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1. Introduction. Let E be the elliptic surface given by the equation

(∗) E : y2 = x3 +A(t)x+B(t)

with A,B ∈ Q[t]. The discriminant of E (which may be considered as an
elliptic curve defined over Q(t)) is defined by ∆(t) = −16(4A(t)3 + 27B(t)2)
and its j-invariant by j(t) = −1728(4A(t)3)∆(t)−1. The surface E is said to
be isotrivial if its j-invariant is constant. We say that E is split (or splits)
if there is an elliptic curve C such that E ' C × P over C; if E splits then E
is necessarily isotrivial. We shall deal only with non-split elliptic surfaces.

Let E be the elliptic surface (∗); if k ∈ Q is such that ∆(k) 6= 0 one may
consider the elliptic curve

E (k) : y2 = x3 +A(k)x+B(k).

In this paper we are interested in the following

Problem 1.1. Determine whether or not there exist k ∈ Q such that
the rank rk(E (k)) of the elliptic curve E (k) is positive.

We observe that if E admits a non-torsion rational point over Q(t)
then by Silverman’s specialization theorem (see Theorem III.11.4 of [5])
rk(E (k)) > 0 for all but finitely many k ∈ Q. This also proves that the set
of rational points on E is dense in the Zariski topology (see [6]).

In [6] Ulas considered the particular cases of the (isotrivial) surfaces

Ef : y2 = x3 + f(t)x

with f a polynomial of degree 4 and

E g : y2 = x3 + g(t)

with g a monic polynomial of degree 6. In particular, he proved (The-
orem 2.2 of [6]) that, in the first case, if f(t) 6= f(−t) then Problem 1.1
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always has an affirmative answer. That result led him to formulate the fol-
lowing conjecture:

Conjecture 1.2 (cf. Conjecture 2.5 of [6]). Let a, b, c ∈ Q with a 6= 0
and let f(t) = at4 + bt2 +d be such that f(t) 6= at4. Then there exists t0 ∈ Q
such that rk(Ef (t0)) > 0.

As a partial confirmation of Conjecture 1.2 we shall prove

Theorem A. Let f(t) = at4 + bt2 + d with a, b, d ∈ Q, a 6= 0 and
f(t) 6= at4. Suppose that one of the following conditions holds:

(i) a = −λ4 + µ2 with λ, µ ∈ Q and λ 6= 0,
(ii) a = 4λ4 − µ2 with λ, µ ∈ Q and λ 6= 0.

Then there exist infinitely many k ∈ Q such that rk(Ef (k)) > 0.

The following result follows from the proof of Theorem A:

Theorem B. Let K be a field of characteristic different from 2. Then
every element of K may be written in each of the following ways:

a4 − b4 − c2, a4 − b4 + c2, a4 + 4b4 − c2, −a4 − 4b4 + c2,

with a suitable choice of a, b, c ∈ K.

While Theorem B focuses on an aspect of number theory (Waring-type
problems in Q), Theorems C and D below have a more geometric vein.

With regard to surfaces of the type E g with

g(t) = t6 + at4 + bt3 + ct2 + dt+ e ∈ Q[t]

Ulas proved that if g(t) 6= g(−t) then Problem 1.1 has an affirmative solution
(Theorem 3.1 of [6]), and has formulated the following conjecture:

Conjecture 1.3 (cf. Conjecture 3.6 of [6]). Let a, c, e ∈ Q and let g(t) =
t6 +at4 + ct2 + e be such that g(t) 6= t6. Then there exists a t0 ∈ Q such that
rk(E g(t0)) > 0.

In this article we shall generalize the results of Ulas to surfaces that are
not necessarily isotrivial by proving

Theorem C. Let A(t) = a3t
3 +a2t

2 +a1t+a0, B(t) = t6 + b4t
4 + b3t

3 +
b2t

2 + b1t+ b0 ∈ Q[t] and let E be the elliptic surface with equation

E : y2 = x3 +A(t)x+B(t).

Suppose in addition that if A(t) = 0 then B(t) 6= t6. Then there exist in-
finitely many k ∈ Q such that rk(E (k)) > 0.

In particular, one also has

Corollary 1.4. Let g(t) ∈ Q[t] be a monic polynomial of degree six
and not equal to t6. Then there exist infinitely many k ∈ Q such that
rk(E g(k)) > 0.
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Corollary 1.4 confirms Conjecture 1.3 (and answers Question 3.7 of [6]).
Moreover, the following generalization of Theorem 4.1 in [6] follows easily
from the proof of Theorem C:

Corollary 1.5. Let g(z) = z6 + az4 + bz3 + cz2 + dz + e ∈ Q[z]. Then
the equation

y2 − x3 − g(z) = %

has infinitely many solutions in Q[%].

The following generalization of Corollary 4.6 of [6] also holds:

Corollary 1.6. Let g(z) = z6 + 2bz3 + dz ∈ Z[z]. If d = ±1 then for
each n ∈ Z the diophantine equation y2 − x3 − g(z) = n has infinitely many
integer solutions.

Theorem C has an obvious application to the study of del Pezzo surfaces
of degree one. In this connection see [7], where the case of A(t) = 0 and B(t)
a monic polynomial of degree 5 is treated. Another result in this direction
can be obtained as follows:

Given two polynomials in Q[t],

A(t) = a4t
4 +a3t

3 +a2t
2 +a1t+a0, B(t) = t6 +b4t

4 +b3t
3 +b2t

2 +b1t+b0,

let E be the elliptic surface with equation (∗). Associate to E the curve (in
general, elliptic)

H : v2 = h4u
4 + h3u

3 + h2u
2 + h1u+ h0

where 

h4 = a6
4 + 28a3

4 + 144,

h3 = −6(a3
4 + 16)a4a3,

h2 = 4(a3
4a2 + 3a2

4a
2
3 − 12a4b4 + 24a2),

h1 = −8(a2
4b3 − a4a3b4 − 2a4a1 + 4a3a2)a4,

h0 = 16(a4
4b2 − a4a2b4 + a2

2).

(†)

With this notation one can state

Theorem D. Let E be the elliptic surface with equation (∗) and suppose
that E does not split. If the curve H associated to E contains infinitely many
points with rational coordinates then there exist infinitely many k ∈ Q such
that rk(E (k)) > 0.

We note that if a4 = 0 then the equation of the curve H becomes

v2 = 16(3u2 + a2)2

and so Theorem C is a special case of Theorem D.



96 E. Jabara

We shall prove all our results by explicitly constructing parameteriza-
tions that furnish infinitely many points belonging to the surfaces consid-
ered.

Finally we remark that several recent works contain results of similar
nature (see e.g. [8], especially Theorem 2.1, and [2]).

2. Preliminary results. We state a few well known results which may
be found, for example, in [4, Chap. X, §6], but, given the elementary char-
acter of this article, we prefer to present them in a simpler form.

If K is a field we use K∗ to denote the multiplicative group of K.

Lemma 2.1. Let K be a field of characteristic different from 2 and let
ν ∈ K∗. Then the solutions of y2 = x4 − ν are in bijective correspondence
with those of Y 2 = X3 + 4νX satisfying X 6= 0 by means of the maps

(x, y) 7→
(

2ν
x2 − y

,
4νx
x2 − y

)
and (X,Y ) 7→

(
Y

2X
,
Y 2 − 8νX

4X2

)
.

Proof. The proof is a direct verification.

If C is an elliptic curve defined over the field K, we use C(K) to denote
the group of points of C with (projective) coordinates in K and Ctors(K) to
denote its torsion subgroup. If K = Q we let rk(C) denote the rank of C(Q).

Lemma 2.2. Let K be a field of characteristic different from 2 and let
ν ∈ K∗ with ν 6∈ ±(K∗)2. Consider the two elliptic curves

C+ : Y 2 = X3 + 4νX and C− : Y 2 = X3 − 4νX.

Then

(i) ν may be written in the form −ξ2 + η4 (x, y ∈ K∗) if and only if
|C+(K)| > 2. In particular if K = Q one must have rk(C+) > 0.

(ii) ν may be written in the form ξ2 − η4 (x, y ∈ K∗) if and only if
|C−(K)| > 2. In particular if K = Q one must have rk(C−) > 0.

Proof. We prove only (i). The first part of the assertion follows from
Lemma 2.1. Now let K = Q; by hypothesis one has ν 6∈ ±(Q∗)2 and so
C+

tors(Q) ' Z/2Z (see Proposition X.6.1 of [4]). But since |C(Q)| > 2, it
follows that rk(C+) > 0.

Lemma 2.3. Let K be a field of characteristic different from 2 and let
b ∈ K∗. Then the two elliptic curves

Cb : Y 2 = X3 + 4bX and Ĉb : Y 2 = X3 − bX

are isogenous. In particular if K = Q then rk(Cb) = rk(Ĉb).
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Proof. On setting

φ : Cb → Ĉb, (X,Y ) 7→
(
Y 2

4X2
,
Y (X2 − 4b)

8X2

)
,

φ̂ : Ĉb → Cb, (X,Y ) 7→
(
Y 2

X2
,
Y (X2 + b)

X2

)
,

one verifies directly that φ and φ̂ are (dual) isogenies.

Lemma 2.4. Let K be a field of characteristic different from 2 and let
ν ∈ K∗ with ν 6∈ ±(K∗)2. Consider the two elliptic curves

Ĉ+ : Y 2 = X3 + νX and Ĉ− : Y 2 = X3 − νX.
Then

(i) ν may be written as −ξ2+4η4 (ξ, η ∈ K∗) if and only if |Ĉ+(K)| > 2.
In particular if K = Q one must have rk(Ĉ+) > 0.

(ii) ν may be written as ξ2− 4η4 (ξ, η ∈ K∗) if and only if |Ĉ−(K)| > 2.
In particular if K = Q one must have rk(Ĉ−) > 0.

Proof. It suffices to write ν = −4ν0 and apply Lemmas 2.1 and 2.3.

Example 2.5. One can verify (for example using the software MAGMA
[1]) that the natural numbers n less than 100 with n 6∈ (Q∗)2 such that the
elliptic curves

Y 2 = X3 + 4nX and Y 2 = X3 − 4nX

both have rank 0 are 11, 27, 43, 44, 59, 75 and 91. Since none of these
numbers can be expressed as a sum of two squares, Lemma 2.2 shows im-
mediately that none of them may be written in the form ±x2 ± y4 with
x, y ∈ Q.

From Lemmas 2.3 and 2.4 it follows that the numbers listed are also not
expressible in the form ±x2 ± 4y4.

3. Proof of Theorems A and B. We prove the following generaliza-
tion of Theorem B.

Theorem 3.1. Let Ψ(T ) = aT 4 + bT 2 ∈ Q[T ] with a 6= 0 and suppose
that a may be written in the form a = λ4 − µ2, λ, µ ∈ Q and λ 6= 0. Then
there exist rational functions β1(κ, T ), β2(κ, T ), σ(κ, T ), depending on a
parameter κ, such that the equality

(1) β1(κ, T )4 − Ψ(β2(κ, T ))− σ(κ, T )2 = T

holds identically, that is, for all κ.

Proof. We start by considering the case µ 6= 0. We show that it is possible
to determine polynomials β1, β2, σ ∈ Q(κ)[T ] which satisfy (1) identically.
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First we take p, q, r, u, v ∈ Q (p 6= 0) such that in Q[X] one has

(λX + p)4 − (λ4 − µ2)X4 − bX2 − (µX2 + qX + r)2 = uX + v.

Then, on setting p = κ ∈ Q∗ easy computations show that

q =
2λ3κ

µ
, r = −2λ2(2λ4 − 3µ2)κ2 + bµ2

2µ3
,

u =
2λ(2(λ8 + 3λ4µ2 + µ4)κ2 + bλ2µ2)κ

µ4
,

v =
4(4λ12 + 12λ8µ2 + 9λ4µ4 + µ6)κ4 + 4bλ2µ2(2λ4 − 3µ2)κ2 + b2µ4

4µ6
.

For each fixed b ∈ Q it is possible to determine (infinitely many) κ ∈ Q
such that u(κ) 6= 0. If we put uX + v = T we find that X = (T − v)/u and
recalling that p, q, r, u, v are determined as functions of κ we deduce that

β2(κ, T ) =
T − v
u

, β1(κ, T ) =
λ(T − v)

u
+ p

and

σ(κ, T ) =
µ(T − v)2

u2
+
q(T − v)

u
+ r

satisfy (1) identically in κ.
Suppose now that µ = 0; on making the substitution T  T/λ one sees

that there is no loss of generality in supposing that λ = 1. In this case one
cannot expect that β1, β2 and σ will be polynomials, and indeed to handle
the general case

β1(T )4 − aβ2(T )4 − bβ2(T )2 − σ(T )2 = T,

with a a generic element of Q, it would probably be necessary to construct
a quartic contained in the surface

X4 − aY 4 − bY 2 − Z2 = T.

Fortunately, in the case Ψ(T ) = T 4+bT 2 rather than a quartic it is sufficient
to consider a conic (in this regard see [3], in particular §§27–28).

We put

(2) (p2T
2 + p1T + p0)4 − (q4T 4 + q3T

3 + q2T
2 + q1T + q0)2

= (r1T + r0)4 + b(r1T + r0)2(s1T + s0)2 + (s1T + s0)4T

and seek to determine the coefficients pi, qj , rk, s` ∈ Q in such a way that (2)
is satisfied identically. Without loss of generality we may suppose that p2 =
q4 = 1, r0 = 0 and thus q0 = p2

0. After elementary but tedious calculations
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one obtains

p2 = 1, p1 =
κ4 − b2

4
, p0 =

(κ2 + b)4

64
,

q4 = 1, q3 =
κ4 − b2

2
, q2 =

(κ2 + b)2(3κ4 − 2bκ2 + 3b2)
32

,

q1 = −(κ2 + b)4(3κ4 + b2)
128

, q0 =
(κ2 + b)8

4096
,

r1 =
κ2(κ2 + b)

2
, r0 = 0, s1 =

κ(κ2 + b)
2

, s0 = −κ(κ2 + b)3

16
,

where κ ∈ Q is a parameter. Thus, if one sets K = κ2 + b and defines

β1(κ, T ) =
p2T

2 + p1T + p0

s1T + s0
=

64T 2 + 16(κ2 − b)T +K4

4κK(8T −K2)
,(3)

β2(κ, T ) =
r1T + r0
s1T + s0

=
8κKT

8T −K2
,(4)

σ(κ, T ) =
q4T

4 + q3T
3 + q2T

2 + q1T + q0
(s1T + s0)2

(5)

=
512T 3 + 64K(5κ2 − 3b)T 2 + 4K2(11κ4 − 2bκ2 + 3b2)T −K6

16κ2K2(8T −K2)
,

then relation (1) does indeed hold identically in κ.

Proof of Theorem B. First we prove that in a field K of characteristic
different from 2 every element τ may be written in the forms a4 − b4 − c2
and a4 − b4 + c2.

With the notation from the proof of the preceding theorem, let Ψ(T )
= T 4. Then b = 0 and so K = κ2. On putting κ = 2ξ, relations (3)–(5)
become

β1(ξ, T ) =
(T + 2ξ4)2

4ξ3(T − 2ξ4)
,(3′)

β2(ξ, T ) =
2ξT

T − 2ξ4
,(4′)

σ(ξ, T ) =
T 3 + 10ξ4T 2 + 44ξ8T − 8ξ12

16ξ6(T − 2ξ4)
.(5′)

Rereading the second part of the proof of Theorem 3.1 one sees that

β1(ξ, T )4 − β2(ξ, T )4 − σ(ξ, T )2 = T

identically in K(T ).
If |K| ≤ 5 then a direct verification shows that every element of F3

and of F5 may be written in each of the forms listed in Theorem B. If



100 E. Jabara

instead |K| > 5 then, for a fixed τ ∈ K, there certainly exists ξ ∈ K∗ such
that τ − 2ξ4 6= 0. (Indeed, if |K| = ∞, then there exist infinitely many
ξ ∈ K∗ with this property.) Hence, on putting a = β1(ξ, τ), b = β2(ξ, τ)
and c = σ(ξ, τ) one has τ = a4 − b4 − c2. In analogous fashion, if ξ ∈ K
is such that τ + 2ξ4 6= 0 then on putting a = β2(ξ,−τ), b = β1(ξ,−τ) and
c = σ(ξ,−τ), one obtains a4 − b4 + c2 = τ .

To prove that τ may be written in the forms a4+4b4−c2 and−4a4−b4+c2

it suffices to use what has just been proved and apply Lemmas 2.2–2.4.

Remark 3.2. Applying to the expressions β1(ξ, T ), β2(ξ, T ) and σ(ξ, T )
the isogeny exhibited in the proof of Lemma 2.3 yields(

T + β2(ξ, T )4

β1(ξ, T )2

)2

−
(
σ(ξ, T )
β1(ξ, T )

)4

− 4β2(ξ, T )4 = 4T.

Hence, on explicitly carrying out the substitution T  1
4T and setting

B1(ξ, T ) =
T 3 + 40ξ4T 2 + 704ξ8T − 512ξ12

16ξ3(T + 8ξ4)2
, B2(ξ, T ) =

2ξT
T − 8ξ4

,

S(ξ, T ) =
T 8 + s7T

7 + s6T
6 + s5T

5 + s4T
4 + s3T

3 + s2T
2 + s1T + s0

256ξ6(T + 8ξ4)4(T − 8ξ4)2
,

where

s7 = 26 · ξ4, s6 = 28 · 7 · ξ8, s5 = 212 · 11 · ξ12, s4 = 213 · 32 · 11 · ξ16,

s3 = 218 · 31 · ξ20, s2 = −220 · 52 · ξ24, s1 = 224 · 5 · ξ28, s0 = 224ξ32,

one has
−B1(ξ, T )4 − 4 ·B2(ξ, T )4 + S(ξ, T )2 = T.

Remark 3.3. The expressions β1(ξ, T ), β2(ξ, T ) and σ(ξ, T ) are related
to one another via the simple equation

(6) σ(ξ, T ) = β1(ξ, T )2 − β2(ξ, T )2 − 2ξβ2(ξ, T ).

In particular,

(7) ξ =
σ(ξ, T )− β1(ξ, T )2 + β2(ξ, T )2

2β2(ξ, T )
.

Also

β1(ξ, T )− β2(ξ, T ) =
T − 2ξ4

4ξ3
.

Using (7) it is easy to show that the formulas obtained in the proof of
Theorem B are far from exhausting all the possible expressions of a rational
number in the form a4 − b4 − c2.

Example 3.4. We write 6 = a4 − b4 − c2. After a brief computer search
one obtains several solutions. Among these we consider the following:
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• 6 = 24 − 1− 32. Using (7) to get ξ one obtains:

(i) If a = ±2, b = ±1, c = 3 then ξ = (3− 22 + 1)(±2−1) = 0 and so
formulas (3′)–(5′) are not applicable.

(ii) If a = ±2, b = ±1, c = −3 then ξ = ±3 but β1(±3, 6) = ∓196
117 ,

β2(±, 6) = ∓ 3
13 and σ(±3, 6) = 1441

1053 .

• 6 = 44 − 34 − 132. One obtains:

(i) If a = ±4, b = ±3, c = 13 then ξ = 1 and, in this case,
one rediscovers precisely β1(±1, 6) = ±4, β2(±1, 6) = ±3 and
σ(±1, 6) = 13.

(ii) If a = ±4, b = ±3, c = −13 then ξ = ±10
3 but now

β1

(
±10

3
, 6
)

=∓ 102432

24 ·3 ·53 ·11 ·887
and β2

(
±10

3
, 6
)

=∓22 ·34 ·5
11 · 887

.

Proof of Theorem A. Let f(t) = at4 + bt2 + d ∈ Q[t] with a = −λ4 + µ2

and λ 6= 0. We first note that it follows from the hypothesis f(T ) 6= at4 that
the elliptic surface E is not split.

If one puts Ψ(T ) = −aT 4 − bT 2 then from Theorem 3.1 it follows that
there exist rational functions β1, β2, σ ∈ Q(X) depending on a parameter κ
such that

β1(κ,X)4 − Ψ(β2(κ,X))− σ(κ,X)2 = X

holds identically.
For each κ ∈ Q for which β1(κ, d), β2(κ, d) and σ(κ, d) are defined one

finds f(β2(κ,−d)) = −β1(κ,−d)4 +σ(κ,−d)2 and so Lemma 2.1 shows that
rk(Cκ) > 0 where Cκ is the elliptic curve

Cκ : Y 2 = X3 − 4f(β2(κ,−d))X.

By Lemma 2.3 the curve Cκ is isogenous to the elliptic curve Ef (k), where
k = β2(κ, d), and in this case the assertion is proved.

Suppose now that a = 4λ4− µ2 and let f0(t) = 1
4f(t) = a0t

4 + b0t
2 + d0.

Then a0 = λ4 − (µ/2)2 and one can repeat the preceding proof considering
the elliptic curve

E ′f0 : y2 = x3 − f0(t)x.

By Lemma 2.3 this curve is isogenous to Ef and the assertion is thus estab-
lished in this case as well.

Remark 3.5. Let

E : y2 = x3 − (t4 + d)x.

Then, exploiting the proof of Theorem A and formulas (3′)–(5′), one can
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verify that on putting

t(ξ) =
2ξd

d− 2ξ4
, x(ξ) =

(d+ 2ξ4)2

16ξ6(d− 2ξ4)
,

y(ξ) =
(d+ 2ξ4)2(d3 + 10ξ4d2 + 44ξ8d− 8ξ12)

64ξ9(d− 2ξ4)2
,

one obtains infinitely many rational points of E as ξ varies in Q with 2ξ4 6= d.

4. Proof of Theorems C and D. Although Theorem C is a conse-
quence of Theorem D (as noted at the end of §1), it is convenient to prove
it separately.

Proof of Theorem C. We will use the fact that if

D : y2 = x3 +m(t)x+ n(t)

is an elliptic curve defined over Q(t) and if m(t), n(t) ∈ Z[t], then the points
of finite order of D have coordinates in Q[t].

Let A(t) = a3t
3+a2t

2+a1t+a0 and B(t) = t6+b4t4+b3t3+b2t2+b1t+b0
belong to Q[t] and let E be the elliptic surface

E : y2 = x3 +A(t)x+B(t).

Carrying out, if necessary, an affine coordinate transformation, we may,
without loss of generality, suppose that A(t), B(t) ∈ Z[t].

We put X(T ) = hT +k, Y (T ) = T 3 +pT 2 +qT +r and seek to determine
h, k, p, q, r as functions of the coefficients ai and bj so as to have

(8) X(T )3 +A(T )X(T ) +B(T )− Y (T )2 = LT +M

with L,M ∈ Q. Comparing the terms of degree five one sees immediately
that p = 0 and so it remains to solve the system

(9)


b4 + a3h− 2q = 0,
b3 + a2h+ a3k + h3 − 2r = 0,
b2 + a1h+ a2k + 3kh2 − q2 = 0.

On putting h = % one obtains the following solutions of (9), depending
not only on the coefficients of A(T ) and B(T ), but also on the parameter %:

q =
a3%+ b4

2
, k =

a3%
2 + (2a3b4 − 4a1)%+ b24 − 4b2

4(3%2 + a2)
,

r =
12%5 + 16a2%

3 + w2%
2 + w1%+ w0

8(3%2 + a2)
,

where w2 = a3
3+12b3, w1 = 2a3b4−4a3a1+4a2

2 and w0 = 4a2b3−4a3b2+a3b
2
4.
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Corresponding to these solutions one has

L(%) = − Λ(%)
16(3%2 + a2)2

, M(%) = − Θ(%)
64(3%2 + a2)3

,

where Λ and Θ are suitable polynomials in % of degree 8 and 12 respectively.
If we write Λ(%) = l8%

8 + l7%
7 + l6%

6 + l5%
5 + l4%

4 + l3%
3 + l2%

2 + l1%+ l0 we
can verify that

l8 = 72a3,

l7 = 72b4,
l6 = 120a2a3,

l5 = 3a4
3 + 72a3b3 + 120a2b4 − 144a0,

l4 = 6a3
3b4 − 12a2

3a1 + 56a3a
2
2 + 72b4b3 − 144b1,

l3 = 2a4
3a2 + 48a3a2b3 + 56a2

2b4 − 96a2a0,

l2 = 6a3
3a2b4 − 12a2

3a2a1 + 8a3a
3
2 − 6a3b

3
4

+ 24a3b4b2 + 48a2b4b3 − 96a2b1 + 12a1b
2
4 − 48a1b2,

l1 = 6a2
3a2b

2
4 − 8a2

3a2b2 + 8a3a
2
2b3 − 16a3a2a1b4

− 3b44 − 48b22 − 16a0a
2
2 + 24b4b22 + 16a2

1a2 + 8a3
2b4,

l0 = 2a3a2b
3
4 − 8a3a2b4b2 + 8a2

2b3b4 − 16a2
2b1 − 4a2a1b

2
4 + 16a2a1b2.

(For the reader’s convenience we have underlined the terms which do not
vanish when A(t) = 0; this information is quite irrelevant for the proof.)

In particular L(%) is constant only in the following two cases:

(i) a3 = 0, a2 = 0, a0 = 0, b4 = 0, b2 = 0, b1 = 0,
(ii) a3 = 0, a1 = 0, a0 = 0, b4 = 0, b2 = 0, b1 = 0,

namely, when L(%) is identically zero. We will discuss cases (i) and (ii)
separately. We may therefore suppose that L(%) is not identically zero. Let

V = {% ∈ Q | 3%2 + a2 6= 0, Λ(%) 6= 0};
then V is an infinite set (indeed, Q \V contains at most 10 elements). If for
each % ∈ V we set

T (%) = −M(%)
L(%)

= − Θ(%)
4(3%2 + a2)Λ(%)

then L(%)T (%) +M(%) = 0, and so on substituting into (8) we find that the
point P% with coordinates (x(%), y(%)) = (%T (%) + k(%), T (%)3 + q(%)T (%) +
r(%)) belongs to the elliptic surface

E% : y2 = x3 +A(T (%))x+B(T (%)).

We now consider % as an indeterminate. Via a change of coordinates of
the type X = θ(%)2x and Y = θ(%)3y, with a suitable θ ∈ Q[%], the equation
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of E% is transformed into an equation with coefficients in Q[%]:

E ′% : Y 2 = X3 + θ(%)4A(T (%))X + θ(%)6B(T (%));

we choose θ ∈ Q[%] of minimal degree with respect to this property. The new
coordinates of the point P% are X(%) = θ(%)2x(%) and Y (%) = θ(%)3y(%),
which are elements of Q[%]. If one calculates the abscissa of the point 2 · P%
by using the well known duplication formulas one obtains

X(2 · P%)

=
X(%)4 − 2θ(%)4A(T (%))X(%)2 − 8θ(%)6B(T (%))X(%) + θ(%)8A(T (%))2

4Y (%)2

=
(
θ(%)
2y(%)

)2

·
(
x(%)4 − 2A(T (%))x(%)2 − 8B(T (%))x(%) +A(T (%))2

)
and one can verify that X(2 ·P%) ∈ Q(%) but X(2 ·P%) 6∈ Q[%]. Thus, by the
observation made at the beginning of the proof (but see also Chap. III, §12
of [5]), the point P% is not a torsion point of E ′% and so rk(E%) = rk(E ′%) > 0
for each % ∈ V .

To prove the assertion in the special cases (i) and (ii) we may deal
with the slightly more general case of A(t) = a2t

2 + a1t + a0 and B(t) =
t6 + b3t

3 + b0, which includes both (i) and (ii).
We put X(T ) = −T 2 + k, Y (T ) = pT 2 + qT + r and seek to determine

k, p, q, r as functions of the coefficients ai and bj in such a way that

X(T )3 +A(T )X(T ) +B(T )− Y (T )2 = LT +M.

On setting p = % one easily obtains

q =
b3 − a1

2%
, r = −4%6 + 4a2%

4 + 3b23 − 6b3a1 + 3a2
1

24%3
, k =

%2 + a2

3
,

and in correspondence with these solutions one finds

L(%) =
4(a1 + b3)%6 + 4a2(a1 + b3)%4 + 3(b33 − 3b23a1 + 3b3a2

1 − a3
1)

24%2
.

If L(%) is identically zero one must have b3 = 0 and a1 = 0; excluding this
case one can proceed exactly as in the general case.

Finally, let A(t) = at2 and B(t) = t6 + b with a and b not both zero. In
this case we put X(T ) = 2T 2 + hT + k, Y (T ) = 3T 3 + pT 2 + qT + r and,
reasoning as above, one obtains

p = 2%, q =
2%
3
, r =

%3 − 3a%
18

, h = %, k =
%2 − a

6
(there is another solution for which L(%) vanishes identically), from which

L(%) =
%5 + 6a%3 + 9a2%

108
, M(%) =

%6 + 3a%4 − 9a2%2 − 3a3 + 648b
648

.



Rational points on some elliptic surfaces 105

In this case too one reaches the desired conclusion by proceeding as in the
general case.

Remark 4.1. Corollary 1.4 is a particular case of Theorem C when
A(t) = 0. In [6] this corollary was proved for all polynomials B(t) of degree
six such that B(t) 6= B(−t). Thus, the case A(t) = 0 and B(t) = t6 + b4t

4 +
b2t

2 + b0 with B(t) 6= t6 holds a particular interest. In this case, with the
notation used in the proof of Theorem C, one obtains

x(%) = −216%12 − 36(b34 − 4b4b2 + 24b0)%6 + (b24 − 4b2)3

18(24b4%6 − (b24 − 4b2)2)%2

provided that b4 and b2 are not both zero. If b4 = b2 = 0 one has

x(%) =
%12 − 23 · 34 · b0%6 + 26 · 38 · b20

18%10
.

Remark 4.2. We again consider the case of the elliptic surface E g :
y2 = x3 + g(t) with g(t) = b6t

6 + b4t
4 + b3t

3 + b2t
2 + b1t + b0. To obtain

the conclusions of Corollary 1.4 it is not necessary that b6 = 1. Indeed, the
result continues to hold in the following two cases:

• b6 ∈ (Q∗)2 and b4, b2 and b1 do not vanish simultaneously. If we write
b6 = B2 then the expression(

%T − 4b2B2 − b24
12B%

)3

−
(
BT 3 +

b4
2B

T +
%3 + b3

2B

)2

+ g(T )

is linear in T and equals L1(%)T + M1(%) where L1 and M1 are suit-
able rational functions of % depending on the coefficients of g(t), in
particular

L1(%) = −24B2b4%
6 + 24B2B4b3%

3 − 16B4b22 + 8B2b24b2 − b44
48B4%3

.

Under the hypothesis that b4, b2, b1 do not vanish simultaneously one
sees that L1(%) does not vanish. Thus, proceeding as in the proof of
Theorem C, one can conclude that there exist infinitely many k ∈ Q
such that rk(E g(k)) > 0.
• b6 ∈ (Q∗)3 and b3 and b1 do not vanish simultaneously. If we write
b6 = B3 then the expression(

−BT 2 +
%2 − b4

3B2

)3

−
(
%T 2 +

b3
2%
T − V (%)

)2

+ g(T ),

where

V (%) =
4%6 − 8b4%4 − 4(3B3b2 − b24)%2 + 3B3b3

24B3%3
,

is linear in T and is equal to L2(%)T + M2(%) with L2 and M2 ratio-
nal functions of % depending on the coefficients of g(t). In particular,
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L2(%) = b3%
−1V (%). Under the hypothesis that b3 and b1 do not vanish

simultaneously one finds that L2(%) does not vanish. Thus, proceeding
as in the proof of Theorem C, one can again conclude that there exist
infinitely many k ∈ Q such that rk(E g(k)) > 0.

Example 4.3 (see Example 3.5 of [6]). Let

E : y2 = x3 + t6 + t2 + 1.

If one writes x = ht+ k and y = t3 + qT + r one finds immediately that, on
setting h = %, q = 0, r = 1

2%
3 and k = −(3%)2, one has

t6 + t2 + 1 +
(
%t− 1

3%2

)3

−
(
t3 +

%3

2

)2

=
1

3%3
t− 27%12 − 108%6 + 4

108%6

where the right hand side vanishes for

t =
27%12 − 108%6 + 4

36%3
.

Thus

P%(x(%), y(%)) ∈ E

(
27%12 − 108%6 + 4

36%3

)
where

x(%) =
27%12 − 108%6 − 8

36%2
,

y(%) = 19836%36 − 236196%30 + 953532%24 − 1326780%18 + 14126%12 − 5184%6 + 64

46656%9
.

Example 4.4 (see the second part of Remark 4.2 in [6]). Let g(t) =
t6+6t4+6t3+9t2−150t. Applying the method used in the proof of Theorem
C and putting, for simplicity, h = 2σ, one obtains

(t3 + 3t+ 3 + 4σ3)2 − (2σt)3 − g(t) = 24(σ3 + 7)t+ (4σ3 + 9)2,

which yields

x(σ) = −σ(4σ3 + 3)2

12(σ3 + 7)
and y(σ) =

8Γ (σ)− 13462119
13824(σ3 + 7)3

where

Γ (σ) = 512σ18 + 2304σ15 + 864σ12 − 92448σ9 − 878634σ6 − 2850903σ3.

We note that in this particular case there exists another solution which is
obtained by putting h = 0 in view of the identity

(t3 + 3t+ 3)2 = t6 + 6t4 + 6t3 + 9t2 + 18t+ 9

(this is probably the reason why this example was given in [6]).
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Proof of Corollary 1.5. On setting B(z) = g(z) and A(z) = 0 with the
notation of the proof of Theorem C, the relation

y(%)2 − x(%)3 − g(T (%)) = −LT (%)−M

holds identically. Putting T = −(τ +M)/L one obtains

y(%)2 − x(%)3 − g
(
−τ +M(%)

L(%)

)
= τ

for every % ∈ Q, which proves the assertion.

Proof of Corollary 1.6. We discuss only the case d = 1 since the case
d = −1 is quite similar.

So let g(z) = z6 + 2bz3 + z; applying the method used in the proof of
Theorem C and putting h = 2σ, one gets the identity

(T 3 + b+ 4σ3)2 − (2σT )3 − g(T ) = −T + (4σ3 + b)2.

Writing n = −T + (4σ3 + b)2 and varying the parameter σ in Z one obtains
infinitely many desired solutions.

Proof of Theorem D. Let A(t) = a4t
4 +a3t

3 +a2t
2 +a1t+a0 and B(t) =

t6 + b4t
4 + b3t

3 + b2t
2 + b1t+ b0. We prove that given the elliptic surface

E : y2 = x3 +A(t)x+B(t)

there exist infinitely many k ∈ Q such that rk(E (k)) > 0 provided that there
exist infinitely many rational points on the curve

H : v2 = H(u)

where H(u) = h4u
4 + h3u

3 + h2u
2 + h1u + h0 and the coefficients hi are

related to those of A(t) and B(t) by the relations (†).
If a4 = 0 the assertion follows from Theorem C. Suppose, therefore, that

a4 6= 0. We put X(T ) = hT + k, Y (T ) = T 3 + pT 2 + qT + r and seek
to determine h, k, p, q, r as functions of the coefficients ai and bj in such a
manner that

X(T )3 +A(T )X(T ) +B(T )− Y (T )2 = LT +M

with L,M ∈ Q. By equating the coefficients of the terms of the same degree
one obtains the system

a4h− 2p = 0,
b4 + a3h+ a4k − 2q − p2 = 0,
b3 + a2h+ a3k + h3 − 2r − 2pq = 0,
b2 + a1h+ a2k + 3kh2 − 2rp− q2 = 0.

(10)
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On solving the first three equations of (10) in p, q, r one obtains

p =
1
2
a4h, q =

1
8

(4b4 + 4a3h+ 4a4k − a2
4h

2),

r =
1
16

(8b3 + 8a2h+ 8a3k + 8h3 − 4a4b4h− 4a4a3h
2 − 4a2

4hk + a3
4h

3).

Substituting these values into the last equation of (10) gives rise to an equa-
tion of degree two in k with discriminant D satisfying

16D = H(h).

Hence under our hypotheses, system (10) admits infinitely many solutions.
The rest of the argument is completely analogous to that in the proof of
Theorem C.
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