Products of special values of modular L-functions and their applications

by
Masataka Chida (Sendai)

1. Introduction. Let $f(z)=\sum_{n=1}^{\infty} a_{f}(n) q^{n}$ be a cusp form of weight $2 k$ for $\Gamma_{0}(N)$ with trivial character. We denote by $L(f, s)=\sum_{n=1}^{\infty} a_{f}(n) / n^{s}$ the L-function of f. For a square-free integer D, let $L(f,(\underline{D}), s)$ be the D-quadratic twist of $L(f, s)$ given by

$$
L\left(f,\left(\frac{D}{\cdot}\right), s\right)=\sum_{n=1}^{\infty} \frac{a_{f}(n)\left(\frac{D}{n}\right)}{n^{s}}
$$

Recently there have been a number of investigations regarding the distribution of analytic ranks of the families of quadratic twists of L-functions (see [7], [16], [17]). Goldfeld [8] conjectured that for newforms f of weight 2,

$$
\#\left\{-X \leq m \leq X \mid m \text { is square-free and } L\left(f,\left(\frac{m}{\cdot}\right), 1\right) \neq 0\right\} \sim X / 2
$$

Given an elliptic curve $E: y^{2}=x^{3}+a x+b(a, b \in \mathbb{Z})$ and a square-free integer D, we define D-quadratic twist of E to be the curve $E_{D}: y^{2}=$ $x^{3}+a D^{2} x+b D^{3}$. A weaker version of Goldfeld's conjecture, which is still unproved, is

$$
\#\left\{-X \leq m \leq X \mid m \text { is square-free and } \operatorname{rank} E_{m}(\mathbb{Q})=0\right\} \gg X
$$

Heath-Brown [9] confirmed this conjecture for the congruent number elliptic curve. Moreover, this assertion has been proved for a variety of elliptic curves with rational torsion points of order 3 by the works of James, Vatsal and Wong [10], [22], [25]. For general elliptic curves over \mathbb{Q}, Ono and Skinner [17] proved that
$\#\left\{-X \leq m \leq X \mid m\right.$ is square-free and $\left.\operatorname{rank} E_{m}(\mathbb{Q})=0\right\} \gg X / \log X$.
Also, it is conjectured that there are infinitely many primes p for which $\operatorname{rank} E_{-p}(\mathbb{Q})=0$. Ono [15] confirmed this conjecture for some special elliptic

[^0]curves. Ono and Skinner [17] checked that if E / \mathbb{Q} is an elliptic curve with conductor $N \leq 100$, then either $\operatorname{rank} E_{-p}(\mathbb{Q})=0$ or $\operatorname{rank} E_{p}(\mathbb{Q})=0$ for infinitely many primes p.

In this paper we examine the following question.
QUESTION 1.1. Let r be a positive integer. If f_{i} are newforms of weight $2 k_{i}$ for $\Gamma_{0}\left(N_{i}\right)$ with trivial character for each $i=1, \ldots, r$, then are there infinitely many square-free integers m such that

$$
L\left(f_{1},\left(\frac{(-1)^{k_{1}} m}{\cdot}\right), k_{1}\right) \cdots L\left(f_{r},\left(\frac{(-1)^{k_{r}} m}{\cdot}\right), k_{r}\right) \neq 0 ?
$$

Using the idea of Ono-Skinner's result ([17, Fundamental Lemma]), we have some non-vanishing lemmas on Fourier coefficients of half-integral weight modular forms and their applications to special values of L-functions of modular forms. Let $S_{k}(N, \chi)$ be the space of cusp forms of weight k for $\Gamma_{0}(N)$ with character χ, and let $S_{k}^{\text {new }}(N, \chi)$ be the set of newforms of weight k for $\Gamma_{0}(N)$ with character χ. Our main result is the following theorem.

THEOREM 1.2. Let $g_{i}(z)=\sum_{n=1}^{\infty} b_{i}(n) q^{n} \in S_{k_{i}+1 / 2}\left(M_{i}, 1\right)$ be eigenforms of the Hecke operators $T_{p^{2}}$ for all $p \nmid M_{i}$ such that the image of $g_{i}(z)$ under Shimura correspondence is $f_{i}(z)=\sum_{n=1}^{\infty} a_{i}(n) q^{n} \in S_{2 k_{i}}^{\text {new }}\left(N_{i}, 1\right)$. Suppose that the coefficients $b_{i}(m)$ are algebraic integers contained in a number field K. Let v be a place of K over 2 and put

$$
s_{i}=\min \left\{\operatorname{ord}_{v}\left(b_{i}(m)\right) \mid m>1 \text { is square-free and }\left(m, M_{1} \cdots M_{r}\right)=1\right\}
$$

If $s_{i}<\infty(i=1, \ldots, r)$ and there exists a square-free integer m_{0} with exactly l prime factors $\left(m_{0}=p_{1} \cdots p_{l}\right)$ such that $\left(m_{0}, M_{1} \cdots M_{r}\right)=1$ and for $i=1, \ldots, r$,

$$
\operatorname{ord}_{v}\left(b_{i}\left(m_{0}\right)\right)=s_{i}, \quad L\left(f_{i},\left(\frac{(-1)^{k_{i}} m_{0}}{\cdot}\right), k_{i}\right) \neq 0
$$

then there are infinitely many square-free integers m with exactly l prime factors for which

$$
\prod_{i=1}^{r} L\left(f_{i},\left(\frac{(-1)^{k_{i}} m}{\cdot}\right), k_{i}\right) \neq 0
$$

Moreover,
$\#\left\{0<m \leq X \mid m\right.$ square-free,$\left.\prod_{i=1}^{r} L\left(f_{i},\left(\frac{(-1)^{k_{i}} m}{\cdot}\right), k_{i}\right) \neq 0\right\} \gg \frac{X}{\log X}$.
2. Shimura correspondence. We briefly review the theory of Shimura correspondence. For a positive integer N divisible by 4 , let $S_{k+1 / 2}(N, \chi)$ be the space of cusp forms of half-integral weight $k+1 / 2$ for $\Gamma_{0}(N)$ with charac-
ter χ. It is known that there is a close connection between Fourier coefficients of half-integral weight modular forms and critical values of twisted modular L-functions. Let

$$
g(z)=\sum_{n=1}^{\infty} b(n) q^{n} \in S_{k+1 / 2}(N, \chi)
$$

where $q=e^{2 \pi i z}$. Let t be a positive square-free integer. Now define $A_{t}(n)$ by the formal product of Dirichlet series

$$
\sum_{n=1}^{\infty} \frac{A_{t}(n)}{n^{s}}=\left(\sum_{n=1}^{\infty} \frac{\chi(n)\left(\frac{-1}{n}\right)^{k}\left(\frac{t}{n}\right)}{n^{s-k+1}}\right)\left(\sum_{n=1}^{\infty} \frac{b\left(t n^{2}\right)}{n^{s}}\right)
$$

Then Shimura [18] proved that there is a positive integer M such that

$$
\mathrm{SH}_{t}(g(z))=f_{t}(z)=\sum_{n=1}^{\infty} A_{t}(n) q^{n} \in M_{2 k}\left(M, \chi^{2}\right)
$$

where $M_{2 k}(M, \chi)$ is the space of cusp forms of weight $2 k$ for $\Gamma_{0}(M)$ with character χ. In fact, we can take $M=N / 2$. If $f(z)=\sum_{n=1}^{\infty} a(n) q^{n}$ is a modular form, then its L-function $L(f, s)$ is

$$
L(f, s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

Furthermore, for a Dirichlet character ψ we put

$$
L(f, \psi, s)=\sum_{n=1}^{\infty} \frac{a(n) \psi(n)}{n^{s}}
$$

In [23] Waldspurger proved formulae connecting Fourier coefficients of half-integral weight modular forms and critical values of twisted modular L-functions. The following theorem is a special case of his results.

Theorem 2.1 ([23, Corollary 2]). Let

$$
g(z)=\sum_{n=1}^{\infty} b(n) q^{n} \in S_{k+1 / 2}\left(N,\left(\frac{d}{\cdot}\right)\right)
$$

be an eigenform of the Hecke operators $T_{p^{2}}$ for all $p \nmid M$ such that $\mathrm{SH}_{1}(g(z))$ $=f(z)=\sum_{n=1}^{\infty} a(n) q^{n} \in S_{2 k}^{\text {new }}(M, 1)$ for an appropriate positive integer M. Let n_{1} and n_{2} be two positive square-free integers such that $n_{1} / n_{2} \in \mathbb{Q}_{p}^{\times 2}$ for all $p \mid N$. Then

$$
b\left(n_{1}\right)^{2} L\left(f,\left(\frac{(-1)^{k} d n_{2}}{\cdot}\right), k\right) n_{2}^{k-1 / 2}=b\left(n_{2}\right)^{2} L\left(f,\left(\frac{(-1)^{k} d n_{1}}{\cdot}\right), k\right) n_{1}^{k-1 / 2}
$$

Now we define some notation that is used in the next theorem. Let E be an elliptic curve over \mathbb{Q} with conductor N, and let

$$
L(E, s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

be the Hasse-Weil L-function of E. Then, by the works of Wiles, Wiles and Taylor, Diamond, Conrad, Diamond and Taylor, and Breuil, Conrad, Diamond and Taylor, [24], [20], [6], [3], [2], it is now known that $L(E, s)$ is the Mellin transform of a weight 2 newform $f(z)=\sum_{n=1}^{\infty} a(n) q^{n} \in S_{2}^{\text {new }}(N, 1)$. Therefore by Kolyvagin's result [13] if $L(E, 1) \neq 0$, then $\operatorname{rank} E(\mathbb{Q})=0$. Now suppose that for some positive integer M there exists a cusp form $g(z)=$ $\sum_{n=1}^{\infty} b(n) q^{n} \in S_{3 / 2}\left(M,\left(\frac{d}{\bullet}\right)\right)$ that is an eigenform of the Hecke operators $T_{p^{2}}$ for all $p \nmid M$ such that the image of $g(z)$ under Shimura correspondence is $f(z)$.

Remark 2.2 (cf. [12]). It is known that if the conductor of E is a squarefree odd integer, then there exists a weight $3 / 2$ eigenform for which its image under Shimura correspondence is $f(z)$.

By using Waldspurger's result, K. Ono proved the following theorem.
Theorem 2.3 ([14, Theorem 2]). The notation being as above, let n_{1} be a positive square-free integer such that $b\left(n_{1}\right) \neq 0$ and $L\left(E_{-d n_{1}}, 1\right) \neq 0$. Suppose that n_{2} is a positive square-free integer such that $n_{1} / n_{2} \in \mathbb{Q}_{p}^{\times 2}$ for all $p \mid N$. If $b\left(n_{2}\right) \neq 0$, then $\operatorname{rank} E_{-d n_{2}}(\mathbb{Q})=0$.

Remark 2.4. Let E be an elliptic curve over \mathbb{Q}, and let

$$
L(E, s)=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}
$$

be the Hasse-Weil L-function of E. Then the Hasse-Weil L-function of E_{D} is

$$
L\left(E_{D}, s\right)=\sum_{n=1}^{\infty} \frac{a(n)\left(\frac{D}{n}\right)}{n^{s}}
$$

3. Fourier coefficients of half-integral weight modular forms.

In this section we prove some non-vanishing lemmas for the Fourier coefficients of half-integral weight modular forms. From now on, we assume that the Fourier coefficients of half-integral weight modular forms are algebraic integers contained in a number field K. Let v be a place of K over 2 and let e be the ramification index of v over 2 .

Definition 3.1. Let r be a positive integer. Then we put

$$
\begin{aligned}
P_{r} & =\{D \in \mathbb{Z} \mid D \text { is square-free with exactly } r \text { prime factors }\} \\
P(X) & =\{p \mid p \text { is prime and } p \leq X\} \\
P_{r}(X) & =\left\{D \in P_{r}| | D \mid \leq X\right\}
\end{aligned}
$$

The following lemma is an application of Ono-Skinner's result [17].

Lemma 3.2. For $i=1, \ldots, r$, let

$$
g_{i}(z)=\sum_{n=1}^{\infty} b_{i}(n) q^{n} \in S_{k_{i}+1 / 2}\left(\Gamma_{1}\left(N_{i}\right)\right)
$$

be non-zero half-integral weight modular forms. Put

$$
N=N_{1} \cdots N_{r}, \quad s_{i}=\min \left\{\operatorname{ord}_{v}\left(b_{i}(m)\right) \mid m \text { is positive integer }\right\}
$$

Assume that there exists a square-free integer m_{0} with $m_{0}=p_{1} \cdots p_{l} \in P_{l}$ such that $s_{i}=\operatorname{ord}_{v}\left(b_{i}\left(m_{0}\right)\right)$ and $\left(m_{0}, N\right)=1$. Then there is a finite Galois extension k of \mathbb{Q} having the following property: If a square-free integer m with $m=q_{1} \cdots q_{l} \in P_{l}$ satisfies $\operatorname{Frob}_{q_{j}}(k / \mathbb{Q})=\operatorname{Frob}_{p_{j}}(k / \mathbb{Q})$ for $j=1, \ldots, l$, then $\operatorname{ord}_{v}\left(b_{i}(m)\right)=s_{i}$ for all i.

Proof. The proof of this lemma is similar to the proof of the Fundamental Lemma in [17]. Let

$$
G_{i}(z)=\sum_{n=1}^{\infty} c_{i}(n) q^{n}=g_{i}(z)\left(1+2 \sum_{n=1}^{\infty} q^{n^{2}}\right)
$$

Then G_{i} is in $S_{k_{i}+1}\left(\Gamma_{1}\left(N_{i}\right)\right)$. Since

$$
c_{i}(n)=b_{i}(n)+2 \sum_{m+y^{2}=n, y>0} b_{i}(m)
$$

it follows that $\operatorname{ord}_{v}\left(c_{i}\left(m_{0}\right)\right)=\operatorname{ord}_{v}\left(b_{i}\left(m_{0}\right)\right)$. By the theory of newforms, $G_{i}(z)$ can be uniquely expressed as a linear combination

$$
G_{i}(z)=\sum_{u=1}^{a} \alpha_{i, u} f_{i, u}(z)+\sum_{v=1}^{b} \beta_{i, v} h_{v}\left(l_{i, v} z\right)
$$

where $f_{i, u}(z)=\sum_{n=1}^{\infty} a_{i, u}(n) q^{n}$ and $h_{i, v}(z)$ are newforms of weight $k_{i}+1$ and level a divisor of N_{i}, and where each $l_{i, v}$ is a non-trivial divisor of N_{i}. Therefore, if $\left(n, N_{i}\right)=1$, then

$$
c_{i}(n)=\sum_{u=1}^{a} \alpha_{i, u} a_{i, u}(n)
$$

Let L be a finite extension of \mathbb{Q} containing K, the Fourier coefficients of each $f_{i, u}$, and the $\alpha_{i, u}$'s. Let w be a place of L over v, let e be the ramification index of w over v, let O_{w} be the completion of the ring of integers of L at the place w, and let λ be a uniformizer. Moreover, put

$$
E_{i}=\max _{1 \leq u \leq a}\left|\operatorname{ord}_{w}\left(\alpha_{i, u}\right)\right|
$$

Then, by the theory of Galois representations (cf. [5]) there are representations

$$
\varrho_{i, u}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \operatorname{GL}_{2}\left(O_{w}\right)
$$

such that trace $\varrho_{i, u}\left(\operatorname{Frob}_{p}\right)=a_{i, u}(p)$. Now, let

$$
\varrho_{i}=\bigoplus_{u=1}^{a} \varrho_{i, u} \bmod \lambda^{E_{i}+e s_{i}+1}
$$

Since its image is finite, there is a finite Galois extension k_{i} of \mathbb{Q} such that the restriction of ϱ_{i} to k_{i} is an isomorphism. Therefore, for a prime q_{t} with $\operatorname{Frob}_{q_{t}}\left(k_{i} / \mathbb{Q}\right)=\operatorname{Frob}_{p_{t}}\left(k_{i} / \mathbb{Q}\right)$, we see that $a_{i, u}\left(q_{t}\right) \equiv a_{i, u}\left(p_{t}\right) \bmod$ $\lambda^{E_{i}+e s_{i}+1}$ for $u=1, \ldots, a$. By the multiplicativity of the Fourier coefficients of newforms, we have $a_{i, u}(m) \equiv a_{i, u}\left(m_{0}\right) \bmod \lambda^{E_{i}+e s_{i}+1}$, where $m=q_{1} \cdots q_{l}$. It follows that $c_{i}(m) \equiv c_{i}\left(m_{0}\right) \bmod \lambda^{e s_{i}+1}, \operatorname{sord}_{w}\left(c_{i}(m)\right)=\operatorname{ord}_{w}\left(c_{i}\left(m_{0}\right)\right)$ $=e s_{i}$. Hence, we find that $\operatorname{ord}_{v}\left(b_{i}(m)\right)=\operatorname{ord}_{v}\left(b_{i}\left(m_{0}\right)\right)=s_{i}$. Since

$$
\left.\operatorname{Frob}_{p}\left(k_{1} \cdots k_{r} / \mathbb{Q}\right)\right|_{k_{i}}=\operatorname{Frob}_{p}\left(k_{i} / \mathbb{Q}\right)
$$

this lemma follows by putting $k=k_{1} \cdots k_{r}$.
The following lemma is easy.
Lemma 3.3. Let L_{1}, \ldots, L_{r} be finite Galois extensions of \mathbb{Q}. Let A_{i} be a conjugate class in $\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right)$. Assume that there exists a prime p_{0} such that $\operatorname{Frob}_{p_{0}}\left(L_{i} / \mathbb{Q}\right)=A_{i}$ for $i=1, \ldots, r$. Then there are infinitely many primes p for which $\operatorname{Frob}_{p}\left(L_{i} / \mathbb{Q}\right)=A_{i}$ for $i=1, \ldots, r$. Moreover,

$$
\#\left\{p \in P(X) \mid \operatorname{Frob}_{p}\left(L_{i} / \mathbb{Q}\right)=A_{i} \text { for } i=1, \ldots, r\right\} \gg X / \log X
$$

Proof. Put $L=L_{1} \cdots L_{r}$. Since $\left.\operatorname{Frob}_{p}(L / \mathbb{Q})\right|_{L_{i}}=\operatorname{Frob}_{p}\left(L_{i} / \mathbb{Q}\right)$, we infer that if $\operatorname{Frob}_{p}(L / \mathbb{Q})=\operatorname{Frob}_{p_{0}}(L / \mathbb{Q})$, then $\operatorname{Frob}_{p}\left(L_{i} / \mathbb{Q}\right)=A_{i}$. By the Chebotarev Density Theorem, the set of primes for which $\operatorname{Frob}_{p}\left(L_{i} / \mathbb{Q}\right)=A_{i}$ for $i=1, \ldots, r$ has positive density.

Lemma 3.4. Let r, a, t be positive integers and for $i=1, \ldots, r$ let

$$
g_{i}(z)=\sum_{n=1}^{\infty} b_{i}(n) q^{n} \in S_{k_{i}+1 / 2}\left(N_{i}, \chi_{i}\right)
$$

be eigenforms. Let

$$
s_{i}=\min \left\{\operatorname{ord}_{v}\left(b_{i}(n)\right) \mid n \text { is positive integer }\right\}
$$

Assume that there exists a square-free integer m_{0} with $m_{0}=p_{1} \cdots p_{l}$ such that $m_{0} \equiv a \bmod t,\left(m_{0}, N_{1} \cdots N_{r}\right)=1$, and $\operatorname{ord}_{v}\left(b_{i}\left(m_{0}\right)\right)=s_{i}$ for all i. Then there are infinitely many square-free integers $m=q_{1} \cdots q_{l}$ for which $\operatorname{ord}_{v}\left(b_{i}(m)\right)=s_{i}(i=1, \ldots, r)$ and $m \equiv a \bmod t$. Moreover,
$\#\left\{m \in P_{l}(X) \mid \operatorname{ord}_{v}\left(b_{i}(m)\right)=s_{i}(\forall i), m \equiv a \bmod t\right\} \gg \frac{X(\log \log X)^{l-1}}{\log X}$.
Proof. We see that the g_{i} satisfy the condition of Lemma 3.2. By applying Lemma 3.2 for $g_{i}(z)$, we find that there is a finite Galois extension k_{1} of \mathbb{Q} having the following property: if a square-free integer m with
$m=q_{1} \cdots q_{l}$ satisfies $\operatorname{Frob}_{q_{j}}\left(k_{1} / \mathbb{Q}\right)=\operatorname{Frob}_{p_{j}}\left(k_{1} / \mathbb{Q}\right)$ for $j=1, \ldots, l$, then $\operatorname{ord}_{v}\left(b_{i}(m)\right)=s_{i}$ for all i. Let $k_{2}=\mathbb{Q}\left(\zeta_{t}\right)$, where $\zeta_{t}=\exp (2 \pi i / t)$. If $\operatorname{Frob}_{q_{j}}\left(k_{2} / \mathbb{Q}\right)=\operatorname{Frob}_{p_{j}}\left(k_{2} / \mathbb{Q}\right)$ for $j=1, \ldots, l$, then we see that $m \equiv$ $m_{0} \bmod t$. Therefore by Lemma 3.3 there are infinitely many primes q_{j} for which $\operatorname{Frob}_{q_{j}}\left(k_{n} / \mathbb{Q}\right)=\operatorname{Frob}_{p_{j}}\left(k_{n} / \mathbb{Q}\right)$ for $n=1,2$ and $j=1, \ldots, l$. Hence,

$$
\begin{aligned}
\#\left\{m \in P_{l}(X) \mid \operatorname{ord}_{v}\left(b_{i}(m)\right)=s_{i}(\forall i), m\right. & \equiv a \bmod t\} \\
& \gg(\log \log X)^{l-1} / \log X .
\end{aligned}
$$

In this lemma, we dealt with the case of

$$
s_{i}=\min \left\{\operatorname{ord}_{v}\left(b_{i}(n)\right) \mid n \text { is a positive integer }\right\} .
$$

The assumption of this lemma is not enough to compute examples in Section 5 , but we can extend this lemma to the case of some weaker conditions. For example, by taking twists of cuspforms, we can prove the case of

$$
s_{i}=\min \left\{\operatorname{ord}_{v}\left(b_{i}(n)\right) \mid n \text { is a positive integer and }\left(n, N_{i}\right)=1\right\} .
$$

Moreover, if g_{i} are eigenforms, it follows that $\operatorname{ord}_{v}\left(b_{i}(n)\right) \leq \operatorname{ord}_{v}\left(b_{i}\left(n m^{2}\right)\right)$ for a square-free integer n and a positive integer m. Therefore we have
$\min \left\{\operatorname{ord}_{v}\left(b_{i}(n)\right) \mid n\right.$ is positive $\}$

$$
=\min \left\{\operatorname{ord}_{v}\left(b_{i}(n)\right) \mid n \text { is positive square-free }\right\} .
$$

The following lemma is a basic fact about taking twists of cuspforms.
Lemma 3.5 ([18, Lemma 3.6]). Let

$$
g(z)=\sum_{n=1}^{\infty} b(n) q^{n} \in S_{k+1 / 2}(N, \chi),
$$

and let ψ be a primitive character modulo r. Let s be the conductor of χ and let M be the least common multiple of N, r^{2} and rs. Put

$$
g^{\prime}(z)=\sum_{n=1}^{\infty} \psi(n) b(n) q^{n}
$$

Then $g^{\prime}(z)$ belongs to $S_{k+1 / 2}\left(M, \psi^{2} \chi\right)$.
We shall require the following lemma.
Lemma 3.6. Let r, a, t be positive integers and for $i=1, \ldots, r$ let

$$
g_{i}(z)=\sum_{n=1}^{\infty} b_{i}(n) q^{n} \in S_{k_{i}+1 / 2}\left(N_{i}, \chi_{i}\right)
$$

be eigenforms. Let
$s_{i}=\min \left\{\operatorname{ord}_{v}\left(b_{i}(n)\right) \mid n>1\right.$ is square-free and $\left.\left(n, N_{1} \cdots N_{r}\right)=1\right\}$.
Assume that there exists a square-free integer m_{0} with $m_{0}=p_{1} \cdots p_{l}$ such that $m_{0} \equiv a \bmod t,\left(m_{0}, N_{1} \cdots N_{r}\right)=1$, and $\operatorname{ord}_{v}\left(b_{i}\left(m_{0}\right)\right)=s_{i}$ for all i.

Then there are infinitely many square-free integers $m=q_{1} \cdots q_{l}$ for which $\operatorname{ord}_{v}\left(b_{i}(m)\right)=s_{i}(i=1, \ldots, r)$ and $m \equiv a \bmod t$. Moreover, $\#\left\{m \in P_{l}(X) \mid \operatorname{ord}_{v}\left(b_{i}(m)\right)=s_{i}(\forall i), m \equiv a \bmod t\right\} \gg \frac{X(\log \log X)^{l-1}}{\log X}$.

Proof. We choose a prime p satisfying $\left(\frac{m_{0}}{p}\right)=-1$. For the prime p, let

$$
\delta(n)= \begin{cases}1 & \text { if }\left(n, N_{1} \cdots N_{r}\right)=1,\left(\frac{n}{p}\right)=-1, \\ 0 & \text { otherwise }\end{cases}
$$

Then, by Lemma 3.5, we have

$$
g_{i}^{\prime}(z)=\sum_{n=1}^{\infty} b_{i}^{\prime}(n) q^{n}=\sum_{n=1}^{\infty} b_{i}(n) \delta(n) q^{n} \in S_{k_{i}+1 / 2}\left(\Gamma_{1}\left(p^{2}\left(N_{1} \cdots N_{r}\right)^{2}\right)\right) .
$$

Since $g_{i}(z)$ are eigenforms, it follows that $\operatorname{ord}_{v}\left(b_{i}(n)\right) \leq \operatorname{ord}_{v}\left(b_{i}\left(n m^{2}\right)\right)$. Therefore

$$
\begin{aligned}
s_{i} & =\min \left\{\operatorname{ord}_{v}\left(b_{i}(n)\right) \mid 0<n \in \mathbb{Z},\left(n, N_{1} \cdots N_{r}\right)=1 \text { and }\left(\frac{n}{p}\right)=-1\right\} \\
& =\min \left\{\operatorname{ord}_{v}\left(b_{i}^{\prime}(n)\right) \mid 0<n \in \mathbb{Z}\right\} .
\end{aligned}
$$

We find that g_{i}^{\prime} satisfy the assumption of Lemma 3.4. This completes the proof.

For the applications to elliptic curves given in the next section, we introduce the following lemma.

Lemma 3.7 ([18, Section 1]). Let

$$
g(z)=\sum_{n=1}^{\infty} b(n) q^{n} \in S_{k+1 / 2}(N, \chi),
$$

and let p be a prime. Then

$$
f(z)=\sum_{n=1}^{\infty} b(p n) q^{n} \in S_{k+1 / 2}\left(p N,\left(\frac{4 p}{\cdot}\right) \chi\right) .
$$

Corollary 3.8. Let a, t be positive integers and let

$$
g(z)=\sum_{n=1}^{\infty} b(n) q^{n} \in S_{k+1 / 2}(N, \chi)
$$

be an eigenform. Let l be a positive square-free integer such that $(l, M)=1$ and put

$$
\begin{aligned}
s & =\min \left\{\operatorname{ord}_{v}(b(n)) \mid n>1 \text { is square-free and }(n, N)=1\right\}, \\
s^{\prime} & =\min \left\{\operatorname{ord}_{v}(b(l n)) \mid n>1 \text { is square-free and }(n, l N)=1\right\} .
\end{aligned}
$$

Assume that there exists a square-free integer m_{0} with $m_{0}=p_{1} \cdots p_{r}$ such that $m_{0} \equiv a \bmod t,\left(m_{0}, l N\right)=1, \operatorname{ord}_{v}\left(b\left(m_{0}\right)\right)=s$ and $\operatorname{ord}_{v}\left(b\left(l m_{0}\right)\right)=s^{\prime}$. Then there are infinitely many square-free integers $m=q_{1} \cdots q_{r}$ for which $\operatorname{ord}_{v}(b(m))=s, \operatorname{ord}_{v}(b(l m))=s^{\prime}$ and $m \equiv a \bmod t$. Moreover,

$$
\begin{aligned}
\#\left\{m \in P_{r}(X) \mid \operatorname{ord}_{v}(b(m))=s, \operatorname{ord}_{v}(b(l m))\right. & \left.=s^{\prime}, m \equiv a \bmod t\right\} \\
& \gg X(\log \log X)^{r-1} / \log X .
\end{aligned}
$$

Proof. Let

$$
g^{\prime}(z)=\sum_{n=1}^{\infty} b^{\prime}(n) q^{n}=\sum_{n=1}^{\infty} b(l n) q^{n} .
$$

By Lemma 3.7, we have $g^{\prime}(z) \in S_{k+1 / 2}\left(\Gamma_{1}\left(l^{2} N^{2}\right)\right)$. Now, $g^{\prime}(z)$ is not always an eigenform, but it has the property that $\operatorname{ord}_{v}\left(b^{\prime}(n)\right) \leq \operatorname{ord}_{v}\left(b^{\prime}\left(n m^{2}\right)\right)$. Hence we can prove this assertion in the same way as Lemma 3.6.

Proof of Theorem 1.2. Put $M=N_{1} \cdots N_{r}$ and let $t=8 \prod_{q \mid M} q$, where the product is over the odd prime divisors of M. If m is square-free integer with $m \equiv m_{0} \bmod t$, then $m / m_{0} \in \mathbb{Q}_{p}^{\times 2}$ for all $p \mid M$. By assumption there exists a square-free integer m_{0} with $\left(m_{0}, M\right)=1$ such that $\operatorname{ord}_{v}\left(b_{i}\left(m_{0}\right)\right)=s_{i}$ for $i=1, \ldots, r$. By applying Lemma 3.6 to $g_{i}(z)$'s, we find that there are infinitely many square-free integers m for which $b_{i}(m) \neq 0$ for $i=1, \ldots, r$ and $m \equiv m_{0} \bmod t$. Therefore, by Theorem 2.1 we see that $L\left(f_{i},\left(\frac{(-1)^{k_{i}}{ }^{i}}{}\right), k_{i}\right) \neq 0$. Hence there are infinitely many square-free integers m for which

$$
L\left(f_{1},\left(\frac{(-1)^{k_{1}} m}{\cdot}\right), k_{1}\right) \cdots L\left(f_{r},\left(\frac{(-1)^{k_{r}} m}{\cdot}\right), k_{r}\right) \neq 0
$$

4. Applications to elliptic curves. Let E be an elliptic curve over \mathbb{Q} with $L(E, s)=\sum_{n=1}^{\infty} a(n) / n^{s}$ and let $g(z)=\sum_{n=1}^{\infty} b(n) q^{n} \in S_{3 / 2}(M,(\underline{d}))$ be an eigenform of the Hecke operators $T_{p^{2}}$ for all $p \nmid M$ such that

$$
\mathrm{SH}_{1}(g(z))=\sum_{n=1}^{\infty} a(n) q^{n} .
$$

Suppose that the coefficients $b(m)$ are algebraic integers contained in a number field K. Let l be a positive square-free integer such that $(l, M)=1$ and let v be a place of K over 2. Put

$$
\begin{aligned}
s & =\min \left\{\operatorname{ord}_{v}(b(m)) \mid m>1 \text { is square-free and }(m, M)=1\right\}, \\
s^{\prime} & =\min \left\{\operatorname{ord}_{v}(b(l m)) \mid m>1 \text { is square-free and }(m, l M)=1\right\} .
\end{aligned}
$$

Theorem 4.1. Let the notation be as above. Assume that $s<\infty$, $s^{\prime}<\infty$ and there exists a prime p_{0} with $p_{0} \nmid M l$ such that $\operatorname{ord}_{v}\left(b\left(p_{0}\right)\right)=s$,
$\operatorname{ord}_{v}\left(b\left(l p_{0}\right)\right)=s^{\prime}, L\left(E_{-d p_{0}}, 1\right) \neq 0$ and $L\left(E_{-d l p_{0}}, 1\right) \neq 0$. Then there are infinitely many primes p for which $\operatorname{rank} E_{-d p}(\mathbb{Q}(\sqrt{l}))=0$. Moreover,

$$
\#\left\{p \in P(X) \mid \operatorname{rank} E_{-d p}(\mathbb{Q}(\sqrt{l}))=0\right\} \gg X / \log X
$$

Proof. Let $t=8 \prod_{q \mid M} q$, where the product is over the odd prime divisors of M. If p_{1} is a prime with $p_{1} \equiv p_{0} \bmod t$, then $p_{1} / p_{0} \in \mathbb{Q}_{p}^{\times 2}$ for all $p \mid M$. By assumption there exists a prime p_{0} with $p_{0} \nmid M$ such that $\operatorname{ord}_{v}\left(b\left(p_{0}\right)\right)=s$ and $\operatorname{ord}_{v}\left(b\left(l p_{0}\right)\right)=s^{\prime}$. Hence, by applying Corollary 3.8 to $g(z)$ and $r=1$, we deduce that there are infinitely many primes p for which $b(p) \neq 0, b(l p) \neq 0$ and $p \equiv p_{0} \bmod t$. Therefore, by Theorem 2.3 we see that $\operatorname{rank} E_{-d p}(\mathbb{Q})=\operatorname{rank} E_{-d l p}(\mathbb{Q})=0$. Since $\operatorname{rank} E_{-d p}(\mathbb{Q}(\sqrt{l}))=$ $\operatorname{rank} E_{-d p}(\mathbb{Q})+\operatorname{rank} E_{-d l p}(\mathbb{Q})=0$, there are infinitely many primes p for which $\operatorname{rank} E_{-d p}(\mathbb{Q}(\sqrt{l}))=0$.

Let E be an elliptic curve over \mathbb{Q} and let $k=\mathbb{Q}(\sqrt{l})$ be a quadratic field. Then it is known that the L-function of E over k is given by

$$
L(E, k, s)=L(E, s) L\left(E_{l}, s\right)
$$

Corollary 4.2. Let the notation be as above. Put

$$
\begin{aligned}
& s_{1}=\min \left\{\operatorname{ord}_{v}(b(m)) \mid m>1 \text { is square-free, }(m, M)=1\right\} \\
& s_{2}=\min \left\{\operatorname{ord}_{v}(b(l m)) \mid m>1 \text { is square-free, }(m, l M)=1\right\}
\end{aligned}
$$

If there exists a prime p_{0} with $p_{0} \nmid l M$ such that $\operatorname{ord}_{v}\left(b\left(p_{0}\right)\right)=s<\infty$ and $\operatorname{ord}_{v}\left(b\left(l p_{0}\right)\right)=s^{\prime}<\infty$, then there are infinitely many primes p for which

$$
\operatorname{ord}_{v}\left(\frac{L\left(E_{-d p}, \mathbb{Q}(\sqrt{l}), 1\right)}{\Omega\left(E_{-d p}, \mathbb{Q}(\sqrt{l})\right)}\right)=\operatorname{ord}_{v}\left(\frac{L\left(E_{-d p_{0}}, \mathbb{Q}(\sqrt{l}), 1\right)}{\Omega\left(E_{-d p_{0}}, \mathbb{Q}(\sqrt{l})\right)}\right)
$$

where $\Omega(E, k)$ is the period of E over k.
Proof. This follows from Theorem 2.1 and the proof of Theorem 4.1.
Corollary 4.3. The notation being as above, assume that E has no \mathbb{Q}-rational 2 -torsion points and there exists a prime p_{0} with $p_{0} \nmid M l$ such that

$$
\begin{aligned}
\operatorname{ord}_{v}\left(b\left(p_{0}\right)\right) & =\operatorname{ord}_{v}\left(L\left(E_{-d p_{0}}, 1\right) / \Omega\left(E_{-d p}, \mathbb{Q}\right)\right)=0 \\
\operatorname{ord}_{v}\left(b\left(p_{0}\right)\right) & =\operatorname{ord}_{v}\left(L\left(E_{-d l p_{0}}, 1\right) / \Omega\left(E_{-d l p}, \mathbb{Q}\right)\right)=0
\end{aligned}
$$

Then assuming the Birch and Swinnerton-Dyer conjecture there are infinite$l y$ many primes p for which $\operatorname{rank} E_{-d p}(\mathbb{Q}(\sqrt{l}))=0$ and $\# \operatorname{Sel}_{2}\left(E_{-d p}, \mathbb{Q}(\sqrt{l})\right)$ $=1$, where $\operatorname{Sel}_{2}(E, K)$ is the 2 -Selmer group of E over K.

Proof. Let $K=\mathbb{Q}(\sqrt{l})$. The following exact sequence is known:

$$
0 \rightarrow E(K) / 2 E(K) \rightarrow \operatorname{Sel}_{2}(E, K) \rightarrow \amalg_{2}(E, K) \rightarrow 0
$$

By assumption that E is an elliptic curve without \mathbb{Q}-rational 2-torsion points, if $E(K)$ is a finite group, then $E(K) / 2 E(K)$ is trivial. Therefore if
$\# \amalg_{2}(E, K)=1$, then $\# \operatorname{Sel}_{2}(E, K)=1$. By Corollary 4.2 and the Birch and Swinnerton-Dyer conjecture, there are infinitely many primes p for which

$$
\operatorname{ord}_{v} \# \amalg_{2}(E, K)=\operatorname{ord}_{v}\left(\frac{L\left(E_{-d p}, \mathbb{Q}(\sqrt{l}), 1\right)}{\Omega\left(E_{-d p}, \mathbb{Q}(\sqrt{l})\right)}\right)=0 .
$$

This completes the proof.
In [4], Coogan and Jiménez-Urroz prove the following theorem.
Theorem 4.4 ([4, Theorem 3]). Let E^{1} and E^{2} be two elliptic curves over \mathbb{Q} without \mathbb{Q}-rational 2 -torsion points. Then there exist fundamental discriminants D_{1}, D_{2} and a set of primes T of positive density such that

$$
\operatorname{rank} E_{d D_{1}}^{1}(\mathbb{Q})=\operatorname{rank} E_{d D_{2}}^{2}(\mathbb{Q})=0
$$

where d is any product of an even number of distinct primes in T.
We consider general cases in the result of Coogan and Jiménez-Urroz.
Theorem 4.5. For $i=1, \ldots, r$, let E^{i} be an elliptic curve over \mathbb{Q} with $L\left(E^{i}, s\right)=\sum_{n=1}^{\infty} a_{i}(n) / n^{s}$ and let $g_{i}(z)=\sum_{n=1}^{\infty} b_{i}(n) q^{n} \in S_{3 / 2}\left(M_{i}, 1\right)$ be an eigenform of the Hecke operators $T_{p^{2}}$ for all $p \nmid M_{i}$ such that the image of $g_{i}(z)$ under Shimura correspondence is $f_{i}(z)=\sum_{n=1}^{\infty} a_{i}(n) q^{n}$. Suppose that the coefficients $b_{i}(m)$ are algebraic integers contained in a number field K. Let v be a place of K over 2 and put

$$
s_{i}=\min \left\{\operatorname{ord}_{v}\left(b_{i}(m)\right) \mid m>1 \text { is square-free and }\left(m, M_{1} \cdots M_{r}\right)=1\right\}
$$

If $s_{i}<\infty$ and there exists a square-free integer m_{0} with $\left(m_{0}, M_{1} \cdots M_{r}\right)=1$ such that for $i=1, \ldots, r$,

$$
\operatorname{ord}_{v}\left(b_{i}\left(m_{0}\right)\right)=s_{i}, \quad L\left(E_{-m_{0}}^{i}, 1\right) \neq 0
$$

then there are infinitely many square-free integers m for which $\operatorname{rank} E_{-m}^{1}(\mathbb{Q})$ $=\cdots=\operatorname{rank} E_{-m}^{r}(\mathbb{Q})=0$. Moreover,
$\#\left\{0<m \leq X \mid m\right.$ is square-free and $\left.\operatorname{rank} E_{-m}^{i}(\mathbb{Q})=0(i=1, \ldots, r)\right\}$ $\gg X / \log X$.

Proof. This follows from Theorems 1.2 and 2.3.
5. Examples. In this section, we give some examples pertaining to our results.

Example 5.1 (cf. [1, Examples 3.6.1]). Let E be the elliptic curve given by

$$
E: y^{2}+y=x^{3}-x^{2}-10 x-20
$$

Then the conductor of E is 11 , in fact E is the modular curve $X_{0}(11)$. In this case the weight $3 / 2$ eigenform

$$
\begin{aligned}
g(z) & =\frac{1}{2}\left(\sum_{x, y, z \in \mathbb{Z}} q^{x^{2}+11 y^{2}+11 z^{2}}-q^{3 x^{2}+2 x y+4 y^{2}+11 z^{2}}\right)=\sum_{n=1}^{\infty} b(n) q^{n} \\
& =q-q^{3}-q^{5}+q^{11}+2 q^{12}-2 q^{14}+q^{15}-\cdots
\end{aligned}
$$

is in $S_{3 / 2}(44,1)$. Its image $\mathrm{SH}_{1}(g(z))=\sum_{n=1}^{\infty} a(n) q^{n}$ is the weight 2 newform whose Mellin transform is $L(E, s)$. We can find that $\operatorname{ord}_{2}(b(3))=0$, $\operatorname{ord}_{2}(b(5))=0$ and $\operatorname{ord}_{2}(b(15))=0$, and

$$
\min \left\{\operatorname{ord}_{v}(b(m)) \mid m>1 \text { is square-free and }(m, 44)=1\right\}=0
$$

Moreover, we can verify that

$$
\operatorname{ord}_{2}\left(L\left(E_{-3}, 1\right) / \Omega\left(E_{-3}, \mathbb{Q}\right)\right)=0, \quad \operatorname{ord}_{2}\left(L\left(E_{-5}, 1\right) / \Omega\left(E_{-5}, \mathbb{Q}\right)\right)=0
$$

and

$$
\operatorname{ord}_{2}\left(L\left(E_{-15}, 1\right) / \Omega\left(E_{-15}, \mathbb{Q}\right)\right)=0
$$

Therefore by Theorem 4.1 , for $l=3,5$ there are infinitely many primes p for which $\operatorname{rank} E_{-p}(\mathbb{Q}(\sqrt{l}))=0$.

Furthermore by Corollary 4.3, assuming the Birch and Swinnerton-Dyer conjecture, for $l=3,5$ there are infinitely many primes p for which

$$
\operatorname{rank} E_{-p}(\mathbb{Q}(\sqrt{l}))=0, \quad \# \operatorname{Sel}_{2}\left(E_{-p}, \mathbb{Q}(\sqrt{l})\right)=1
$$

When $s \geq \operatorname{ord}_{v} 2$, to determine

$$
s=\min \left\{\operatorname{ord}_{v}(b(m)) \mid m>1 \text { is square-free and }(m, l M)=1\right\}
$$

we use the following theorem.
Theorem 5.2 ([19, Theorem 1]). Let

$$
g(z)=\sum_{n=1}^{\infty} b(n) q^{n} \in M_{k}(N, \chi)
$$

be a half-integral or integral weight modular form whose coefficients b(m) are algebraic integers contained in a number field K. Let v be a finite place of K and

$$
\lambda=\frac{k}{12}\left[\Gamma_{0}(1): \Gamma_{0}(N)\right]+1=\frac{k N}{12} \prod_{p \mid N} \frac{p+1}{p}+1
$$

Assume that $b(n) \equiv 0 \bmod v$ for $n=1, \ldots, \lambda$. Then $b(n) \equiv 0 \bmod v$ for all n.

Remark 5.3 (cf. [11, Proposition 5]). In [19], Sturm proved this theorem for integral weight modular forms and trivial character, but the general case follows by taking an appropriate power of f.

Example 5.4 (cf. [21]). Let E be the elliptic curve given by

$$
E: y^{2}=x^{3}-x
$$

Then the conductor of E is 27 and E has \mathbb{Q}-rational torsion points of order 2 . In this case the weight $3 / 2$ eigenform

$$
\begin{aligned}
g(z) & =\sum_{x, y, z \in \mathbb{Z}}(-1)^{x+y} q^{(4 x+1)^{2}+16 y^{2}+2 z^{2}}=\sum_{n=1}^{\infty} b(n) q^{n} \\
& =q+2 q^{3}+q^{9}-2 q^{11}-4 q^{17}-2 q^{19}-3 q^{25}+\cdots
\end{aligned}
$$

is in $S_{3 / 2}(128,1)$. Its image $\mathrm{SH}_{1}(g(z))=\sum_{n=1}^{\infty} a(n) q^{n}$ is the weight 2 newform whose Mellin transform is $L(E, s)$. Tunnell [21] proved that for a square-free integer d,

$$
L\left(E_{d}\right)=\frac{b(d)^{2} \Omega}{4 \sqrt{d}}
$$

where Ω is the real period of E. Let

$$
\delta(n)=\left\{\begin{array}{ll}
1 & \text { if }(n, 128)=1, \\
0 & \text { otherwise },
\end{array} \quad \delta^{\prime}(n)= \begin{cases}1 & \text { if }(n, 1408)=1 \\
0 & \text { otherwise }\end{cases}\right.
$$

Then, by Lemmas 3.5 and 3.7, we have

$$
\begin{aligned}
g_{1}(z) & =\sum_{n=1}^{\infty} b_{1}(n) q^{n}=\sum_{n=1}^{\infty} b(n) \delta(n) q^{n}-\left(1+2 \sum_{n=1}^{\infty} q^{n^{2}}\right)^{2}\left(\sum_{n=1}^{\infty} \delta(n) q^{n^{2}}\right) \\
& \in M_{3 / 2}\left(128, \chi_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g_{2}(z) & =\sum_{n=1}^{\infty} b_{2}(n) q^{n}=\sum_{n=1}^{\infty} b(11 n) \delta^{\prime}(n) q^{n}-2\left(1+2 \sum_{n=1}^{\infty} q^{n^{2}}\right)^{2}\left(\sum_{n=1}^{\infty} \delta^{\prime}(n) q^{n^{2}}\right) \\
& \in M_{3 / 2}\left(15488, \chi_{2}\right)
\end{aligned}
$$

Now, let $\lambda_{1}=25$ and $\lambda_{2}=3169$. Then we can verify that $b_{1}(n) \equiv 0 \bmod 2$ for $n=1, \ldots, \lambda_{1}$ and $b_{2}(n) \equiv 0 \bmod 4$ for $n=1, \ldots, \lambda_{2}$. Hence, by Theorem 5.2, $\min \left\{\operatorname{ord}_{2}(b(m)) \mid m>1\right.$ is square-free, $\left.(m, 128)=1\right\}=1$, $\min \left\{\operatorname{ord}_{2}(b(11 m)) \mid m>1\right.$ is square-free, $\left.(m, 15488)=1\right\}=2$.
Also we can verify that $\operatorname{ord}_{2}(b(59))=1$ and $\operatorname{ord}_{2}(b(59 \cdot 11))=2$. By Theorem 4.1, there are infinitely many primes p for which $\operatorname{rank} E_{-p}(\mathbb{Q}(\sqrt{11}))=$ $\operatorname{rank} E_{-p}(\mathbb{Q}(\sqrt{-11}))=0$. In fact, by computing the 2 -Selmer groups of E_{-p}, it is known that if p and q are primes with $p \equiv q \equiv 3 \bmod 8$, then $\operatorname{rank} E_{-p}(\mathbb{Q}(\sqrt{q}))=0$.

Example 5.5 (cf. [1, Examples 3.6.2]). Let E be the elliptic curve given by

$$
E: y^{2}+x y+y=x^{3}+4 x-6
$$

Then the conductor of E is 14 and E has a \mathbb{Q}-rational torsion point of order 2 . In this case the weight $3 / 2$ eigenform

$$
\begin{aligned}
g(z) & =\frac{1}{2}\left(\sum_{x, y, z \in \mathbb{Z}} q^{x^{2}+14 y^{2}+14 z^{2}}-q^{2 x^{2}+7 y^{2}+14 z^{2}}\right)=\sum_{n=1}^{\infty} b(n) q^{n} \\
& =q-q^{2}+q^{4}-q^{7}-q^{8}-q^{9}+\cdots
\end{aligned}
$$

is in $S_{3 / 2}(56,1)$. Its image $\mathrm{SH}_{1}(g(z))=\sum_{n=1}^{\infty} a(n) q^{n}$ is the weight 2 newform whose Mellin transform is $L(E, s)$. Let

$$
\delta(n)=\left\{\begin{array}{ll}
1 & \text { if }(n, 56)=1, \\
0 & \text { otherwise },
\end{array} \quad \delta^{\prime}(n)= \begin{cases}1 & \text { if }(n, 88200)=1 \\
0 & \text { otherwise }\end{cases}\right.
$$

Then, by Lemmas 3.5 and 3.7, we have

$$
\begin{aligned}
g_{1}(z) & =\sum_{n=1}^{\infty} b_{1}(n) q^{n}=\sum_{n=1}^{\infty} b(n) \delta(n) q^{n}-\left(1+2 \sum_{n=1}^{\infty} q^{n^{2}}\right)^{2}\left(\sum_{n=1}^{\infty} \delta(n) q^{n^{2}}\right) \\
& \in M_{3 / 2}\left(504, \chi_{1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g_{2}(z) & =\sum_{n=1}^{\infty} b_{2}(n) q^{n}=\sum_{n=1}^{\infty} b(15 n) \delta^{\prime}(n) q^{n}-2\left(1+2 \sum_{n=1}^{\infty} q^{n^{2}}\right)^{2}\left(\sum_{n=1}^{\infty} \delta^{\prime}(n) q^{n^{2}}\right) \\
& \in M_{3 / 2}\left(88200, \chi_{2}\right)
\end{aligned}
$$

Now, let $\lambda_{1}=145$ and $\lambda_{2}=30241$. Then we can verify that $b_{1}(n) \equiv 0 \bmod 2$ for $n=1, \ldots, \lambda_{1}$ and $b_{2}(n) \equiv 0 \bmod 4$ for $n=1, \ldots, \lambda_{2}$. Hence, by Theorem 5.2,

$$
\begin{aligned}
& \min \left\{\operatorname{ord}_{2}(b(m)) \mid m>1 \text { is square-free, }(m, 56)\right.=1\} \\
&=1 \\
& \min \left\{\operatorname{ord}_{2}(b(15 m)) \mid m>1 \text { is square-free, }(m, 88200)\right.=1\}
\end{aligned}=2 .
$$

Also, we can see that $\operatorname{ord}_{2}(b(71))=1, \operatorname{ord}_{2}(b(71 \cdot 15))=2, L\left(E_{-71}, 1\right) \neq 0$ and $L\left(E_{-71 \cdot 15}, 1\right) \neq 0$. By Theorem 4.1, there are infinitely many primes p for which $\operatorname{rank} E_{-p}(\mathbb{Q}(\sqrt{15}))=0$.

Example 5.6. Let $E^{1}=X_{0}(11)$ and $E^{2}=X_{0}(14)$. Moreover, we put

$$
\begin{aligned}
g_{1}(z) & =\frac{1}{2}\left(\sum_{x, y, z \in \mathbb{Z}} q^{x^{2}+11 y^{2}+11 z^{2}}-q^{3 x^{2}+2 x y+4 y^{2}+11 z^{2}}\right)=\sum_{n=1}^{\infty} b_{1}(n) q^{n} \\
& =q-q^{3}-q^{5}+q^{11}+2 q^{12}-2 q^{14}+q^{15}-\cdots
\end{aligned}
$$

and

$$
\begin{aligned}
g_{2}(z) & =\frac{1}{2}\left(\sum_{x, y, z \in \mathbb{Z}} q^{x^{2}+14 y^{2}+14 z^{2}}-q^{2 x^{2}+7 y^{2}+14 z^{2}}\right)=\sum_{n=1}^{\infty} b_{2}(n) q^{n} \\
& =q-q^{2}+q^{4}-q^{7}-q^{8}-q^{9}+q^{14}+2 q^{15}+\cdots
\end{aligned}
$$

Then

$$
\begin{aligned}
& \min \left\{\operatorname{ord}_{2}\left(b_{1}(m)\right) \mid m>1 \text { is square-free, }(m, 44)=1\right\}=0 \\
& \min \left\{\operatorname{ord}_{2}\left(b_{2}(m)\right) \mid m>1 \text { is square-free, }(m, 56)=1\right\}=1
\end{aligned}
$$

$\operatorname{ord}_{2}\left(b_{1}(15)\right)=0, \operatorname{ord}_{2}\left(b_{2}(15)\right)=1, L\left(E_{-15}^{1}, 1\right) \neq 0$ and $L\left(E_{-15}^{2}, 1\right) \neq 0$. Therefore by Theorem 4.5 there are infinitely many square-free integers m for which $\operatorname{rank} E_{-m}^{1}(\mathbb{Q})=\operatorname{rank} E_{-m}^{2}(\mathbb{Q})=0$. Moreover,

$$
\begin{aligned}
\#\left\{0<m \leq X \mid m \text { is square-free and } \operatorname{rank} E_{-m}^{i}(\mathbb{Q})=0\right. & (i=1,2)\} \\
& \gg X / \log X
\end{aligned}
$$

References

[1] A. Antoniadis, M. Bungert and G. Frey, Properties of twists of elliptic curves, J. Reine Angew. Math. 405 (1990), 1-28.
[2] C. Breuil, B. Conrad, F. Diamond and R. Taylor, On modularity of elliptic curves over \mathbb{Q}, J. Amer. Math. Soc. 14 (2001), 843-939.
[3] B. Conrad, F. Diamond and R. Taylor, Modularity of certain potentially BarsottiTate Galois representations, ibid. 12 (1999), 521-567.
[4] G. Coogan and J. Jiménez-Urroz, Mordell-Weil ranks of quadratic twists of pairs of elliptic curves, J. Number Theory 96 (2002), 388-399.
[5] P. Deligne et J.-P. Serre, Formes modulaires de poids 1, Ann. Sci. École Norm. Sup. (4) 7 (1974), 507-530.
[6] F. Diamond, On deformation rings and Hecke rings, Ann. of Math. 144 (1996), 137-166.
[7] S. Friedberg and J. Hoffstein, Nonvanishing theorems for automorphic L-functions on $G L(2)$, ibid. 142 (1995), 385-423.
[8] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, in: Number Theory (Carbondale, 1979), Lecture Notes in Math. 751, Springer, 1979, 108-118.
[9] D. R. Heath-Brown, The size of the Selmer groups for the congruent number problem II, Invent. Math. 118 (1994), 331-370.
[10] K. James, L-series with nonzero central critical value, J. Amer. Math. Soc. 11 (1998), 635-641.
[11] K. James and K. Ono, Selmer groups of quadratic twists of elliptic curves, Math. Ann. 314 (1999), 1-17.
[12] W. Kohnen, Fourier coefficients of modular forms of half-integral weight, ibid. 271 (1985), 237-268.
[13] V. Kolyvagin, Finiteness of $E(\mathbb{Q})$ and $Ш_{E / \mathbb{Q}}$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 522-540 (in Russian).
[14] K. Ono, Rank zero quadratic twists of modular elliptic curves, Compositio Math. 104 (1996), 293-304.
[15] K. Ono, Twists of elliptic curves, ibid. 106 (1997), 349-360.
[16] -, Non-vanishing of quadratic twists of L-functions and applications to elliptic curves, J. Reine Angew. Math. 533 (2001), 81-97.
[17] K. Ono and C. Skinner, Non-vanishing of quadratic twists of L-functions, Invent. Math. 134 (1998), 651-660.
[18] G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), 440-481.
[19] J. Sturm, On the congruence of modular forms, in: Lecture Notes in Math. 1240, Springer, 1984, 275-280.
[20] R. Taylor and A. Wiles, Ring theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553-572.
[21] J. Tunnell, A classical Diophantine problem and modular forms of weight $\frac{3}{2}$, Invent. Math. 72 (1983), 323-334.
[22] V. Vatsal, Canonical periods and congruent formulae, Duke Math. J. 98 (1999), 397-419.
[23] J. L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl. 60 (1981), 375-484.
[24] A. Wiles, Modular elliptic curves and Fermat's last theorem, Ann. of Math. 141 (1995), 443-551.
[25] S. Wong, Elliptic curves and class number divisibility, Internat. Math. Res. Notices 1999, no. 12, 661-672.

Institute of Mathematics
Tohoku University
Aoba, Sendai, Japan, 980-8578
E-mail: sa2m22@math.tohoku.ac.jp

Received on 30.4.2003
and in revised form on 5.8.2004

[^0]: 2000 Mathematics Subject Classification: Primary 14G10; Secondary 11G40.
 Key words and phrases: modular form, L-function, elliptic curve.

