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1. Introduction. Let f(z) =Y 7, af(n)q" be a cusp form of weight 2k
for I'h(N) with trivial character. We denote by L(f,s) = >.o°, ag(n)/n®

the L-function of f. For a square-free integer D, let L(f, (2),8) be the
D-quadratic twist of L(f,s) given by

D — ag(n) (%)
{0(%)) -2
n=1
Recently there have been a number of investigations regarding the dis-

tribution of analytic ranks of the families of quadratic twists of L-functions
(see [7], [16], [17]). Goldfeld [8] conjectured that for newforms f of weight 2,

m is square-free and L(f, (E>,1) % 0} ~ X/2.

Given an elliptic curve E : y?> = 23 + ax + b (a,b € Z) and a square-free
integer D, we define D-quadratic twist of E to be the curve Ep : y? =
x3 + aD?x + bD3. A weaker version of Goldfeld’s conjecture, which is still

unproved, is
#{—X <m < X | m is square-free and rank F,,(Q) = 0} > X.

Heath-Brown [9] confirmed this conjecture for the congruent number el-
liptic curve. Moreover, this assertion has been proved for a variety of elliptic
curves with rational torsion points of order 3 by the works of James, Vat-
sal and Wong [10], [22], [25]. For general elliptic curves over @, Ono and
Skinner [17] proved that

#{—X <m < X | m is square-free and rank E,,(Q) = 0} > X/log X.

Also, it is conjectured that there are infinitely many primes p for which
rank E_,(Q) = 0. Ono [15] confirmed this conjecture for some special elliptic

#{—Xgmgx
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curves. Ono and Skinner [17] checked that if F/Q is an elliptic curve with
conductor N < 100, then either rank £_,(Q) = 0 or rank E,(Q) = 0 for
infinitely many primes p.

In this paper we examine the following question.

QUESTION 1.1. Let r be a positive integer. If f; are newforms of weight
2k; for I'h(NN;) with trivial character for each i = 1,...,r, then are there
infinitely many square-free integers m such that

(22 ) 022

Using the idea of Ono-Skinner’s result ([17, Fundamental Lemmal),
we have some non-vanishing lemmas on Fourier coefficients of half-integral
weight modular forms and their applications to special values of L-functions
of modular forms. Let Si(N,x) be the space of cusp forms of weight k for
I'v(N) with character x, and let Sp°¥ (N, x) be the set of newforms of weight
k for I'h(IN) with character x. Our main result is the following theorem.

THEOREM 1.2. Let gi(2) = > ;2 bi(n)q" € Sp,q1/2(Mi, 1) be eigen-
forms of the Hecke operators T2 for all pt M; such that the image of gi(2)
under Shimura correspondence is f;(2) = > 72 ai(n)q" € Sy (N;, 1). Sup-
pose that the coefficients bj(m) are algebraic integers contained in a number
field K. Let v be a place of K over 2 and put

s; = min{ord, (b;(m)) | m > 1 is square-free and (m, My ---M,) = 1}.

If s; < oo (i = 1,...,7) and there exists a square-free integer mgy with
exactly | prime factors (mo = p1---p;) such that (mo, My---M,) =1 and
fori=1,....r,

ordy, (bi(mo)) = s, L(fz‘, <M>7k1> #0,

then there are infinitely many square-free integers m with exactly | prime

factors for which . ks
HL<fz'7 <M)J€z> # 0.
i=1

Moreover,

#{0 <m<X ‘ m square-free, ZHlL<fiv <m>k1> 7 0} > lo;(X'

2. Shimura correspondence. We briefly review the theory of Shimura
correspondence. For a positive integer N divisible by 4, let Sy, /2(]\7 ,X) be
the space of cusp forms of half-integral weight k+1/2 for I'y(N) with charac-
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ter x. It is known that there is a close connection between Fourier coefficients
of half-integral weight modular forms and critical values of twisted modular
L-functions. Let

9(z) = Zb(”)qn € Skt1/2(N, x),
n=1

where ¢ = 2™, Let t be a positive square-free integer. Now define A;(n)
by the formal product of Dirichlet series

i# _ (imzﬁﬂ(%)) (i@)

Then Shimura [18] proved that there is a positive integer M such that

SHi(9(2)) = fulz) = Y _ Au(n)q" € Moy (M, x*),
n=1

where Moy (M, x) is the space of cusp forms of weight 2k for I'h(M) with
character x. In fact, we can take M = N/2. If f(z) = > 02 a(n)¢™ is a
modular form, then its L-function L(f,s) is

L(f,s)= Z a(n).

nS
n=1
Furthermore, for a Dirichlet character v we put
o a(n)(n)
L(f.s) = 30 S0,
n=1

In [23] Waldspurger proved formulae connecting Fourier coefficients of
half-integral weight modular forms and critical values of twisted modular
L-functions. The following theorem is a special case of his results.

THEOREM 2.1 ([23, Corollary 2]). Let

9() = nfjlbm)qn e Sens(v. (1))

be an eigenform of the Hecke operators Ty for all pt M such that SHi(g(2))
= f(z) =302, aln)g" € S3V(M, 1) for an appropriate positive integer M.
Let ny and ng be two positive square-free integers such that ny/ng € Q;Q
for all p| N. Then

b(n1)2L<f, <7(_1)'kd"2>,k> nE Y2 = b(ng)2L (f, (7(_1)‘%"1) : k) k12,

Now we define some notation that is used in the next theorem. Let E be
an elliptic curve over Q with conductor IV, and let

L(E,s) =) @
n=1
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be the Hasse—-Weil L-function of E. Then, by the works of Wiles, Wiles
and Taylor, Diamond, Conrad, Diamond and Taylor, and Breuil, Conrad,
Diamond and Taylor, [24], [20], [6], [3], [2], it is now known that L(E, s) is the
Mellin transform of a weight 2 newform f(z) = Y 07 | a(n)q" € S5°V(N, 1).
Therefore by Kolyvagin’s result [13] if L(E, 1) # 0, then rank E(Q) = 0. Now
suppose that for some positive integer M there exists a cusp form g(z) =
Y1 b(n)g" € S50 (M, (4)) that is an eigenform of the Hecke operators T,
for all pt M such that the image of g(z) under Shimura correspondence

is f(2).

REMARK 2.2 (cf. [12]). It is known that if the conductor of E is a square-
free odd integer, then there exists a weight 3/2 eigenform for which its image
under Shimura correspondence is f(z).

By using Waldspurger’s result, K. Ono proved the following theorem.

THEOREM 2.3 ([14, Theorem 2]). The notation being as above, let ny
be a positive square-free integer such that b(ni) # 0 and L(E_g,,,1) # 0.
Suppose that ngy is a positive square-free integer such that nq/ng € Q;z for
all p| N. If b(na) # 0, then rank E_4,,(Q) = 0.

REMARK 2.4. Let E be an elliptic curve over QQ, and let

L(E,s)=Y a(n)

nS

n=1

be the Hasse—Weil L-function of E. Then the Hasse—Weil L-function of Ep is

> a(n)(2
L(Ep,s)=) %(")
n=1
3. Fourier coefficients of half-integral weight modular forms.

In this section we prove some non-vanishing lemmas for the Fourier coeffi-
cients of half-integral weight modular forms. From now on, we assume that
the Fourier coefficients of half-integral weight modular forms are algebraic
integers contained in a number field K. Let v be a place of K over 2 and let
e be the ramification index of v over 2.

DEFINITION 3.1. Let r be a positive integer. Then we put
P, ={D € Z | D is square-free with exactly r prime factors},
P(X)={p|pis prime and p < X},
P.(X)=1{De P, ||D| < X}.

The following lemma is an application of Ono—Skinner’s result [17].
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LEMMA 3.2. Fori=1,...,r, let

Zb n)q" € S,11/2(I1(N:))

be non-zero half-integral wezght modular forms. Put
N =N;---N,, s; =min{ord,(b;(m)) | m is positive integer}.

Assume that there exists a square-free integer mg with mg = p1---p; € B,
such that s; = ord,(bj(mo)) and (mo, N) = 1. Then there is a finite Galois
extension k of Q having the following property: If a square-free integer m
with m = q1 - - - q € Py satisfies Froby, (k/Q) = Frob, (k/Q) for j =1,...,1,
then ord, (b;(m )) =s; for all i.

Proof. The proof of this lemma is similar to the proof of the Fundamental
Lemma in [17]. Let

Z ci(n (1 +2 Z q" >
n=1
Then Gz is in Skl—i-l(Fl(Nz)) Since
cin) =bi(n)+2 > bi(m),
m+y2=n,y>0

it follows that ord,(c;(mg)) = ord,(b;(mg)). By the theory of newforms,
Gi(z) can be uniquely expressed as a linear combination

a
Z):Zai,ufzu +Zﬁzv v zvz
u=1

where fi.(2) = > .07 a;u(n)g"™ and hiyv(z) are newforms of weight k; + 1
and level a divisor of N;, and where each [;, is a non-trivial divisor of IV;.
Therefore, if (n, N;) = 1, then

a
n) =Y @iuaiu(n)
u=1

Let L be a finite extension of QQ containing K, the Fourier coefficients of
each f; , and the o ,,’s. Let w be a place of L over v, let e be the ramification
index of w over v, let O,, be the completion of the ring of integers of L at
the place w, and let A be a uniformizer. Moreover, put

E; = max |ordy(a;u)l-
1<u<a

Then, by the theory of Galois representations (cf. [5]) there are representa-
tions

w: Gal(Q/Q) — GL2(O.)
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such that trace g;,(Froby,) = a;.(p). Now, let

a

0i = @ in“ IHOd )\Ei+esi+1.

u=1

Since its image is finite, there is a finite Galois extension k; of Q such
that the restriction of p; to k; is an isomorphism. Therefore, for a prime
q: with Frobg, (k;/Q) = Froby, (k;/Q), we see that a;,(q:) = a;(p¢) mod
NEitesitl for ¢y = 1,..., a. By the multiplicativity of the Fourier coefficients
of newforms, we have a; ,(m) = a; ,(mo) mod AEiTes+1 wherem = ¢ - - q;.
It follows that c;(m) = ¢;(mo) mod A1 s0 ordy(c;(m)) = ordy,(ci(mg))
= es;. Hence, we find that ord, (b;(m)) = ord,(b;(mg)) = s;. Since

Froby, (ki - - - k. /Q)|, = Frob,(k;/Q),
this lemma follows by putting k =k;--- k.. =

The following lemma is easy.

LEMMA 3.3. Let Lq,..., L, be finite Galois extensions of Q. Let A; be a
congugate class in Gal(L;/Q). Assume that there exists a prime py such that
Frob,,(L;/Q) = A; fori=1,...,r. Then there are infinitely many primes p
for which Frob,(L;/Q) = A; fori=1,...,r. Moreover,

#{p € P(X) | Frob,(L;/Q) = A; fori=1,...,r} > X/log X.

Proof. Put L = Ly --- L,. Since Frob,(L/Q)|r, = Frob,(L;/Q), we infer
that if Frob,(L/Q) = Frob,,(L/Q), then Frob,(L;/Q) = A;. By the Cheb-
otarev Density Theorem, the set of primes for which Frob,(L;/Q) = A; for
1 =1,...,r has positive density. =

LEMMA 3.4. Let r,a,t be positive integers and fori=1,...,r let
o0
9i(z) = Zbi(”)qn € Skir1/2(Nis i)
n=1

be eigenforms. Let
s; = min{ord,(b;(n)) | n is positive integer}.

Assume that there exists a square-free integer mg with mg = p1---p; such
that my = amod t, (mo, N1---N,) = 1, and ord,(b;(mo)) = s; for all i.
Then there are infinitely many square-free integers m = q1 ---q; for which
ordy(bi(m)) =s; (i=1,...,r) and m = a mod t. Moreover,
X (loglog X)'™*

log X ’
Proof. We see that the g; satisfy the condition of Lemma 3.2. By ap-

plying Lemma 3.2 for g;(z), we find that there is a finite Galois exten-
sion kp of Q having the following property: if a square-free integer m with

#{m € P(X) | ord,(b;(m)) = s; (Vi), m = a mod t} >
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m = qp---q satisfies Frobg, (k1/Q) = Froby, (k1/Q) for j = 1,...,l, then
ord,(bj(m)) = s; for all i. Let ky = Q((;), where (; = exp(2mi/t). If
Froby, (k2/Q) = Froby, (k2/Q) for j = 1,...,1, then we see that m =
mo mod t. Therefore by Lemma 3.3 there are infinitely many primes ¢g; for
which Frobg, (kn/Q) = Froby, (k,/Q) forn =1,2 and j = 1,...,l. Hence,

#{m € B(X) | ord,(bi(m)) = s; (Vi), m = a mod ¢}
> X(loglog X)" ! /log X . w
In this lemma, we dealt with the case of
s; = min{ord,(b;(n)) | n is a positive integer}.

The assumption of this lemma is not enough to compute examples in Sec-
tion 5, but we can extend this lemma to the case of some weaker conditions.
For example, by taking twists of cuspforms, we can prove the case of

s; = min{ord,(b;(n)) | n is a positive integer and (n, N;) = 1}.

Moreover, if g; are eigenforms, it follows that ord,(b;(n)) < ord,(b;(nm?))
for a square-free integer n and a positive integer m. Therefore we have

min{ord,(b;(n)) | n is positive}
= min{ord, (b;(n)) | n is positive square-free}.
The following lemma, is a basic fact about taking twists of cuspforms.

LEMMA 3.5 ([18, Lemma 3.6]). Let

9(z) = Zb(n)q” € Skt1/2(N, X)),
n=1

and let ¢ be a primitive character modulo r. Let s be the conductor of x
and let M be the least common multiple of N, > and rs. Put

g(z) = m)bn)g".
n=1

Then g'(2) belongs to Syy1/2(M, »2y).
We shall require the following lemma.

LEMMA 3.6. Let r,a,t be positive integers and fori=1,...,r let
e.)
9i(z) = sz’(n)qn € Sk,v1/2(Nis Xi)
n=1

be eigenforms. Let
si = min{ord,(bj(n)) | n > 1 is square-free and (n,Ny---N,) = 1}.

Assume that there exists a square-free integer mqg with mg = p1---p; such
that mo = a mod t, (mg, N1---N,) = 1, and ord,(b;(mg)) = s; for all i.
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Then there are infinitely many square-free integers m = qq---q for which
ordy(bi(m)) =s; (i=1,...,r) and m = a mod t. Moreover,

X (loglog X)™!
log X
Proof. We choose a prime p satisfying (70) = —1. For the prime p, let
1,

5@):{1 if (n, Ny D) =1, (5) = =1,
0 otherwise.

#{m € P(X) | ord,(bi(m)) = s; (Vi), m =a mod t} >

Then, by Lemma 3.5, we have
= bi(n)g Zb n)q" € Sy,12(N(P*(N1 -+ N;)?).
n=1

Since g;(z) are eigenforms, it follows that ord,(b;(n)) < ord,(b;(nm?)).
Therefore

5 = min{ordv(bi(n)) ' 0<né€Z (n,N---N,)=1and <%> - —1}

= min{ord,(b;(n)) | 0 < n € Z}.

We find that ¢} satisfy the assumption of Lemma 3.4. This completes the
proof. =

For the applications to elliptic curves given in the next section, we in-
troduce the following lemma.

LEMMA 3.7 ([18, Section 1]). Let

= Zb(n)qn € Sk+1/2(Na X)7
n=1

and let p be a prime. Then
> 4
n=1

COROLLARY 3.8. Let a,t be positive integers and let

= Z b(n)q" € Sky1/2(N,x)
n=1

be an eigenform. Let | be a positive square-free integer such that (I, M) =1
and put

s = min{ord,(b(n)) | n > 1 is square-free and (n, N) = 1},
s’ = min{ord, (b(In)) | n > 1 is square-free and (n,IN) = 1}.
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Assume that there exists a square-free integer mq with mg = p1 -+ - pr Such
that mg = a mod ¢, (mg,IN) = 1, ord,(b(mg)) = s and ord,(b(lmg)) = §'.
Then there are infinitely many square-free integers m = q1 - - - q, for which
ord,(b(m)) = s, ord,(b(Ilm)) = s and m = a mod t. Moreover,

#{m € P.(X) | ord,(b(m)) = s, ord,(b(Im)) = s', m = a mod t}
> X(loglog X) ! /log X.
Proof. Let

g'(2) = Z V(n)g" = Z b(In)q".

By Lemma 3.7, we have g'(z) € Sy11/2(I'1(I*N?)). Now, ¢'(2) is not always
an eigenform, but it has the property that ord,(b'(n)) < ord, (V' (nm?)).
Hence we can prove this assertion in the same way as Lemma 3.6. u

Proof of Theorem 1.2. Put M = Ny--- N, and let t = 8Hq‘M q, where
the product is over the odd prime divisors of M. If m is square-free in-
teger with m = mg mod t, then m/mgy € Q;Q for all p| M. By assump-
tion there exists a square-free integer mg with (mg, M) = 1 such that
ordy(bi(mg)) = s; for i = 1,...,r. By applying Lemma 3.6 to ¢;(z)’s, we find
that there are infinitely many square-free integers m for which b;(m) # 0
fori=1,...,r and m = mg mod . Therefore, by Theorem 2.1 we see that
L( fis (m), k:l) = (. Hence there are infinitely many square-free integers
m for which

() ) (0 (220

4. Applications to elliptic curves. Let E be an elliptic curve over Q
with L(E,s) = Y 2, a(n)/n® and let g(z) = > o2, b(n)g™ € S3/2 (M, (4))
be an eigenform of the Hecke operators T2 for all p{ M such that

SH(g(2)) = > a(n)q".

n=1
Suppose that the coefficients b(m) are algebraic integers contained in a num-
ber field K. Let [ be a positive square-free integer such that (I, M) =1 and
let v be a place of K over 2. Put
s = min{ord,(b(m)) | m > 1 is square-free and (m, M) = 1},
s’ = min{ord, (b(Im)) | m > 1 is square-free and (m,IM) = 1}.

THEOREM 4.1. Let the notation be as above. Assume that s < o0,
s’ < 0o and there exists a prime py with pot M1 such that ord,(b(pg)) = s,
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ordy (b(lpo)) = §', L(E_dpy,1) # 0 and L(E_gyp,, 1) # 0. Then there are
infinitely many primes p for which rank E_dp(@(\/i)) = 0. Moreover,

#{p € P(X) | rank E_4,(Q(V1)) = 0} > X/log X.
Proof. Let t = 8]] gm G where the product is over the odd prime di-

visors of M. If p; is a prime with p; = pp mod ¢, then pi/py € QZfQ for
all p| M. By assumption there exists a prime py with potM such that
ord,(b(pg)) = s and ord,(b(lpy)) = s’. Hence, by applying Corollary 3.8
to g(z) and r = 1, we deduce that there are infinitely many primes p for
which b(p) # 0, b(lp) # 0 and p = pg mod t. Therefore, by Theorem 2.3
we see that rank E_4,(Q) = rank E_4,(Q) = 0. Since rank E_4,(Q(V1)) =
rank E_g,(Q) + rank E_ 4,(Q) = 0, there are infinitely many primes p for

which rank E_4,(Q(v1)) = 0. =

Let E be an elliptic curve over Q and let k = Q(ﬂ ) be a quadratic field.
Then it is known that the L-function of E over k is given by

L(E,k,s) = L(E,s)L(Ey,s).
COROLLARY 4.2. Let the notation be as above. Put
s1 = min{ord,(b(m)) | m > 1 is square-free, (m, M) = 1},
so = min{ord, (b(Im)) | m > 1 is square-free, (m,IM) = 1}.

If there exists a prime po with pofIM such that ord,(b(po)) = s < oo and
ord, (b(Ipo)) = s < o0, then there are infinitely many primes p for which

d <L(E—dpa(@(\/z)7 1)> = ord (L(E—de,Q(\/Z), 1)>
"\ QE_4p, QW) "\ B, QD)) )
where 2(E, k) is the period of E over k.
Proof. This follows from Theorem 2.1 and the proof of Theorem 4.1.

COROLLARY 4.3. The notation being as above, assume that E has no
Q-rational 2-torsion points and there exists a prime py with pot Ml such

that
ord, (b(po)) = 0vddy (L(E_apys 1)/ 2Bt @) = 0,

ordy (b(lpo)) = ordy (L(E—_aip,, 1)/ L2(E—_ap, Q)) = 0.
Then assuming the Birch and Swinnerton-Dyer conjecture there are infinite-

ly many primes p for which rank E_g,(Q(v1)) = 0 and #Sela(E_4,, Q(V1))
= 1, where Sely(E, K) is the 2-Selmer group of E over K.

Proof. Let K = Q(v/1). The following exact sequence is known:
0— E(K)/2E(K) — Sela(E, K) — IIIx(E,K) — 0.

By assumption that F is an elliptic curve without Q-rational 2-torsion
points, if F(K) is a finite group, then E(K)/2E(K) is trivial. Therefore if
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#1s(E, K) = 1, then #Sely(F, K) = 1. By Corollary 4.2 and the Birch and
Swinnerton-Dyer conjecture, there are infinitely many primes p for which
L(E—dpv(@(\/z)a 1)) -0

‘Q(E—d;n Q(\/Z))

ord, #11s(FE, K) = ord, (

This completes the proof. m

In [4], Coogan and Jiménez-Urroz prove the following theorem.

THEOREM 4.4 ([4, Theorem 3]). Let E' and E? be two elliptic curves
over Q without Q-rational 2-torsion points. Then there exist fundamental
discriminants D1, Dy and a set of primes T of positive density such that

rank EL%D1 (Q) = rank EﬁDQ(Q) =0,

where d is any product of an even number of distinct primes in T.
We consider general cases in the result of Coogan and Jiménez—Urroz.

THEOREM 4.5. Fori=1,...,7, let E* be an elliptic curve over Q with
L(E',s) = Y>> ai(n)/n® and let g;(z) = >0, bi(n)q™ € S32(M;, 1) be an
eigenform of the Hecke operators T2 for all ptM; such that the image of
gi(2) under Shimura correspondence is fi(z) =Y 2 | ai(n)q"™. Suppose that
the coefficients b;(m) are algebraic integers contained in a number field K.
Let v be a place of K over 2 and put

si = min{ordy(b;(m)) | m > 1 is square-free and (m, M --- M,) = 1}.
If s; < o0 and there exists a square-free integer mo with (mg, My --- M,) =1
such that fori=1,...,r,
ordy(bi(mo)) = si,  L(EL,,;,1) #0,

then there are infinitely many square-free integers m for which rank E1 (Q)
=...=rank E” _ (Q) = 0. Moreover,

#{0 < m < X | m is square-free and rank E* _ (Q) =0 (i =1,...,7)}
> X/log X.
Proof. This follows from Theorems 1.2 and 2.3. =

5. Examples. In this section, we give some examples pertaining to our
results.

EXAMPLE 5.1 (cf. [1, Examples 3.6.1]). Let E be the elliptic curve given
by
E: y*+y=2%—2?—10x — 20.
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Then the conductor of E is 11, in fact E is the modular curve X((11). In
this case the weight 3/2 eigenform

1 [e.e]
g(z) — 5( Z anQ—l—IIyQ—l-llz2 . q3m2+2xy+4y2+11z2) — Z b(n)qn
x,y,2€Z n=1
=P =P 22 gt g~
is in S/5(44,1). Its image SHy(g(2)) = > 72 a(n)q" is the weight 2 new-

form whose Mellin transform is L(E,s). We can find that ords(b(3)) = 0,
orda(b(5)) = 0 and orda(b(15)) = 0, and
min{ord,(b(m)) | m > 1 is square-free and (m,44) = 1} = 0.
Moreover, we can verify that
orda(L(E_3,1)/2(E_3,Q)) =0, orda(L(E_5,1)/2(E_5,Q)) =0
and
orda(L(E_15,1)/02(E_15,Q)) = 0.

Therefore by Theorem 4.1, for [ = 3,5 there are infinitely many primes p
for which rank E_,(Q(v/1)) = 0.

Furthermore by Corollary 4.3, assuming the Birch and Swinnerton-Dyer
conjecture, for [ = 3,5 there are infinitely many primes p for which

rank £_,(Q(V1)) =0,  #Sely(E_,, Q(V1)) = 1.
When s > ord, 2, to determine
s = min{ord,(b(m)) | m > 1 is square-free and (m,IM) = 1}
we use the following theorem.

THEOREM 5.2 ([19, Theorem 1]). Let

Zb n)q" € My(N,x)

be a half-integral or integral wezght modular form whose coefficients b(m)
are algebraic integers contained in a number field K. Let v be a finite place

of K and

k p+1
A= 15 [o(1) : To(N = H—+1
p\N

Assume that b(n) = 0mod v forn = 1,...,A. Then b(n) = 0 mod v for
all n.

REMARK 5.3 (cf. [11, Proposition 5]). In [19], Sturm proved this theorem
for integral weight modular forms and trivial character, but the general case
follows by taking an appropriate power of f.



Products of special values of L-functions 111

EXAMPLE 5.4 (cf. [21]). Let E be the elliptic curve given by

E:y*=2%—z.

Then the conductor of E is 27 and E has Q-rational torsion points of order 2.
In this case the weight 3/2 eigenform

g(z) _ Z (_1)x+yq(4x+1 2416924222 Zb
T,Y,2EL
=q+2¢° +¢° — 2" — 44" — 2¢" —3q25+--~

is in S3/9(128,1). Its image SHi(g(2)) = > ,~; a(n)q"™ is the weight 2 new-
form whose Mellin transform is L(E,s). Tunnell [21] proved that for a
square-free integer d,
b(d)* 02

4/d -’

L(Eg) =

where {2 is the real period of E. Let
1 if (n,128) =1 i =
5(n) = { if (n,128) =1, 5'(n) = { 1 if (n,1408) = 1

0 otherwise, 0 otherwise.
Then, by Lemmas 3.5 and 3.7, we have

o0

:g:lbl( Zb n)q" —(1+2Zq ) (;5(n)q"2)

€ M3/5(128, x1)

Zb2 n)q" —Zb (11n)d'(n 2(1+2iqn2)2(i6’(n)q”2>
n=1 n=1

S M3/2(15488, X2)

Now, let A\; = 25 and A2 = 3169. Then we can verify that b1 (n) = 0 mod 2 for

n=1,..., A1 and by(n) = 0 mod 4 forn = 1, ..., Ag. Hence, by Theorem 5.2,
min{ordz(b(m)) | m > 1 is square-free, (m,128) = 1} =1,
min{orda(b(11m)) | m > 1 is square-free, (m, 15488) = 1} = 2.

Also we can verify that ords(b(59)) = 1 and orda(b(59 - 11)) = 2. By Theo-

rem 4.1, there are infinitely many primes p for which rank £_,(Q(v/11)) =

rank E_,(Q(v/—11)) = 0. In fact, by computing the 2-Selmer groups of

E_,, it is known that if p and ¢ are primes with p = ¢ = 3 mod 8, then
rank £_,(Q(,/q)) = 0.

ExXaMPLE 5.5 (cf. [1, Examples 3.6.2]). Let E be the elliptic curve
given by

and

E: vV +ay+y=a>+4z—6.
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Then the conductor of E is 14 and E has a Q-rational torsion point of
order 2. In this case the weight 3/2 eigenform

1 2 2 2 2 2 2 >
g(z) _ 5( Z q:c +14y“+14z° q2:c +Ty“+14z ) _ Zl)(n)qn
n=1

z,Y,2€L
=¢-C+d" —d - -+
is in S3/9(56, 1). Its image SHy(g(2)) = Y-~ a(n)q™ is the weight 2 newform
whose Mellin transform is L(E, s). Let

1 if (n,56)=1 i =
5(n) = { if (n, ‘) ) 5 (n) = { 1 if (n,88200)
0 otherwise, 0 otherwise.
Then, by Lemmas 3.5 and 3.7, we have

:ni:o:lbl( Zb n)q" —(I—I-ZZQ ) (ni::lé(n)q”Z)

€ M3/2(504, x1)

and
Zb? n)q —Zb (15n)8' (n 2(1+2§:q”2)2(§:6’(n)q”2)
n=1 n=1

S M3/2(88200, XQ)

Now, let A\; = 145 and Ag = 30241. Then we can verify that b;(n) = 0 mod 2
forn =1,..., 1 and ba(n) = 0 mod 4 for n = 1,..., \2. Hence, by Theo-
rem 5.2,

min{orda(b(m)) | m > 1 is square-free, (m,56) = 1} =1,
min{orda(b(15m)) | m > 1 is square-free, (m,88200) = 1} = 2.

Also, we can see that orda(b(71)) = 1, orda(b(71-15)) =2, L(E_71,1) # 0
and L(F_71.15,1) # 0. By Theorem 4.1, there are infinitely many primes p
for which rank E_,(Q(v/15)) = 0.

EXAMPLE 5.6. Let E' = X((11) and E? = X(14). Moreover, we put

1 2 2 2 2 2 2 >
91(2) _ 5( Z qa: +11y“+112% q3:v +2zxy+4y“+11z ) — 251(H)qn
n=1

z,Y,2€EL
:q—q3—q5+q11+2q12—2q14+q15—
and
1 224149241422 222+ 7y% +1422 = n
92(2)25( Y g —q )zzbz(n)q
T,Y,2€EL n=1
:q—q2—|—q4—q7—q8—q9+q14+2q15—|—---.
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Then
min{ordz(b1(m)) | m > 1 is square-free, (m,44) =1} =0,

min{ordy(ba(m)) | m > 1 is square-free, (m,56) = 1} = 1,

orda(b1(15)) = 0, orda(b2(15)) = 1, L(EY45,1) # 0 and L(E?4,1) # 0.
Therefore by Theorem 4.5 there are infinitely many square-free integers m
for which rank B!, (Q) = rank E2,,(Q) = 0. Moreover,

#{0 < m < X | m is square-free and rank E* , (Q) =0 (i = 1,2)}
> X/log X.
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