the matrix

(Gi,j)1≤i,j≤q+` = G(f1, . . . , fq, B1, . . . , B`)

along the first p ≥ d + q columns: the expression obtained is a sum of the
form ∑

i1<···<ip

det (Giu,v)1≤u,v≤p · C
i1...ip
1...p (G),

where det(Giu,v) is non-zero only for a finite number of choices of the rows
i1, . . . , ip, while for i1, . . . , ip fixed the cofactor C

i1...ip
1...p (G) is ±1 times a

determinant of the form Dλ
n−1(C), where C(x) = B(x)B(x−1) and λ is a

partition depending only in the i1, . . . , ip. Consequently, the expansion is a
sum of a fixed number of terms that are O(M2`) for each M > M(B), and
hence is O(M2`) too.

We also require the following lemma, which provides for m = ` + d a
basis of the d-dimensional lattice Λm of vectors in Zm killed by JAK` (i.e.
form a linear recurrence determined by A(x)) which has good properties
with respect to the Gramian:

Lemma 2. There exist for each m a basis ω1, . . . , ωd of the lattice Λm
such that

G(ωr1 , . . . , ωrp) ≤ K ·M2m

for each subset of the ωi and for each M > M(A), with some constant K
independent of m.

Proof. To construct the required basis, let ζ1, . . . , ζd ∈ Qm be such that
the jth coordinate of ζi is δij for 1 ≤ i, j ≤ d, and define the remaining
coordinates by the linear recurrence determined by A(x). The ζi are clearly
a basis of the Z-module Θm of vectors in Zd × Q` killed by JAK`, and by
Corollary 1 we have (Θm : Λm) = |ad|`. Consequently, a basis (ωi) of Λm can
be obtained by applying to (ζi) a matrixW = (Wi,j)1≤i,j≤d with determinant
|ad|`. Changing it by left multiplication with an element of SL(d,Z) we can
take W in Hermite normal form [8, §23.2, pp. 23-6, 23-7], that is, upper
triangular and with |Wi,j | ≤ |Wj,j | whenever i < j.

We show that we can bound the Gramian of a subset of the ωi in terms of
the Gramians of all subsets of the ζi and the determinant of (Wi,j). Indeed,
let ωr1 , . . . , ωrp , for 1 ≤ p ≤ d and 1 ≤ r1 < · · · < rp ≤ d, be a subset of
the ωi. The quantity

√
G(ωr1 , . . . , ωrp) is the volume of the parallelepiped
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formed by the ωri and is also equal to

sup
φ∈Φp

φ(ωr1 , . . . , ωrp),

where Φp is the subset of the exterior power Λ∗p(Rm) defined by

Φp = {n1 ∧ · · · ∧ np : n1, . . . , np ∈ Rm orthonormal},
with Rm identified with its dual through 〈·, ·〉. This can now be estimated
as

sup
φ∈Φp

φ
( d∑
j=1

Wr1,jζj , . . . ,
d∑
j=1

Wrp,jζj

)
= sup

φ∈Φp

∑
1≤s1,...,sp≤d

φ(Wr1,s1ζs1 , . . . ,Wrp,spζsp)

≤
∑

1≤s1,...,sp≤d
sup
φ∈Φp

Wr1,s1 · · ·Wrp,sp · φ(ζs1 , . . . , ζsp)

≤
∑

1≤s1,...,sp≤d
|Ws1,s1 · · ·Wsp,sp | · sup

φ∈Φp

φ(ζs1 , . . . , ζsp)

≤ det(Wi,j) ·
∑

1≤s1,...,sp≤d
sup
φ∈Φp

φ(ζs1 , . . . , ζsp),

and since we can discard the summands where si = sj for some i 6= j, and
(Wi,j) is upper triangular and with integral entries, the above is

≤ det(Wi,j) · dp · max
1≤s1<···<sp≤d

√
G(ζs1 , . . . , ζsp).

Now letB(x) = a−1
d A(x) (so thatM(B) = |a−1

d |M(A)), and let (Bi)1≤i≤`
be the row vectors of the rational matrix JBK`. The matrix JBK` can be com-
pleted to a square matrix with determinant 1 by inserting the row vectors
e1, . . . , ed of the standard basis (ei)1≤i≤m of Rm, and the ζi are dual to
the ei in the basis e1, . . . , ed, B1, . . . , B` with respect to the standard scalar
product 〈·, ·〉. Consequently, if ζr1 , . . . , ζrp , for 1 ≤ r1 < · · · < rp ≤ d, are a
subset of the ζi and 1 ≤ s1 < · · · < sq ≤ d is the complementary set of in-
dices in 1, . . . , d, the Gram determinant of ζr1 , . . . , ζrp is the same as that of
es1 , . . . , esq , B1, . . . , B`, which is O(N2`) for each N > M(B) by Lemma 1.
Therefore the Gram determinant of the ωri can be estimated by K|ad|2`N2`

for some constant K, and hence by KM2` = K ′M2m for each M > M(A).

Proof of Theorem 2. As in the proof of Theorem 1, put ` = m− d, and
set

Q = Q(A) = {v ∈ Rm : JAK` · v ∈ Z`}.
Let ω1, . . . , ωd ∈ Zm be any basis of the d-dimensional lattice Λm of vectors
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in Zm which are killed by JAK` (i.e. form a linear recurrence determined by
A(x)), and let e1, . . . , em be the standard basis of Rm.

Suppose for contradiction that ε̄ < ε < 1/M(A(x)) and Q is ε̄-dense,
independently of m. Since ε > ε̄ we have πm(Q + [0, ε]m) = Tm, and
since Q is the union of integral translates of the parallelepiped formed
by ω1, . . . , ωd, the map πm : Rm → Tm must be surjective on the paral-
lelepiped Π formed by the combinations with coefficients in [0, 1] of the
vectors εe1, . . . , εem, ω1, . . . , ωd.

The map πm locally preserves the volume, and the image of Π is all Tm,
so the volume of Π must be ≥ 1. But this volume can be computed as the
sum of the volumes of the parallelepipeds formed by all choices of m vectors
among εe1, . . . , εem, ω1, . . . , ωd. Note that the volume of the parallelepiped
formed by, say, εes1 , . . . , εesq , ωr1 , . . . , ωrp with p+q = m is not greater than

εq
√
G(ωr1 , . . . , ωrp) ≤ εm−d

√
G(ωr1 , . . . , ωrp),

since q ≥ m − d and ε ≤ 1. The total number of such parallelepipeds is(
m+d
m

)
, and if we take a basis ωi of Λm via Lemma 2, the volume of Π can

be estimated as

Vol(Π) ≤
√
K

(
m+ d

m

)
εm−dMm.

In particular, this tends to 0 as m → ∞ if M is chosen such that M(A) <
M < 1/ε, which is possible since we assumed ε < 1/M(A).
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[1] A. Böttcher and S. M. Grudsky, Spectral Properties of Banded Toeplitz Matrices,
SIAM, Philadelphia, PA, 2005.

[2] D. Bump and P. Diaconis, Toeplitz minors, J. Combin. Theory Ser. A 97 (2002),
252–271.

[3] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts
in Math. 45, Cambridge Univ. Press, New York, 1957.

[4] —, An Introduction to the Geometry of Number, 2nd printing, corrected, Springer,
Berlin, 1971.

[5] G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynam-
ics, Springer, London, 1999.

[6] F. R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea Publ., New York, 1959.
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