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1. Introduction. Let f(z) =
∑∞

n=1 af (n)qn be a cusp form of weight 2k

for Γ0(N) with trivial character. We denote by L(f, s) =
∑∞

n=1 af (n)/ns

the L-function of f . For a square-free integer D, let L
(
f,
(
D
·
)
, s
)

be the
D-quadratic twist of L(f, s) given by

L

(
f,

(
D

·

)
, s

)
=
∞∑

n=1

af (n)
(
D
n

)

ns
.

Recently there have been a number of investigations regarding the dis-
tribution of analytic ranks of the families of quadratic twists of L-functions
(see [7], [16], [17]). Goldfeld [8] conjectured that for newforms f of weight 2,

#

{
−X ≤ m ≤ X

∣∣∣∣ m is square-free and L

(
f,

(
m

·

)
, 1

)
6= 0

}
∼ X/2.

Given an elliptic curve E : y2 = x3 + ax + b (a, b ∈ Z) and a square-free
integer D, we define D-quadratic twist of E to be the curve ED : y2 =
x3 + aD2x + bD3. A weaker version of Goldfeld’s conjecture, which is still
unproved, is

#{−X ≤ m ≤ X | m is square-free and rankEm(Q) = 0} � X.

Heath-Brown [9] confirmed this conjecture for the congruent number el-
liptic curve. Moreover, this assertion has been proved for a variety of elliptic
curves with rational torsion points of order 3 by the works of James, Vat-
sal and Wong [10], [22], [25]. For general elliptic curves over Q, Ono and
Skinner [17] proved that

#{−X ≤ m ≤ X | m is square-free and rankEm(Q) = 0} � X/logX.

Also, it is conjectured that there are infinitely many primes p for which
rankE−p(Q) = 0. Ono [15] confirmed this conjecture for some special elliptic
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curves. Ono and Skinner [17] checked that if E/Q is an elliptic curve with
conductor N ≤ 100, then either rankE−p(Q) = 0 or rankEp(Q) = 0 for
infinitely many primes p.

In this paper we examine the following question.

Question 1.1. Let r be a positive integer. If fi are newforms of weight
2ki for Γ0(Ni) with trivial character for each i = 1, . . . , r, then are there
infinitely many square-free integers m such that

L

(
f1,

(
(−1)k1m

·

)
, k1

)
· · ·L

(
fr,

(
(−1)krm

·

)
, kr

)
6= 0?

Using the idea of Ono–Skinner’s result ([17, Fundamental Lemma]),
we have some non-vanishing lemmas on Fourier coefficients of half-integral
weight modular forms and their applications to special values of L-functions
of modular forms. Let Sk(N,χ) be the space of cusp forms of weight k for
Γ0(N) with character χ, and let Snew

k (N,χ) be the set of newforms of weight
k for Γ0(N) with character χ. Our main result is the following theorem.

Theorem 1.2. Let gi(z) =
∑∞

n=1 bi(n)qn ∈ Ski+1/2(Mi, 1) be eigen-
forms of the Hecke operators Tp2 for all p -Mi such that the image of gi(z)
under Shimura correspondence is fi(z) =

∑∞
n=1 ai(n)qn ∈ Snew

2ki
(Ni, 1). Sup-

pose that the coefficients bi(m) are algebraic integers contained in a number
field K. Let v be a place of K over 2 and put

si = min{ordv(bi(m)) | m > 1 is square-free and (m,M1 · · ·Mr) = 1}.
If si < ∞ (i = 1, . . . , r) and there exists a square-free integer m0 with
exactly l prime factors (m0 = p1 · · · pl) such that (m0,M1 · · ·Mr) = 1 and
for i = 1, . . . , r,

ordv(bi(m0)) = si, L

(
fi,

(
(−1)kim0

·

)
, ki

)
6= 0,

then there are infinitely many square-free integers m with exactly l prime
factors for which

r∏

i=1

L

(
fi,

(
(−1)kim

·

)
, ki

)
6= 0.

Moreover ,

#

{
0 < m ≤ X

∣∣∣∣ m square-free,

r∏

i=1

L

(
fi,

(
(−1)kim

·

)
, ki

)
6= 0

}
� X

logX
.

2. Shimura correspondence. We briefly review the theory of Shimura
correspondence. For a positive integer N divisible by 4, let Sk+1/2(N,χ) be
the space of cusp forms of half-integral weight k+1/2 for Γ0(N) with charac-



Products of special values of L-functions 101

ter χ. It is known that there is a close connection between Fourier coefficients
of half-integral weight modular forms and critical values of twisted modular
L-functions. Let

g(z) =
∞∑

n=1

b(n)qn ∈ Sk+1/2(N,χ),

where q = e2πiz. Let t be a positive square-free integer. Now define At(n)
by the formal product of Dirichlet series

∞∑

n=1

At(n)

ns
=

( ∞∑

n=1

χ(n)
(−1
n

)k( t
n

)

ns−k+1

)( ∞∑

n=1

b(tn2)

ns

)
.

Then Shimura [18] proved that there is a positive integer M such that

SHt(g(z)) = ft(z) =
∞∑

n=1

At(n)qn ∈M2k(M,χ2),

where M2k(M,χ) is the space of cusp forms of weight 2k for Γ0(M) with
character χ. In fact, we can take M = N/2. If f(z) =

∑∞
n=1 a(n)qn is a

modular form, then its L-function L(f, s) is

L(f, s) =
∞∑

n=1

a(n)

ns
.

Furthermore, for a Dirichlet character ψ we put

L(f, ψ, s) =
∞∑

n=1

a(n)ψ(n)

ns
.

In [23] Waldspurger proved formulae connecting Fourier coefficients of
half-integral weight modular forms and critical values of twisted modular
L-functions. The following theorem is a special case of his results.

Theorem 2.1 ([23, Corollary 2]). Let

g(z) =
∞∑

n=1

b(n)qn ∈ Sk+1/2

(
N,

(
d

·

))

be an eigenform of the Hecke operators Tp2 for all p -M such that SH1(g(z))
= f(z) =

∑∞
n=1 a(n)qn ∈ Snew

2k (M, 1) for an appropriate positive integer M .
Let n1 and n2 be two positive square-free integers such that n1/n2 ∈ Q×2

p

for all p |N . Then

b(n1)2L

(
f,

(
(−1)kdn2

·

)
, k

)
n
k−1/2
2 = b(n2)2L

(
f,

(
(−1)kdn1

·

)
, k

)
n
k−1/2
1 .

Now we define some notation that is used in the next theorem. Let E be
an elliptic curve over Q with conductor N , and let

L(E, s) =
∞∑

n=1

a(n)

ns
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be the Hasse–Weil L-function of E. Then, by the works of Wiles, Wiles
and Taylor, Diamond, Conrad, Diamond and Taylor, and Breuil, Conrad,
Diamond and Taylor, [24], [20], [6], [3], [2], it is now known that L(E, s) is the
Mellin transform of a weight 2 newform f(z) =

∑∞
n=1 a(n)qn ∈ Snew

2 (N, 1).

Therefore by Kolyvagin’s result [13] if L(E, 1) 6= 0, then rankE(Q) = 0. Now
suppose that for some positive integer M there exists a cusp form g(z) =∑∞

n=1 b(n)qn ∈ S3/2

(
M,
(
d
·
))

that is an eigenform of the Hecke operators Tp2

for all p -M such that the image of g(z) under Shimura correspondence
is f(z).

Remark 2.2 (cf. [12]). It is known that if the conductor of E is a square-
free odd integer, then there exists a weight 3/2 eigenform for which its image
under Shimura correspondence is f(z).

By using Waldspurger’s result, K. Ono proved the following theorem.

Theorem 2.3 ([14, Theorem 2]). The notation being as above, let n1

be a positive square-free integer such that b(n1) 6= 0 and L(E−dn1, 1) 6= 0.
Suppose that n2 is a positive square-free integer such that n1/n2 ∈ Q×2

p for
all p |N . If b(n2) 6= 0, then rankE−dn2(Q) = 0.

Remark 2.4. Let E be an elliptic curve over Q, and let

L(E, s) =
∞∑

n=1

a(n)

ns

be the Hasse–Weil L-function of E. Then the Hasse–Weil L-function of ED is

L(ED, s) =
∞∑

n=1

a(n)
(
D
n

)

ns
.

3. Fourier coefficients of half-integral weight modular forms.
In this section we prove some non-vanishing lemmas for the Fourier coeffi-
cients of half-integral weight modular forms. From now on, we assume that
the Fourier coefficients of half-integral weight modular forms are algebraic
integers contained in a number field K. Let v be a place of K over 2 and let
e be the ramification index of v over 2.

Definition 3.1. Let r be a positive integer. Then we put

Pr = {D ∈ Z | D is square-free with exactly r prime factors},
P (X) = {p | p is prime and p ≤ X},
Pr(X) = {D ∈ Pr | |D| ≤ X}.

The following lemma is an application of Ono–Skinner’s result [17].
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Lemma 3.2. For i = 1, . . . , r, let

gi(z) =
∞∑

n=1

bi(n)qn ∈ Ski+1/2(Γ1(Ni))

be non-zero half-integral weight modular forms. Put

N = N1 · · ·Nr, si = min{ordv(bi(m)) | m is positive integer}.
Assume that there exists a square-free integer m0 with m0 = p1 · · · pl ∈ Pl
such that si = ordv(bi(m0)) and (m0, N) = 1. Then there is a finite Galois
extension k of Q having the following property : If a square-free integer m
with m = q1 · · · ql ∈ Pl satisfies Frobqj (k/Q) = Frobpj (k/Q) for j = 1, . . . , l,
then ordv(bi(m)) = si for all i.

Proof. The proof of this lemma is similar to the proof of the Fundamental
Lemma in [17]. Let

Gi(z) =
∞∑

n=1

ci(n)qn = gi(z)
(

1 + 2
∞∑

n=1

qn
2
)
.

Then Gi is in Ski+1(Γ1(Ni)). Since

ci(n) = bi(n) + 2
∑

m+y2=n, y>0

bi(m),

it follows that ordv(ci(m0)) = ordv(bi(m0)). By the theory of newforms,
Gi(z) can be uniquely expressed as a linear combination

Gi(z) =
a∑

u=1

αi,ufi,u(z) +
b∑

v=1

βi,vhv(li,vz),

where fi,u(z) =
∑∞

n=1 ai,u(n)qn and hi,v(z) are newforms of weight ki + 1
and level a divisor of Ni, and where each li,v is a non-trivial divisor of Ni.
Therefore, if (n,Ni) = 1, then

ci(n) =
a∑

u=1

αi,uai,u(n).

Let L be a finite extension of Q containing K, the Fourier coefficients of
each fi,u, and the αi,u’s. Let w be a place of L over v, let e be the ramification
index of w over v, let Ow be the completion of the ring of integers of L at
the place w, and let λ be a uniformizer. Moreover, put

Ei = max
1≤u≤a

|ordw(αi,u)|.

Then, by the theory of Galois representations (cf. [5]) there are representa-
tions

%i,u : Gal(Q/Q)→ GL2(Ow)
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such that trace %i,u(Frobp) = ai,u(p). Now, let

%i =
a⊕

u=1

%i,u mod λEi+esi+1.

Since its image is finite, there is a finite Galois extension ki of Q such
that the restriction of %i to ki is an isomorphism. Therefore, for a prime
qt with Frobqt(ki/Q) = Frobpt(ki/Q), we see that ai,u(qt) ≡ ai,u(pt) mod
λEi+esi+1 for u = 1, . . . , a. By the multiplicativity of the Fourier coefficients
of newforms, we have ai,u(m) ≡ ai,u(m0) mod λEi+esi+1, wherem = q1 · · · ql.
It follows that ci(m) ≡ ci(m0) mod λesi+1, so ordw(ci(m)) = ordw(ci(m0))
= esi. Hence, we find that ordv(bi(m)) = ordv(bi(m0)) = si. Since

Frobp(k1 · · · kr/Q)|ki = Frobp(ki/Q),

this lemma follows by putting k = k1 · · · kr.
The following lemma is easy.

Lemma 3.3. Let L1, . . . , Lr be finite Galois extensions of Q. Let Ai be a
conjugate class in Gal(Li/Q). Assume that there exists a prime p0 such that
Frobp0(Li/Q) = Ai for i = 1, . . . , r. Then there are infinitely many primes p
for which Frobp(Li/Q) = Ai for i = 1, . . . , r. Moreover ,

#{p ∈ P (X) | Frobp(Li/Q) = Ai for i = 1, . . . , r} � X/logX.

Proof. Put L = L1 · · ·Lr. Since Frobp(L/Q)|Li = Frobp(Li/Q), we infer
that if Frobp(L/Q) = Frobp0(L/Q), then Frobp(Li/Q) = Ai. By the Cheb-
otarev Density Theorem, the set of primes for which Frobp(Li/Q) = Ai for
i = 1, . . . , r has positive density.

Lemma 3.4. Let r, a, t be positive integers and for i = 1, . . . , r let

gi(z) =

∞∑

n=1

bi(n)qn ∈ Ski+1/2(Ni, χi)

be eigenforms. Let

si = min{ordv(bi(n)) | n is positive integer}.
Assume that there exists a square-free integer m0 with m0 = p1 · · · pl such
that m0 ≡ a mod t, (m0, N1 · · ·Nr) = 1, and ordv(bi(m0)) = si for all i.
Then there are infinitely many square-free integers m = q1 · · · ql for which
ordv(bi(m)) = si (i = 1, . . . , r) and m ≡ a mod t. Moreover ,

#{m ∈ Pl(X) | ordv(bi(m)) = si (∀i), m ≡ a mod t} � X(log logX)l−1

logX
.

Proof. We see that the gi satisfy the condition of Lemma 3.2. By ap-
plying Lemma 3.2 for gi(z), we find that there is a finite Galois exten-
sion k1 of Q having the following property: if a square-free integer m with
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m = q1 · · · ql satisfies Frobqj (k1/Q) = Frobpj (k1/Q) for j = 1, . . . , l, then

ordv(bi(m)) = si for all i. Let k2 = Q(ζt), where ζt = exp(2πi/t). If
Frobqj (k2/Q) = Frobpj (k2/Q) for j = 1, . . . , l, then we see that m ≡
m0 mod t. Therefore by Lemma 3.3 there are infinitely many primes qj for
which Frobqj (kn/Q) = Frobpj (kn/Q) for n = 1, 2 and j = 1, . . . , l. Hence,

#{m ∈ Pl(X) | ordv(bi(m)) = si (∀i), m ≡ a mod t}
� X(log logX)l−1/logX.

In this lemma, we dealt with the case of

si = min{ordv(bi(n)) | n is a positive integer}.
The assumption of this lemma is not enough to compute examples in Sec-
tion 5, but we can extend this lemma to the case of some weaker conditions.
For example, by taking twists of cuspforms, we can prove the case of

si = min{ordv(bi(n)) | n is a positive integer and (n,Ni) = 1}.
Moreover, if gi are eigenforms, it follows that ordv(bi(n)) ≤ ordv(bi(nm

2))
for a square-free integer n and a positive integer m. Therefore we have

min{ordv(bi(n)) | n is positive}
= min{ordv(bi(n)) | n is positive square-free}.

The following lemma is a basic fact about taking twists of cuspforms.

Lemma 3.5 ([18, Lemma 3.6]). Let

g(z) =
∞∑

n=1

b(n)qn ∈ Sk+1/2(N,χ),

and let ψ be a primitive character modulo r. Let s be the conductor of χ
and let M be the least common multiple of N , r2 and rs. Put

g′(z) =

∞∑

n=1

ψ(n)b(n)qn.

Then g′(z) belongs to Sk+1/2(M,ψ2χ).

We shall require the following lemma.

Lemma 3.6. Let r, a, t be positive integers and for i = 1, . . . , r let

gi(z) =
∞∑

n=1

bi(n)qn ∈ Ski+1/2(Ni, χi)

be eigenforms. Let

si = min{ordv(bi(n)) | n > 1 is square-free and (n,N1 · · ·Nr) = 1}.
Assume that there exists a square-free integer m0 with m0 = p1 · · · pl such
that m0 ≡ a mod t, (m0, N1 · · ·Nr) = 1, and ordv(bi(m0)) = si for all i.
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Then there are infinitely many square-free integers m = q1 · · · ql for which
ordv(bi(m)) = si (i = 1, . . . , r) and m ≡ a mod t. Moreover ,

#{m ∈ Pl(X) | ordv(bi(m)) = si (∀i), m ≡ a mod t} � X(log logX)l−1

logX
.

Proof. We choose a prime p satisfying
(
m0
p

)
= −1. For the prime p, let

δ(n) =

{
1 if (n,N1 · · ·Nr) = 1,

(
n
p

)
= −1,

0 otherwise.

Then, by Lemma 3.5, we have

g′i(z) =
∞∑

n=1

b′i(n)qn =
∞∑

n=1

bi(n)δ(n)qn ∈ Ski+1/2(Γ1(p2(N1 · · ·Nr)
2)).

Since gi(z) are eigenforms, it follows that ordv(bi(n)) ≤ ordv(bi(nm
2)).

Therefore

si = min

{
ordv(bi(n))

∣∣∣∣ 0 < n ∈ Z, (n,N1 · · ·Nr) = 1 and

(
n

p

)
= −1

}

= min{ordv(b
′
i(n)) | 0 < n ∈ Z}.

We find that g′i satisfy the assumption of Lemma 3.4. This completes the
proof.

For the applications to elliptic curves given in the next section, we in-
troduce the following lemma.

Lemma 3.7 ([18, Section 1]). Let

g(z) =
∞∑

n=1

b(n)qn ∈ Sk+1/2(N,χ),

and let p be a prime. Then

f(z) =
∞∑

n=1

b(pn)qn ∈ Sk+1/2

(
pN,

(
4p

·

)
χ

)
.

Corollary 3.8. Let a, t be positive integers and let

g(z) =
∞∑

n=1

b(n)qn ∈ Sk+1/2(N,χ)

be an eigenform. Let l be a positive square-free integer such that (l,M) = 1
and put

s = min{ordv(b(n)) | n > 1 is square-free and (n,N) = 1},
s′ = min{ordv(b(ln)) | n > 1 is square-free and (n, lN) = 1}.
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Assume that there exists a square-free integer m0 with m0 = p1 · · · pr such
that m0 ≡ a mod t, (m0, lN) = 1, ordv(b(m0)) = s and ordv(b(lm0)) = s′.
Then there are infinitely many square-free integers m = q1 · · · qr for which
ordv(b(m)) = s, ordv(b(lm)) = s′ and m ≡ a mod t. Moreover ,

#{m ∈ Pr(X) | ordv(b(m)) = s, ordv(b(lm)) = s′, m ≡ a mod t}
� X(log logX)r−1/logX.

Proof. Let

g′(z) =
∞∑

n=1

b′(n)qn =
∞∑

n=1

b(ln)qn.

By Lemma 3.7, we have g′(z) ∈ Sk+1/2(Γ1(l2N2)). Now, g′(z) is not always

an eigenform, but it has the property that ordv(b
′(n)) ≤ ordv(b

′(nm2)).
Hence we can prove this assertion in the same way as Lemma 3.6.

Proof of Theorem 1.2. Put M = N1 · · ·Nr and let t = 8
∏
q|M q, where

the product is over the odd prime divisors of M . If m is square-free in-
teger with m ≡ m0 mod t, then m/m0 ∈ Q×2

p for all p |M . By assump-
tion there exists a square-free integer m0 with (m0,M) = 1 such that
ordv(bi(m0)) = si for i = 1, . . . , r. By applying Lemma 3.6 to gi(z)’s, we find
that there are infinitely many square-free integers m for which bi(m) 6= 0
for i = 1, . . . , r and m ≡ m0 mod t. Therefore, by Theorem 2.1 we see that

L
(
fi,
( (−1)kim

·
)
, ki
)
6= 0. Hence there are infinitely many square-free integers

m for which

L

(
f1,

(
(−1)k1m

·

)
, k1

)
· · ·L

(
fr,

(
(−1)krm

·

)
, kr

)
6= 0.

4. Applications to elliptic curves. Let E be an elliptic curve over Q
with L(E, s) =

∑∞
n=1 a(n)/ns and let g(z) =

∑∞
n=1 b(n)qn ∈ S3/2

(
M,
(
d
·
))

be an eigenform of the Hecke operators Tp2 for all p -M such that

SH1(g(z)) =
∞∑

n=1

a(n)qn.

Suppose that the coefficients b(m) are algebraic integers contained in a num-
ber field K. Let l be a positive square-free integer such that (l,M) = 1 and
let v be a place of K over 2. Put

s = min{ordv(b(m)) | m > 1 is square-free and (m,M) = 1},
s′ = min{ordv(b(lm)) | m > 1 is square-free and (m, lM) = 1}.

Theorem 4.1. Let the notation be as above. Assume that s < ∞,
s′ < ∞ and there exists a prime p0 with p0 -Ml such that ordv(b(p0)) = s,
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ordv(b(lp0)) = s′, L(E−dp0, 1) 6= 0 and L(E−dlp0, 1) 6= 0. Then there are

infinitely many primes p for which rankE−dp(Q(
√
l)) = 0. Moreover ,

#{p ∈ P (X) | rankE−dp(Q(
√
l)) = 0} � X/logX.

Proof. Let t = 8
∏
q|M q, where the product is over the odd prime di-

visors of M . If p1 is a prime with p1 ≡ p0 mod t, then p1/p0 ∈ Q×2
p for

all p |M . By assumption there exists a prime p0 with p0 -M such that
ordv(b(p0)) = s and ordv(b(lp0)) = s′. Hence, by applying Corollary 3.8
to g(z) and r = 1, we deduce that there are infinitely many primes p for
which b(p) 6= 0, b(lp) 6= 0 and p ≡ p0 mod t. Therefore, by Theorem 2.3

we see that rankE−dp(Q) = rankE−dlp(Q) = 0. Since rankE−dp(Q(
√
l)) =

rankE−dp(Q) + rankE−dlp(Q) = 0, there are infinitely many primes p for

which rankE−dp(Q(
√
l)) = 0.

Let E be an elliptic curve over Q and let k = Q(
√
l) be a quadratic field.

Then it is known that the L-function of E over k is given by

L(E, k, s) = L(E, s)L(El, s).

Corollary 4.2. Let the notation be as above. Put

s1 = min{ordv(b(m)) | m > 1 is square-free, (m,M) = 1},
s2 = min{ordv(b(lm)) | m > 1 is square-free, (m, lM) = 1}.

If there exists a prime p0 with p0 - lM such that ordv(b(p0)) = s < ∞ and
ordv(b(lp0)) = s′ <∞, then there are infinitely many primes p for which

ordv

(
L(E−dp,Q(

√
l), 1)

Ω(E−dp,Q(
√
l))

)
= ordv

(
L(E−dp0 ,Q(

√
l), 1)

Ω(E−dp0 ,Q(
√
l))

)
,

where Ω(E, k) is the period of E over k.

Proof. This follows from Theorem 2.1 and the proof of Theorem 4.1.

Corollary 4.3. The notation being as above, assume that E has no
Q-rational 2-torsion points and there exists a prime p0 with p0 -Ml such
that

ordv(b(p0)) = ordv(L(E−dp0, 1)/Ω(E−dp,Q)) = 0,

ordv(b(lp0)) = ordv(L(E−dlp0, 1)/Ω(E−dlp,Q)) = 0.

Then assuming the Birch and Swinnerton-Dyer conjecture there are infinite-
ly many primes p for which rankE−dp(Q(

√
l)) = 0 and #Sel2(E−dp,Q(

√
l))

= 1, where Sel2(E,K) is the 2-Selmer group of E over K.

Proof. Let K = Q(
√
l). The following exact sequence is known:

0→ E(K)/2E(K)→ Sel2(E,K)→X2(E,K)→ 0.

By assumption that E is an elliptic curve without Q-rational 2-torsion
points, if E(K) is a finite group, then E(K)/2E(K) is trivial. Therefore if
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#X2(E,K) = 1, then #Sel2(E,K) = 1. By Corollary 4.2 and the Birch and
Swinnerton-Dyer conjecture, there are infinitely many primes p for which

ordv #X2(E,K) = ordv

(
L(E−dp,Q(

√
l), 1)

Ω(E−dp,Q(
√
l))

)
= 0.

This completes the proof.

In [4], Coogan and Jiménez–Urroz prove the following theorem.

Theorem 4.4 ([4, Theorem 3]). Let E1 and E2 be two elliptic curves
over Q without Q-rational 2-torsion points. Then there exist fundamental
discriminants D1, D2 and a set of primes T of positive density such that

rankE1
dD1

(Q) = rankE2
dD2

(Q) = 0,

where d is any product of an even number of distinct primes in T .

We consider general cases in the result of Coogan and Jiménez–Urroz.

Theorem 4.5. For i = 1, . . . , r, let Ei be an elliptic curve over Q with
L(Ei, s) =

∑∞
n=1 ai(n)/ns and let gi(z) =

∑∞
n=1 bi(n)qn ∈ S3/2(Mi, 1) be an

eigenform of the Hecke operators Tp2 for all p -Mi such that the image of
gi(z) under Shimura correspondence is fi(z) =

∑∞
n=1 ai(n)qn. Suppose that

the coefficients bi(m) are algebraic integers contained in a number field K.
Let v be a place of K over 2 and put

si = min{ordv(bi(m)) | m > 1 is square-free and (m,M1 · · ·Mr) = 1}.
If si <∞ and there exists a square-free integer m0 with (m0,M1 · · ·Mr) = 1
such that for i = 1, . . . , r,

ordv(bi(m0)) = si, L(Ei−m0
, 1) 6= 0,

then there are infinitely many square-free integers m for which rankE1
−m(Q)

= · · · = rankEr−m(Q) = 0. Moreover ,

#{0 < m ≤ X | m is square-free and rankEi
−m(Q) = 0 (i = 1, . . . , r)}

� X/logX.

Proof. This follows from Theorems 1.2 and 2.3.

5. Examples. In this section, we give some examples pertaining to our
results.

Example 5.1 (cf. [1, Examples 3.6.1]). Let E be the elliptic curve given
by

E : y2 + y = x3 − x2 − 10x− 20.
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Then the conductor of E is 11, in fact E is the modular curve X0(11). In
this case the weight 3/2 eigenform

g(z) =
1

2

( ∑

x,y,z∈Z
qx

2+11y2+11z2 − q3x2+2xy+4y2+11z2
)

=
∞∑

n=1

b(n)qn

= q − q3 − q5 + q11 + 2q12 − 2q14 + q15 − · · ·
is in S3/2(44, 1). Its image SH1(g(z)) =

∑∞
n=1 a(n)qn is the weight 2 new-

form whose Mellin transform is L(E, s). We can find that ord2(b(3)) = 0,
ord2(b(5)) = 0 and ord2(b(15)) = 0, and

min{ordv(b(m)) | m > 1 is square-free and (m, 44) = 1} = 0.

Moreover, we can verify that

ord2(L(E−3, 1)/Ω(E−3,Q)) = 0, ord2(L(E−5, 1)/Ω(E−5,Q)) = 0

and
ord2(L(E−15, 1)/Ω(E−15,Q)) = 0.

Therefore by Theorem 4.1, for l = 3, 5 there are infinitely many primes p
for which rankE−p(Q(

√
l)) = 0.

Furthermore by Corollary 4.3, assuming the Birch and Swinnerton-Dyer
conjecture, for l = 3, 5 there are infinitely many primes p for which

rankE−p(Q(
√
l)) = 0, #Sel2(E−p,Q(

√
l)) = 1.

When s ≥ ordv 2, to determine

s = min{ordv(b(m)) | m > 1 is square-free and (m, lM) = 1}
we use the following theorem.

Theorem 5.2 ([19, Theorem 1]). Let

g(z) =
∞∑

n=1

b(n)qn ∈Mk(N,χ)

be a half-integral or integral weight modular form whose coefficients b(m)
are algebraic integers contained in a number field K. Let v be a finite place
of K and

λ =
k

12
[Γ0(1) : Γ0(N)] + 1 =

kN

12

∏

p|N

p+ 1

p
+ 1.

Assume that b(n) ≡ 0 mod v for n = 1, . . . , λ. Then b(n) ≡ 0 mod v for
all n.

Remark 5.3 (cf. [11, Proposition 5]). In [19], Sturm proved this theorem
for integral weight modular forms and trivial character, but the general case
follows by taking an appropriate power of f .
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Example 5.4 (cf. [21]). Let E be the elliptic curve given by

E : y2 = x3 − x.
Then the conductor of E is 27 and E has Q-rational torsion points of order 2.
In this case the weight 3/2 eigenform

g(z) =
∑

x,y,z∈Z
(−1)x+yq(4x+1)2+16y2+2z2

=
∞∑

n=1

b(n)qn

= q + 2q3 + q9 − 2q11 − 4q17 − 2q19 − 3q25 + · · ·
is in S3/2(128, 1). Its image SH1(g(z)) =

∑∞
n=1 a(n)qn is the weight 2 new-

form whose Mellin transform is L(E, s). Tunnell [21] proved that for a
square-free integer d,

L(Ed) =
b(d)2Ω

4
√
d
,

where Ω is the real period of E. Let

δ(n) =

{
1 if (n, 128) = 1,

0 otherwise,
δ′(n) =

{
1 if (n, 1408) = 1,

0 otherwise.

Then, by Lemmas 3.5 and 3.7, we have

g1(z) =
∞∑

n=1

b1(n)qn =
∞∑

n=1

b(n)δ(n)qn −
(

1 + 2
∞∑

n=1

qn
2
)2( ∞∑

n=1

δ(n)qn
2
)

∈M3/2(128, χ1)
and

g2(z) =
∞∑

n=1

b2(n)qn =
∞∑

n=1

b(11n)δ′(n)qn− 2
(

1 + 2
∞∑

n=1

qn
2
)2( ∞∑

n=1

δ′(n)qn
2
)

∈M3/2(15488, χ2).

Now, let λ1 = 25 and λ2 = 3169. Then we can verify that b1(n) ≡ 0 mod 2 for
n = 1, . . . , λ1 and b2(n) ≡ 0 mod 4 for n = 1, . . . , λ2. Hence, by Theorem 5.2,

min{ord2(b(m)) | m > 1 is square-free, (m, 128) = 1} = 1,

min{ord2(b(11m)) | m > 1 is square-free, (m, 15488) = 1} = 2.

Also we can verify that ord2(b(59)) = 1 and ord2(b(59 · 11)) = 2. By Theo-
rem 4.1, there are infinitely many primes p for which rankE−p(Q(

√
11)) =

rankE−p(Q(
√
−11)) = 0. In fact, by computing the 2-Selmer groups of

E−p, it is known that if p and q are primes with p ≡ q ≡ 3 mod 8, then
rankE−p(Q(

√
q)) = 0.

Example 5.5 (cf. [1, Examples 3.6.2]). Let E be the elliptic curve
given by

E : y2 + xy + y = x3 + 4x− 6.
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Then the conductor of E is 14 and E has a Q-rational torsion point of
order 2. In this case the weight 3/2 eigenform

g(z) =
1

2

( ∑

x,y,z∈Z
qx

2+14y2+14z2 − q2x2+7y2+14z2
)

=
∞∑

n=1

b(n)qn

= q − q2 + q4 − q7 − q8 − q9 + · · ·
is in S3/2(56, 1). Its image SH1(g(z)) =

∑∞
n=1 a(n)qn is the weight 2 newform

whose Mellin transform is L(E, s). Let

δ(n) =

{
1 if (n, 56) = 1,

0 otherwise,
δ′(n) =

{
1 if (n, 88200) = 1,

0 otherwise.

Then, by Lemmas 3.5 and 3.7, we have

g1(z) =
∞∑

n=1

b1(n)qn =
∞∑

n=1

b(n)δ(n)qn −
(

1 + 2
∞∑

n=1

qn
2
)2( ∞∑

n=1

δ(n)qn
2
)

∈M3/2(504, χ1)

and

g2(z) =

∞∑

n=1

b2(n)qn =

∞∑

n=1

b(15n)δ′(n)qn− 2
(

1 + 2

∞∑

n=1

qn
2
)2( ∞∑

n=1

δ′(n)qn
2
)

∈M3/2(88200, χ2).

Now, let λ1 = 145 and λ2 = 30241. Then we can verify that b1(n) ≡ 0 mod 2
for n = 1, . . . , λ1 and b2(n) ≡ 0 mod 4 for n = 1, . . . , λ2. Hence, by Theo-
rem 5.2,

min{ord2(b(m)) | m > 1 is square-free, (m, 56) = 1} = 1,

min{ord2(b(15m)) | m > 1 is square-free, (m, 88200) = 1} = 2.

Also, we can see that ord2(b(71)) = 1, ord2(b(71 · 15)) = 2, L(E−71, 1) 6= 0
and L(E−71·15, 1) 6= 0. By Theorem 4.1, there are infinitely many primes p
for which rankE−p(Q(

√
15)) = 0.

Example 5.6. Let E1 = X0(11) and E2 = X0(14). Moreover, we put

g1(z) =
1

2

( ∑

x,y,z∈Z
qx

2+11y2+11z2 − q3x2+2xy+4y2+11z2
)

=

∞∑

n=1

b1(n)qn

= q − q3 − q5 + q11 + 2q12 − 2q14 + q15 − · · ·
and

g2(z) =
1

2

( ∑

x,y,z∈Z
qx

2+14y2+14z2 − q2x2+7y2+14z2
)

=

∞∑

n=1

b2(n)qn

= q − q2 + q4 − q7 − q8 − q9 + q14 + 2q15 + · · · .
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Then

min{ord2(b1(m)) | m > 1 is square-free, (m, 44) = 1} = 0,

min{ord2(b2(m)) | m > 1 is square-free, (m, 56) = 1} = 1,

ord2(b1(15)) = 0, ord2(b2(15)) = 1, L(E1
−15, 1) 6= 0 and L(E2

−15, 1) 6= 0.
Therefore by Theorem 4.5 there are infinitely many square-free integers m
for which rankE1

−m(Q) = rankE2
−m(Q) = 0. Moreover,

#{0 < m ≤ X | m is square-free and rankEi
−m(Q) = 0 (i = 1, 2)}

� X/logX.
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