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Rational points on some elliptic surfaces
by

ENRICO JABARA (Venezia)

1. Introduction. Let & be the elliptic surface given by the equation
(%) & y? =2+ A(t)z + B(t)

with A, B € Q[t]. The discriminant of & (which may be considered as an
elliptic curve defined over Q(t)) is defined by A(t) = —16(4A(t)3 + 27B(t)?)
and its j-invariant by j(t) = —1728(4A(t)3) A(t)~!. The surface & is said to
be isotrivial if its j-invariant is constant. We say that & is split (or splits)
if there is an elliptic curve C such that & ~ C x P over C; if & splits then &
is necessarily isotrivial. We shall deal only with non-split elliptic surfaces.

Let & be the elliptic surface (x); if & € Q is such that A(k) # 0 one may
consider the elliptic curve

Ek): y* =23+ A(k)z + B(k).
In this paper we are interested in the following

PROBLEM 1.1. Determine whether or not there exist £ € Q such that
the rank rk(&'(k)) of the elliptic curve & (k) is positive.

We observe that if & admits a non-torsion rational point over Q(t)
then by Silverman’s specialization theorem (see Theorem III.11.4 of [5])
rk(&(k)) > 0 for all but finitely many k£ € Q. This also proves that the set
of rational points on & is dense in the Zariski topology (see [6]).

In [6] Ulas considered the particular cases of the (isotrivial) surfaces

E:yr=2"+ f(t)z
with f a polynomial of degree 4 and
&9y =2+ g(t)

with ¢ a monic polynomial of degree 6. In particular, he proved (The-
orem 2.2 of [6]) that, in the first case, if f(t) # f(—t) then Problem 1.1
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always has an affirmative answer. That result led him to formulate the fol-
lowing conjecture:

CONJECTURE 1.2 (cf. Conjecture 2.5 of [6]). Let a,b,c € Q with a # 0
and let f(t) = at*+bt2 +d be such that f(t) # at*. Then there exists to € Q
such that tk(&f(to)) > 0.

As a partial confirmation of Conjecture 1.2 we shall prove

THEOREM A. Let f(t) = at* + bt> + d with a,b,d € Q, a # 0 and
f(t) # at*. Suppose that one of the following conditions holds:

(i) a= -+ p? with \,u € Q and \ # 0,
(i) a = 4\* — p? with A\, u € Q and X\ # 0.

Then there exist infinitely many k € Q such that tk(&¢(k)) > 0.
The following result follows from the proof of Theorem A:

THEOREM B. Let K be a field of characteristic different from 2. Then
every element of K may be written in each of the following ways:

at—vt—2 v+l At -2 —at -4t + 2
with a suitable choice of a,b,c € K.

While Theorem B focuses on an aspect of number theory (Waring-type
problems in Q), Theorems C and D below have a more geometric vein.
With regard to surfaces of the type &9 with
g(t) =t° +at* +bt3 + ct? + dt + e € Q[t]
Ulas proved that if g(¢) # g(—t) then Problem 1.1 has an affirmative solution
(Theorem 3.1 of [6]), and has formulated the following conjecture:

CONJECTURE 1.3 (cf. Conjecture 3.6 of [6]). Leta,c,e € Q and let g(t) =
t8 +at* + ct? + e be such that g(t) # 5. Then there exists a to € Q such that
rk(&9(ty)) > 0.

In this article we shall generalize the results of Ulas to surfaces that are
not necessarily isotrivial by proving

THEOREM C. Let A(t) = asgt? + ast? +art +ag, B(t) =t +byt* +bst® +
bot? + byt + by € Q[t] and let & be the elliptic surface with equation

&y =23+ Alt)x + B(t).
Suppose in addition that if A(t) = 0 then B(t) # t5. Then there exist in-
finitely many k € Q such that tk(&(k)) > 0.
In particular, one also has

COROLLARY 1.4. Let g(t) € Q[t] be a monic polynomial of degree six

and not equal to t5. Then there exist infinitely many k € Q such that
rk(&9(k)) > 0.
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Corollary 1.4 confirms Conjecture 1.3 (and answers Question 3.7 of [6]).
Moreover, the following generalization of Theorem 4.1 in [6] follows easily
from the proof of Theorem C:

COROLLARY 1.5. Let g(2) = 20+ az* + b2® + c22 + dz + e € Q[2]. Then
the equation
v —a’—g(z) =0
has infinitely many solutions in Q[g).

The following generalization of Corollary 4.6 of [6] also holds:

COROLLARY 1.6. Let g(z) = 2% + 2b2% + dz € Z[2]. If d = %1 then for
each n € 7 the diophantine equation y*> — x3 — g(z) = n has infinitely many
integer solutions.

Theorem C has an obvious application to the study of del Pezzo surfaces
of degree one. In this connection see [7], where the case of A(t) = 0 and B(t)
a monic polynomial of degree 5 is treated. Another result in this direction
can be obtained as follows:

Given two polynomials in Q[t],

A(t) = agt +astd +agt® +art+ag, B(t) = to+ byt +bst> +bot? + byt + by,
let & be the elliptic surface with equation (x). Associate to & the curve (in
general, elliptic)

H: ’U2 = h4u4 + h3u3 + h2u2 + hiu + hg

where
hy = a$ + 28a3 + 144,
hs = —6(a3 + 16)asas,
(1) he = 4(ajas + 3a%a% — 12a4by + 24as),

hl == —S(CLZbg - a4a3b4 — 2a4a1 + 4(13(12)0,4,

ho = 16(ajb2 — aqaobg + a%)

\

With this notation one can state

THEOREM D. Let & be the elliptic surface with equation (x) and suppose
that & does not split. If the curve H associated to & contains infinitely many
points with rational coordinates then there exist infinitely many k € Q such

that tk(&(k)) > 0.
We note that if a4 = 0 then the equation of the curve H becomes
v? = 16(3u” + ap)?

and so Theorem C is a special case of Theorem D.
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We shall prove all our results by explicitly constructing parameteriza-
tions that furnish infinitely many points belonging to the surfaces consid-
ered.

Finally we remark that several recent works contain results of similar
nature (see e.g. [§], especially Theorem 2.1, and [2]).

2. Preliminary results. We state a few well known results which may
be found, for example, in [4, Chap. X, §6], but, given the elementary char-
acter of this article, we prefer to present them in a simpler form.

If K is a field we use K* to denote the multiplicative group of K.

LEMMA 2.1. Let K be a field of characteristic different from 2 and let
v € K*. Then the solutions of y*> = x* — v are in bijective correspondence
with those of Y2 = X3 + 4v X satisfying X # 0 by means of the maps

2v dvz Y Y?2-8X
(xyy)’_)<xgyax2y> and (X,Y) — <2X’4X2>

Proof. The proof is a direct verification. =

If C is an elliptic curve defined over the field K, we use C(K) to denote
the group of points of C with (projective) coordinates in K and Ciors(K) to
denote its torsion subgroup. If K = Q we let rk(C) denote the rank of C(Q).

LEMMA 2.2. Let K be a field of characteristic different from 2 and let
v € K* with v ¢ £(K*)2. Consider the two elliptic curves

CtY?=X’+4X and C :Y*=X°-4wX.
Then
(i) v may be written in the form —&2 +n* (x,y € K*) if and only if
|ICT(K)| > 2. In particular if K = Q one must have tk(C*) > 0.

(ii) v may be written in the form & — n* (z,y € K*) if and only if
|IC™(K)| > 2. In particular if K = Q one must have rk(C™) > 0.

Proof. We prove only (i). The first part of the assertion follows from
Lemma 2.1. Now let K = Q; by hypothesis one has v ¢ 4(Q*)? and so
Ch (Q) ~ Z/27 (see Proposition X.6.1 of [4]). But since |C(Q)| > 2, it

follows that rk(CT) > 0. =

LEMMA 2.3. Let K be a field of characteristic different from 2 and let
b € K*. Then the two elliptic curves

Cpo: Y2=X3+4bX and Cp: Y2=X°—-bX
are isogenous. In particular if K = Q then rk(Cy) = rk(Cy).
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Proof. On setting

N 2 2
P (X,Y)»—>(Y Y (X 4b)>7

4X2’ 8X?
SO Y? Y(X?+0)
¢: Cp— Cy, (X,Y)H <)(2ax-2>,

one verifies directly that ¢ and ¢ are (dual) isogenies. m

LEMMA 2.4. Let K be a field of characteristic different from 2 and let
v € K* with v ¢ +(K*)2. Consider the two elliptic curves

Ct:Y2=X*+vX and C:Y?=X%-uX.
Then
(i) v may be written as —&2+4n* (€, € K*) if and only if \CAJ“(K)] > 2.
In particular if K =Q one must have tk(C*) > 0.
(i) v may be written as €2 —4n* (&,n € K*) if and only if |C~(K)| > 2.
In particular if K= Q one must have rk(C~) > 0.
Proof. 1t suffices to write v = —41y and apply Lemmas 2.1 and 2.3. =

EXAMPLE 2.5. One can verify (for example using the software MAGMA
[1]) that the natural numbers n less than 100 with n & (Q*)? such that the
elliptic curves

Y?=X?4+4nX and Y?=X®—4nX

both have rank 0 are 11, 27, 43, 44, 59, 75 and 91. Since none of these
numbers can be expressed as a sum of two squares, Lemma 2.2 shows im-
mediately that none of them may be written in the form 4?2 + y* with

z,y € Q.
From Lemmas 2.3 and 2.4 it follows that the numbers listed are also not
expressible in the form 42 4 4y*.

3. Proof of Theorems A and B. We prove the following generaliza-
tion of Theorem B.

THEOREM 3.1. Let W(T) = aT* + bT? € Q[T] with a # 0 and suppose
that a may be written in the form a = M\* — p?, A\, € Q and X\ # 0. Then
there ezist rational functions p1(k,T), Ba(k,T), o(k,T), depending on a
parameter k, such that the equality
(1) Bu(r, T)" =¥ (Ba(k,T)) = o(r, T)* =T
holds identically, that is, for all k.

Proof. We start by considering the case u # 0. We show that it is possible
to determine polynomials (31, 32,0 € Q(k)[T] which satisfy (1) identically.
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First we take p,q,r,u,v € Q (p # 0) such that in Q[X] one has
AX +p) = (M =1 A)XT —bX? — (uX? + X +7)? = uX + .

Then, on setting p = k € Q* easy computations show that

2\3K 2X2(20* — 3p?) K2 + bu?
q= ) = - 3 )
p 21
2A(2(A® + 3\ + )k + A2 )k
U= A ,
AN 12082 + ON et 4 pO) Rt 4B (20 — 3p?)K? + b2t

45
For each fixed b € Q it is possible to determine (infinitely many) x € Q
such that u(k) # 0. If we put uX 4+ v =T we find that X = (T' — v)/u and
recalling that p, q,r, u,v are determined as functions of k we deduce that

e N

and
W —v)? (T —v)

o(k,T) = 3 "

+r

satisfy (1) identically in x.

Suppose now that g = 0; on making the substitution 7"~ T'/\ one sees
that there is no loss of generality in supposing that A = 1. In this case one
cannot expect that (1, B2 and o will be polynomials, and indeed to handle
the general case

BUT)" = afa(T)* = bB2(T)* = o(T)* =T,

with a a generic element of QQ, it would probably be necessary to construct
a quartic contained in the surface

Xt —aY*—pY? - 22 =T.

Fortunately, in the case ¥ (T') = T*+bT? rather than a quartic it is sufficient
to consider a conic (in this regard see [3], in particular §§27-28).

We put

(2) T+ T +po)' — (T + @T° + @T? + T + o)
= (7"1T + ?“0)4 + b(?"lT + T0)2(81T + 80)2 + (81T + 80)4T
and seek to determine the coefficients p;, ¢;, r, s¢ € Q in such a way that (2)

is satisfied identically. Without loss of generality we may suppose that ps =
qs = 1, 19 = 0 and thus g9 = pg. After elementary but tedious calculations



Rational points on some elliptic surfaces 99

one obtains

. k=02 _ (K +0b)*
p2 =1, b1 = 4 ) bo = 64 )
_1 et _(K*4b)2(3r* — 20K% + 3b?)
qs = 1, q3 = 9 ) q2 = 32 y
(B2 HD)BRT+ ) (k4 b)®
n=- 128 0T 006
20,2 2 2. 7\3
Tl:m (/12+b)’ ro=0, Sl:H(HQ—Fb)’ Soz_n(nlg—b) 7

where k € Q is a parameter. Thus, if one sets K = x2 + b and defines
C pT*+piT+py  64T% +16(k* — b)T + K*

3 T) = -
B AilwT) 51T + so 1kK (8T — K?) ’
rT + 0 8cKT
4 T = =
@ B T) = S S STk
T + T + T? + T + o
5) ok T) =

(SlT + 80)2
51273 4 64K (557 — 3b)T? + 4K?(11k* — 2bk? + 3b%)T — K°©
16Kk2K2(8T — K?2) ’
then relation (1) does indeed hold identically in . =

Proof of Theorem B. First we prove that in a field K of characteristic
different from 2 every element 7 may be written in the forms a* — b* — ¢?
and a* — b* + 2.

With the notation from the proof of the preceding theorem, let ¥ (T")
= T Then b = 0 and so K = k2. On putting k = 2¢, relations (3)—(5)
become

/ _ (T2
(3 51(§=T)—w7
26T
) 56 T) = et
() (€.T) = T? + 1072 + 44€3T — 8¢'2

1665(T — 2€%)
Rereading the second part of the proof of Theorem 3.1 one sees that
BUET) = Ba(&T)! — (&, T)* =T
identically in K(T').

If K| < 5 then a direct verification shows that every element of F3
and of F5 may be written in each of the forms listed in Theorem B. If
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instead |K| > 5 then, for a fixed 7 € K, there certainly exists £ € K* such
that 7 — 2¢* # 0. (Indeed, if |K| = oo, then there exist infinitely many
¢ € K* with this property.) Hence, on putting a = (1(¢,7), b = [2(&,7)
and ¢ = o(&,7) one has 7 = a* — b* — 2. In analogous fashion, if ¢ € K
is such that 7 + 2¢* # 0 then on putting a = B2(&, —7), b = B1(€, —7) and
c=o(¢,—7), one obtains a* — b* + 2 = 7.

To prove that 7 may be written in the forms a*+4b*—c? and —4a*—b*+¢?
it suffices to use what has just been proved and apply Lemmas 2.2-2.4. u

REMARK 3.2. Applying to the expressions 31(&,T), 52(&,T) and o(€,T)
the isogeny exhibited in the proof of Lemma 2.3 yields

<T+ ﬁ2(§7T>4>2 _ ( U(EvT)
61<£7T)2 ﬁl(f:T)

Hence, on explicitly carrying out the substitution 1" ~ %T and setting

4
) —4Py(§,T)* = 4T.

3 42 8 12
S(e,T) = T8 4 s7T7 4 s6T6 + s5T° + s4T* + s3T3 + s9T% 4+ 51T + 307
256¢%(T" + 8N (T — 8¢4)?
where
s7=20-¢4  s=2%-7-&% s =27.11.67 5 =21.32.11.¢,
53 =218.31.620 gy = 220 .52 2 o 92 5. ¢8  _ 92c32
one has

_Bl(€7 T)4 —4- B2(§7 T)4 + S<£7 T)Q =T

REMARK 3.3. The expressions (31(£,T), 82(¢,T) and o(&,T) are related
to one another via the simple equation

(6) U(f? T) = /81(57 T)2 - /82(57 T)2 - 2662(5 T)
In particular,
_ U(f? T) — B (57 T)Q + /82(57 T)2
Also A
/Bl(fvT) - /82(€7T) = zjéjg

Using (7) it is easy to show that the formulas obtained in the proof of
Theorem B are far from exhausting all the possible expressions of a rational
number in the form a* — b* — 2.

EXAMPLE 3.4. We write 6 = a* — b* — ¢2. After a brief computer search
one obtains several solutions. Among these we consider the following:
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e 6=2%—1-—232 Using (7) to get £ one obtains:

(i) Ifa =42, b= =1, c =3 then £ = (3 —22+1)(+271) = 0 and so
formulas (3')—(5') are not applicable.
(i) Ifa = £2, b N +1, ¢ = —3 theiﬁ = +3 but £;(+3,6) = F352,
/BQ(i,G) = :Fﬁ and O'(Zl:3,6> = 1053°
e 6=4%—3% 132 One obtains:
(i) If a = £4, b = £3, ¢ = 13 then £ = 1 and, in this case,
one rediscovers precisely (1(£1,6) = +4, [F2(£+1,6) = £3 and

o(£1,6) = 13.
ii) If @ = £4, b = £3, ¢ = —13 then ¢ = 12 but now
(ii) 3
10 102432 10 22.34.5
+-6) = d fo(£-2,6)= .
51( 3’6> Tor 3511887 BQ( 3’6> 11887

Proof of Theorem A. Let f(t) = at* + bt?> + d € Q[t] with a = —\* + 2
and X\ # 0. We first note that it follows from the hypothesis f(T') # at* that
the elliptic surface & is not split.

If one puts ¥(T) = —aT* — bT? then from Theorem 3.1 it follows that
there exist rational functions 1, 52,0 € Q(X) depending on a parameter x
such that

Bi(k, X)* =W (Ba(k, X)) — ok, X)? = X
holds identically.
For each k € Q for which i (k,d), B2(k,d) and o(k,d) are defined one

finds f(B2(k, —d)) = —B1(k, —d)* + o (K, —d)? and so Lemma 2.1 shows that
rk(Cy) > 0 where C, is the elliptic curve

Co: Y2 =X3—4f(Ba(r,—d))X.

By Lemma 2.3 the curve C, is isogenous to the elliptic curve &%(k), where
k = (2(k,d), and in this case the assertion is proved.

Suppose now that a = 4\* — ;2 and let fo(t) = %f(t) = apt* + bot? + do.
Then ag = A* — (11/2)? and one can repeat the preceding proof considering
the elliptic curve

Epy y? =23 — folt)z.

By Lemma 2.3 this curve is isogenous to &7 and the assertion is thus estab-
lished in this case as well. »

REMARK 3.5. Let
&y’ =2 -t 4 d)x.

Then, exploiting the proof of Theorem A and formulas (3')—(5'), one can
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verify that on putting
2 o (d+2¢%)?
o) = d— 264 (&) = 16£6(d — 2¢4)’
C(d 426 (d3 + 10€1d? + 44€8d — 8¢1?)
y(f) = 6459(61 _ 254)2 ’

one obtains infinitely many rational points of & as & varies in Q with 264 # d.

4. Proof of Theorems C and D. Although Theorem C is a conse-
quence of Theorem D (as noted at the end of §1), it is convenient to prove
it separately.

Proof of Theorem C. We will use the fact that if
2 : y? =23+ m(t)x +n(t)

is an elliptic curve defined over Q(¢) and if m(t),n(t) € Z[t], then the points
of finite order of Z have coordinates in Q[¢].
Let A(t) = ast®+aot? +art+ag and B(t) = t5+byt* +b3t> +baot? +bit+ by
belong to Q[t] and let & be the elliptic surface
&y =2+ Alt)x + B(2).

Carrying out, if necessary, an affine coordinate transformation, we may,
without loss of generality, suppose that A(t), B(t) € Z][t].
We put X(T') = hT +k, Y(T) = T3+ pT?+qT +r and seek to determine
h,k,p,q,r as functions of the coefficients a; and b; so as to have
(8) X(T)*+ A(T)X(T)+ B(T) - Y(T)> = LT+ M
with L, M € Q. Comparing the terms of degree five one sees immediately
that p = 0 and so it remains to solve the system
by + ash —2q =0,
(9) b3+a2h+a3k+h3—2r:0,
bQ =+ alh + agk + 3kh2 — q2 =0.

On putting h = p one obtains the following solutions of (9), depending
not only on the coefficients of A(T") and B(T'), but also on the parameter o:

B a30 + by J — a3g2+(2a3b4—4a1)g+bi—4b2
2 4(30% + az) ’

_ 120° + 16a20® + w20? + w10 + wo

a 8(30% + az) 7

where wo = a§—|—12b3, wy = 2a3bs—4asaq —|—4a% and wy = 4a2b3—4agbg—|—a3b3.
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Corresponding to these solutions one has
A(o) O(o)
L = —— % M = —-
(e) 16(30% 4 az)?’ (o) 64(30% + az)3’
where A and @ are suitable polynomials in ¢ of degree 8 and 12 respectively.
If we write A(p) = lgo® + l707 4+ lg0® + I50° + l40* + 130% + l20® + 110 + lg we
can verify that

lg = T2as,
l7 = T2by,
lﬁ = 120&2&3,

Is = 3a3 + T2azbs + 120asby — 144ay,
ly = 6a3by — 12a3a1 + 56a3a3 + 72bsbs — 144by,
I3 = 2a§a2 + 48azasbs + 56@%()4 — 96aqaq,
Iy = 6a§a2b4 - 12a§a2a1 + 8&3(1% - 6a3bi
+ 24a3byby + 48azbsbs — 96a2by 4 12a1b7 — 48a1 by,
1 = 6a§a2bi — 8a§a2b2 + 8a3a§b3 — 16asasaibs
- 37173 — &bg — 16aga3 + % + 16atas + 8ajby,
lo = 2azasbi — 8azasbybs + 8a2bsby — 16a3by — 4asaibs 4 16aza;bs.
(For the reader’s convenience we have underlined the terms which do not
vanish when A(t) = 0; this information is quite irrelevant for the proof.)
In particular L(p) is constant only in the following two cases:
(i) a3 =0,a2=0,a90=0,bs =0, by =0, by =0,
(ii) a3 =0,a1 =0,a90=0,by =0, be =0, by =0,

namely, when L(p) is identically zero. We will discuss cases (i) and (ii)
separately. We may therefore suppose that L(p) is not identically zero. Let

V={0€Q]30° +az#0, Al0) # 0};
then V' is an infinite set (indeed, Q\ V contains at most 10 elements). If for
each o € V' we set

M(e O(e
o~ MO _ 6w
L(o) 4(30% + a2) A(0)
then L(0)T'(g) + M (o) = 0, and so on substituting into (8) we find that the
point P, with coordinates (z(o),y(0)) = (¢T'(0) + k(0), T(0)® + q(0)T(0) +
r(0)) belongs to the elliptic surface
oyt =2’ + A(T(0)z + B(T(0))-
We now consider ¢ as an indeterminate. Via a change of coordinates of
the type X = 0(0)?z and Y = 0(p)3y, with a suitable § € Q[g], the equation




104 E. Jabara

of &, is transformed into an equation with coeflicients in Q[g]:
V2 _ 3 4 6 )
Gy Y7 =X"40(0)"A(T(0))X + 0(0)”B(T(0));

we choose 6 € Q[g] of minimal degree with respect to this property. The new
coordinates of the point P, are X (o) = 0(0)*z(0) and Y (o) = 0(0)3y(0),
which are elements of Q[g]. If one calculates the abscissa of the point 2 - P,
by using the well known duplication formulas one obtains

X(2-P,)
_ X(0)* —20(0)* A(T(0)) X (0)* — 80(0)° B(T(¢)) X (0) + 8(0)*A(T(0))*
4Y (0)?
_ (6
= <2y(0)> (z(0)* = 2A(T(0))z(0)* — 8B(T'(0))x(0) + A(T(0))?)

and one can verify that X(2- P,) € Q(o) but X (2- P,) ¢ Q[o]. Thus, by the
observation made at the beginning of the proof (but see also Chap. III, §12
of [5]), the point P, is not a torsion point of &, and so rk(&,) = rk(&,) > 0
for each p € V.

To prove the assertion in the special cases (i) and (ii) we may deal
with the slightly more general case of A(t) = agt? + ait + ag and B(t) =
t5 + bst® + by, which includes both (i) and (ii).

We put X(T) = —T? +k, Y(T) = pT? + qT + r and seek to determine
k,p,q,r as functions of the coefficients a; and b; in such a way that

X(T)* + A(T)X(T) + B(T) - Y(T)* = LT + M.
On setting p = p one easily obtains

. bs — aq . 4@6 + 4a294 + Sbg — 6bza; + 3a% k
= 20 "= 2403 ’
and in correspondence with these solutions one finds
4((11 + b3)Q6 + 4a2(a1 + b3)04 + 3(b§ — 3b§a1 + 31)3(1% — a3)
L(o) =
2402

If L(p) is identically zero one must have b3 = 0 and a; = 0; excluding this
case one can proceed exactly as in the general case.

Finally, let A(t) = at? and B(t) = t% + b with a and b not both zero. In
this case we put X(T) = 272 + hT + k, Y(T) = 313 + pT? + ¢T + r and,
reasoning as above, one obtains

_ 0% + ay
3 b

20 _ Q3 — 3ap 2

p=20, 4=, =", st
3 18 6
(there is another solution for which L(p) vanishes identically), from which
L(o) = 0% + 6a0>® + 9a’p _ 0% + 3ap* — 9a%0% — 3a® + 648().
108 ’ 648

h=o, k=

M(p)
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In this case too one reaches the desired conclusion by proceeding as in the
general case. m

REMARK 4.1. Corollary 1.4 is a particular case of Theorem C when
A(t) = 0. In [6] this corollary was proved for all polynomials B(t) of degree
six such that B(t) # B(—t). Thus, the case A(t) = 0 and B(t) = t% + byt* +
bat? + by with B(t) # t5 holds a particular interest. In this case, with the
notation used in the proof of Theorem C, one obtains

2160'2 — 36(b3 — 4baby + 24bg) 0% + (b3 — 4bo)3
o) = 18(24b4 6 — (b2 — 4by)2) 02
provided that by and by are not both zero. If by = by = 0 one has
g12—23-34-bog6+26~38'b%
18 Qlo ’

REMARK 4.2. We again consider the case of the elliptic surface &9 :
y? = 2% + g(t) with g(t) = bgt® + byt* + bgt? + byt? + byt + bg. To obtain
the conclusions of Corollary 1.4 it is not necessary that bg = 1. Indeed, the
result continues to hold in the following two cases:

z(0) =

e bg € (Q*)? and by, by and by do not vanish simultaneously. If we write
bg = B? then the expression

40,82 — B2\ by, o +b3\’
<QT—IQBQ 4) - BT3+@T+ 55 +g(T)

is linear in 7" and equals L1(0)T + Mi(g) where L and M; are suit-
able rational functions of ¢ depending on the coefficients of ¢g(t), in

particular
I 24B2b,0% + 24B?Bybs0® — 16Bb3 + 8B2b3by — b}
1(@) = 48B4Q3 :
Under the hypothesis that by, b, by do not vanish simultaneously one
sees that Li(p) does not vanish. Thus, proceeding as in the proof of
Theorem C, one can conclude that there exist infinitely many & € Q
such that rk(&9(k)) > 0.
o bg € (Q*)3 and b3 and b; do not vanish simultaneously. If we write
bg = B? then the expression

BT? 92 — by s 9 b3 2
BT+ o | T +;QT—V(0) +9(T),

where
405 — 8byo? — 4(3B3by — b3)0® + 3B3bg

24 B3 o3
is linear in 7" and is equal to La(0)T + M2(p) with Ly and M, ratio-
nal functions of p depending on the coefficients of g(¢). In particular,

V(o)
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La(0) = b3o~ 'V (p). Under the hypothesis that b3 and b; do not vanish
simultaneously one finds that Ls(g) does not vanish. Thus, proceeding
as in the proof of Theorem C, one can again conclude that there exist
infinitely many k € Q such that rk(&9(k)) > 0.

EXAMPLE 4.3 (see Example 3.5 of [6]). Let
E: =23+t 412+ 1.

If one writes # = ht + k and y = t3 + ¢T + r one finds immediately that, on
setting h =0, ¢ =0, r = %g3 and k = —(30)?%, one has

1)\° A 270'2 — 1080° + 4
O +t2 4+ 1 t—— | —(tP+%) ==t—
e (Q 3@2> < i ) 307 10860
where the right hand side vanishes for

2702 — 10805 + 4

3603
Thus
2702 — 10805 + 4
P, , €&
o(7(0),y(0)) < 3607
where
) 270" — 10805 — 8
€T =
0 3607 ;
_198360%¢ — 2361960 + 9535320 — 132678008 + 141260"% — 518405 + 64
y(o) = 466560° '

EXAMPLE 4.4 (see the second part of Remark 4.2 in [6]). Let g(t) =
t6 4+ 6t* +6t3 +9t2 — 150t. Applying the method used in the proof of Theorem
C and putting, for simplicity, h = 20, one obtains

(t3 4+ 3t + 3+ 40°)% — (201)% — g(t) = 24(0> + )t + (403 + 9)2,
which yields
4 3 2
(o) = _o(40” +3)
12(03 +7)

and y(o) = SL() 13462119
Y9 = T13824(0% 1 7)3

where
I'(o) = 51208 + 230401 4 864012 — 9244807 — 8786340° — 285090303,

We note that in this particular case there exists another solution which is
obtained by putting h = 0 in view of the identity

(t3 4+ 3t +3)% =15 + 61 + 6> + 9t + 18t + 9

(this is probably the reason why this example was given in [6]).
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Proof of Corollary 1.5. On setting B(z) = g(z) and A(z) = 0 with the
notation of the proof of Theorem C, the relation
y(e)* —=(e)* — g(T(e)) = —LT(c) - M
holds identically. Putting 7' = —(7 + M) /L one obtains

2 _ 2(p)3 — _T+M(Q> _
o - atef — o~

for every p € Q, which proves the assertion. m
Proof of Corollary 1.6. We discuss only the case d = 1 since the case
d = —1 is quite similar.
So let g(z) = 2% + 2023 + z; applying the method used in the proof of
Theorem C and putting h = 20, one gets the identity
(T3 + b+ 40%)? — (20T)° — g(T) = =T + (46° + b)2.
Writing n = —T + (40 + b)? and varying the parameter o in Z one obtains

infinitely many desired solutions. m

Proof of Theorem D. Let A(t) = aqt* 4 ast3 +ast? +ayt +ag and B(t) =
6+ byt* + bat® + bot? + byt + by. We prove that given the elliptic surface
& y? =2+ A(t)z + B(t)
there exist infinitely many k& € Q such that rk(&(k)) > 0 provided that there
exist infinitely many rational points on the curve
H: v? = H(u)

where H(u) = hqu* + hau® + hou? + hiu + hy and the coefficients h; are
related to those of A(t) and B(t) by the relations (7).

If ay = 0 the assertion follows from Theorem C. Suppose, therefore, that
asy # 0. We put X(T) = hT + k, Y(T) = T3 + pT? + qT + r and seek
to determine h, k,p,q,r as functions of the coefficients a; and b; in such a
manner that

X(T)* + AMX(T)+B(T)-Y(T)*=LT + M
with L, M € Q. By equating the coefficients of the terms of the same degree
one obtains the system
ash —2p =0,
by + ash + ask — 2 — p? = 0,
by + agh + ask + h3 — 2r — 2pq = 0,
by + arh + agk + 3kh* — 2rp — ¢* = 0.

(10)



108 E. Jabara

On solving the first three equations of (10) in p, g, one obtains

1 1
p= §a4h, q= §(4b4 + 4ash + 4ask — aih2),

1
r = 15 (8bs + 8azh + Bagk + 8h3 — dagbsh — dagazh? — 4a2hk + a3h?).

Substituting these values into the last equation of (10) gives rise to an equa-
tion of degree two in k with discriminant D satisfying

16D = H(h).

Hence under our hypotheses, system (10) admits infinitely many solutions.
The rest of the argument is completely analogous to that in the proof of
Theorem C. u
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