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1. Introduction. Let K be an algebraically closed field of characteristic
p ≥ 0, complete with respect to a non-archimedean absolute value. Let
M∗(K) be the set of non-constant meromorphic functions defined on K
and F be a non-empty subset of M∗(K). For f ∈ F and a set S in the
range of f define

E(f, S) =
⋃

a∈S
{(z,m) ∈ K× Z+ : f(z) = a with multiplicity m}.

Two functions f and g of F are said to share S, counting multiplicity, if
E(f, S) = E(g, S). A set S is called a unique range set , counting multiplicity,
for F , if the condition E(f, S) = E(g, S) for f, g ∈ F implies that f ≡ g.
A polynomial P defined over K is called a uniqueness polynomial for F if
the condition P (f) = P (g) for f, g ∈ F implies that f ≡ g; P is called a
strong uniqueness polynomial if the condition P (f) = cP (g) for f, g ∈ F
and some non-zero constant c implies that c = 1 and f ≡ g.

In [1] we showed, in the case of positive characteristic, that a special fam-
ily of polynomials are strong uniqueness polynomials for non-archimedean
meromorphic functions. This was accomplished by explicitly constructing,
for the curves in P2 associated to the special family, regular 1-form(s) of
Wronskian type. It then follows from the non-archimedean uniformization
theorem that these curves are non-archimedean hyperbolic, i.e., there is no
non-constant non-archimedean analytic map into the curves. In dealing with
more general forms of polynomials than those considered in [1] we are un-
able to explicitly construct regular 1-form(s), i.e., regular sections of the
canonical bundle KC , on the associated curves; however, we are able to con-
struct explicitly regular m-fold symmetric product of 1-form(s), i.e., regular
sections of powers of the canonical bundle KmC , and this still implies that
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the associated curves are non-archimedean hyperbolic by the Berkovich Pi-
card Theorem. Locally, on an open neighborhood (U, t) of a smooth point of
a curve with local coordinate (uniformization parameter), a regular 1-form
may be expressed as a(t)dt where a(t) is a regular function on U ; analo-
gously, a regular m-fold symmetric product of 1-form(s) is locally expressed
as a(t)dt⊗m. Geometrically this means that, even though we cannot take
a root to get a regular 1-form on the curve C (a(t)1/m is not necessarily
single-valued), this can be done in an appropriate branched cover.

In Section 3, we treat the case when the characteristic p of the ground
field (the ground field K is assumed to be algebraically closed complete with
respect to a non-archimedean absolute value) is zero, and the case when
p > 0 and p does not divide the degree of the polynomial P . In these cases,
we are able to give a complete classification without any extra assumption
on the multiplicities of P ′(X) = 0 as in [9]. We note that the proof for this
case involves only the construction of regular 1-forms. This result is recorded
as Theorem 1 below. We also note that this line of argument can apply to
the complex case (cf. [2]).

In Section 4, we treat the case where p > 0 and p divides the degree of the
polynomial P . For this, we need to construct regular products of 1-forms.
Unfortunately, we are unable to give a complete classification for this case.
However, one can see from the statement of Theorem 2 (and the remarks
after the theorem) that our results are indeed very sharp. Another result
in this section concerns the unique range set problem for non-archimedean
entire functions. If p = 0 or if p does not divide the cardinality |S| of a
finite set S ⊂ K, it is well known that S is a unique range set for non-
archimedean entire functions if and only if S is affinely rigid (cf. [5] and [8]).
This characterization is false if p divides |S| (cf. [4] and [8]). However, using
Theorem 2, we are able to offer a precise classification for most cases.

Throughout this paper we will let P (X) be a polynomial of degree n in
K[X]. We will use l to denote the number of distinct roots of P ′(X), and
we will denote those roots by α1, . . . , αl. We will use m1, . . . ,ml to denote
the multiplicities of the roots in P ′. Thus,

P ′(X) = a(X − α1)m1 · · · (X − αl)ml ,
where a is some non-zero constant. We will continually assume what we call

Hypothesis I:

P (αi) 6= P (αj) whenever i 6= j.

In other words, P is injective on the roots of P ′.

Without loss of generality, we assume that we have listed the αi so that
the mi are non-increasing. We note that Hypothesis I is a generic condition,
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and one can see later from our arguments that it makes the computation
easier.

We now define three special cases of P (X) as above:

(1A) l = 1 and the multiplicity of X − α1 in P (X)− P (α1) is ≥ m1.
(1B) l = 2,min{m1,m2} = 1, and the multiplicity of X − αi in P (X)−

P (αi) is mi + 1 for i = 1, 2.
(1C) n = 4, l = 3, and there exists a permutation φ of {1, 2, 3} such that

φ(i) 6= i for i = 1, 2, 3 and there exists a root w of w2 + w + 1 = 0
such that

w =
P (αi)
P (αφ(i))

for i = 1, 2, 3.

The main results of this article are:

Theorem 1. Let P (X) be a polynomial as above satisfying Hypothesis I.
Assume p = 0, or p > 0 and p -n. Let S be the zero set of P and assume S
is affinely rigid. Then:

(I) Either P (X) belongs to (1A) or (1B) above, or P (X) is a uniqueness
polynomial for M∗(K).

(II) Either P (X) belongs to (1A), (1B) or (1C) above, or P (X) is a
strong uniqueness polynomial for M∗(K).

This result (and its proof) is similar, but a little more complicated than
the corresponding result in the complex case (see [2]).

The situation is more complicated when p |n, and we require some ad-
ditional notation. We use µi to denote the multiplicity of X −αi in P (X)−
P (αi). We define bi,j by writing

P (X)− P (αi) =
n∑

j=µi

bi,j(X − αi)j .

We then define the homogeneous forms Ai,µi(X,Y,Z) by

Ai,µi(X,Y,Z) = bi,µiZ

[
(X − αiZ)µi − (Y − αiZ)µi

X − Y

]

+ bi,µi+1

[
(X − αiZ)µi+1 − (Y − αiZ)µi+1

X − Y

]
.

Let m = 1 +
∑l

i=1mi. When c 6= 0, 1 and m1 = · · · = ml = 1, for a fixed
permutation φ of {1, . . . , l} such that φ(i) 6= i we define the homogeneous
forms Bi,m(X,Y,Z) by

Bi,m(X,Y,Z) =
m∑

j=2

[bi,j(X − αiZ)j − cbφ(i),j(Y − αφ(i)Z)j ]Zm−j.
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We then let
B(i,m) := Bi,m(X,Y, 1).

We are now ready to state the following theorem:

Theorem 2. Let P (X) be a polynomial as above satisfying Hypothesis I
and such that p |n. Let S be the zero set of P (X) and assume that S is
affinely rigid. Let mi be arranged in non-increasing order. Then

(I) P (X) is a uniqueness polynomial for M∗(K) if (A), (B), or (C)
holds, where:

(A) l ≥ 3;
(B) l = 2 and either :

(1) m2 ≥ 2, or
(2) m2 = 1 and either :

(a) µ1 ≤ m1, or
(b) µ1 = m1 + 1 and either :

(i) (m1 + 2) -n, or
(ii) (m1 + 2) |n, A1,m1(X,Y, 1) is not a factor of

[P (X)− P (Y )]/(X − Y );

(C) l = 1 and (1), (2) or (3) holds, where:

(1) µ1 ≤ m1 − 1,
(2) µ1 = m1 and either :

(a) (m1 + 1) -n, or
(b) (m1 + 1) |n, p ≥ 5, and A1,m1(X,Y, 1) is not factor of

[P (X)− P (Y )]/(X − Y ),

(3) µ1 = m1 + 1, and either :

(a) u = 2, p ≥ 5, and A1,m1+1(X,Y, 1) is not a factor of
P (X)− P (Y ), or

(b) u ≥ 3 and m1 ≥ 2, except when (m1, p) = (2, 2), or
(u,m1, p) = (3, 2, 5), or (3, 3, 3), where u is defined
by writing P (X) − P (α1) = b1,m1+1(X − α1)m1+1 +
b1,m1+u(X − α1)m1+u + · · · with b1,m1+u 6= 0.

(II) If P (X) is a uniqueness polynomial for M∗(K) then it is also a
strong uniqueness polynomial forM(K) except in the following cases:

(A) l = 3, m1 = m2 = m3 = 1, 3 |n− 1, 4 |n, there exists a permu-
tation φ of {1, 2, 3} such that φ(i) 6= i for i = 1, 2, 3, and there
exists a root w of w2 + w + 1 = 0 such that

w =
P (αi)
P (αφ(i))

for i = 1, 2, 3,
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and such that B(1, 4) = B(2, 4) = B(3, 4) and it is not a factor
of P (X)− wP (Y );

(B) l = 2, m1 = m2 = 1, 3 |n and there exists a constant c different
from 0, 1, and −1 such that for some i, j with {i, j} = {1, 2}, we
have P (αi) = cP (αj) and B(i, 3) is a factor of P (X)− cP (Y );

(C) l = 2, m1 = m2 = 1, n is odd , 3 |n, P (α1) = −P (α2), B(1, 3) =
B(2, 3), and B(1, 3)/(X+Y−α1−α2) is a factor of P (X)+P (Y ).

Remark 1. The condition we find here is very sharp since A1,µ1 (in (I)),
B1,4, B1,3 (in (II.A) and (II.B)) or B1,3/(X + Y − α1Z − α2Z) (in (II.C))
do define irreducible curves of genus 0 and degree larger than one.

Remark 2. If we assume that p ≥ 7 and m1 ≥ 2 when l = 1, then the
conditions in Theorem 2 are necessary and sufficient.

Let A∗(K) be the set of non-constant entire functions. It is well known
that a polynomial is a strong uniqueness polynomial for A∗(K) if and only
if its zero set is a unique range set of A∗(K). Let S be the set of zeros of
P (X). Suppose that b1,pr and b1,pr−1 in the expansion of P (X)−P (α1) are
both non-zero. Similarly to [6], we consider the two-variable polynomial of
degree pr − 1

Fpr−1(X,Y ) := A1,pr−1(X,Y, 1)

= b1,pr(X − Y )p
r−1 + b1,pr−1

(X − α1)p
r−1 − (Y − α1)p

r−1

X − Y .

For each sj in S let tj,1, . . . , tj,pr−1 be the pr−1 solutions in t of the equation
Fpr−1(t, sj) = 0. Then define

TFpr−1(S) = {t1,1, . . . , t1,pr−1, t2,1, . . . , tn,pr−1}.
We say S is preserved by a Frobenius transformation Fpr−1 if TFpr−1(S) =
(pr − 1)S.

Corollary 1. Let P (X) be a polynomial as above satisfying Hypothe-
sis I and such that p |n. Let S be the zero set of P (X).

(I) In cases (A) and (B) below , S is a unique range set for A∗(K) if
and only if S is affinely rigid :

(A) l ≥ 2;
(B) l = 1, and either

(1) µ1 ≤ m1 − 1, or
(2) µ1 = m1, and either

(a) (m1 + 1) -n, or
(b) (m1 + 1) |n and p ≥ 5,
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(3) µ1 = m1 + 1 ≥ 3, and either

(a) b1,m1+2 = 0 and p ≥ 7, or
(b) b1,m1+2 6= 0 and m1 + 2 is not a power of p, and p ≥ 5.

(II) When l = 1, µ1 = m1 + 1 ≥ 3, p ≥ 7, b1,pr 6= 0, and m1 + 2 = pr for
some r ≥ 1, S is a unique range set for A∗(K) if and only if S is
affinely rigid and S is not preserved by the Frobenius transformation
Fpr−1(X,Y ).

2. Symmetric products of regular differential forms. The starting
point of [1] is the theorem of Berkovich that a projective irreducible algebraic
curve defined over a complete non-archimedean field K is hyperbolic if and
only if it is of positive genus (cf. [3] and [7]). This means simply that there is
no non-constant analytic map from K into an irreducible projective algebraic
curve R defined over K if and only if there is a regular 1-form (an element
of H0(R,KR), where KR is the canonical sheaf of R) on R which is not
identically zero. Since H0(R,KmR ), m ≥ 1, is trivial if and only if R is a
rational curve, this again means that there is no non-constant analytic map
from K into R if and only if there is a regular m-fold symmetric product of
1-form(s) (an element of H0(R,KmR )) on R.

For our purpose, we will need to consider plane curves which may have
singularities. We now explain what we mean by a regular m-fold symmet-
ric product of 1-forms. Let R be a plane curve defined by a homogeneous
polynomial R(X,Y,Z) = 0 over K and let p be a point of R. Let [X],
[Y ], [Z] be the residue classes of X, Y, Z respectively in the coordinate
ring of R. Every 1-form of R can be represented as Q([X], [Y ], [Z])d[X],
where Q([X], [Y ], [Z]) is a rational function in [X], [Y ], [Z]. To check the
regularity of a differential form, we will have to check it on each of the lo-
cal parametrizations. To be more precise, [X], [Y ], [Z] can be analytically
parametrized at a point p ∈ R by

ϕ = (ϕ0, ϕ1, ϕ2) : ∆ε = {t ∈ K | |t|ν < ε} → R, ϕ(0) = p.

The order of a polynomial Q([X], [Y ], [Z]) (a rational function, or a differ-
ential form) in [X], [Y ], [Z] with respect to a local parametrization ϕ at p

is defined by

ordp,ϕQ([X], [Y ], [Z]) := ordt Q(ϕ0, ϕ1, ϕ2).

Clearly, this definition is independent of the choice of the representing classes
of [X], [Y ], [Z]. For simplicity of notation, we write ordp,ϕQ(X,Y,Z) for
ordp,ϕQ([X], [Y ], [Z]), where ϕ is a local parametrization of the curve at p.
A differential form ω in [X], [Y ], [Z] is regular at p if ordp,ϕ ω ≥ 0 for every
analytic parametrization ϕ at p.

We deduce
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Theorem 3. Let R be an irreducible projective plane curve defined over
(K, | |ν). The curve R admits a non-trivial global regular m-fold symmetric
product of 1-forms if and only if R is non-archimedean hyperbolic.

3. Proof of Theorem 1. From now on we consider a polynomial P of
the form

P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0.

Its derivative may be expressed as

P ′(X) = a(X − α1)m1 · · · (X − αl)ml ,
where a 6= 0 and α1, . . . , αl are the distinct roots of P ′ and mi ≥ 1. We
assume that P satisfies Hypothesis I, i.e.,

P (αi) 6= P (αj) for all 1 ≤ i 6= j ≤ l.(3.0.1)

We denote by µi the multiplicity of X − αi in P (X)− P (αi). Therefore,

P (X)−P (αi) = ∗(X−αi)µi + · · ·+∗(X−αi)mi+1 + · · ·+∗(X−αi)n.(3.0.2)

Here, we use ∗ to indicate a non-zero element in K. We will use this notation
throughout the paper. Note that µi ≤ mi + 1 and that equality holds if the
characteristic of K is zero.

Let F (X,Y,Z) be the homogenization of the polynomial of two variables

P (X)− P (Y )
X − Y =

n∑

k=1

ak

k−1∑

j=0

Xk−1−jY j ,

so that

F (X,Y,Z) =
n∑

k=1

k−1∑

j=0

akX
k−1−jY jZn−k = Zn

P (X/Z)−P (Y/Z)
X − Y .(3.0.3)

Denote by C the curve defined by F (X,Y,Z) = 0. Similarly, let Fc(X,Y,Z)
be the homogenization of the polynomial P (X) − cP (Y ) for c 6= 0, 1, and
denote by Cc the curve defined by Fc(X,Y,Z) = 0. If f and g are non-
archimedean meromorphic functions such that P (f) = P (g) or P (f) =
cP (g), then φ = (f, g, 1) is a non-archimedean analytic map into C or Cc
respectively. Our purpose is to construct respectively on C and each Cc,
c 6= 0, 1, a regular 1-form or a regular product of 1-forms which is non-trivial
on each of its components. Then Theorem 3 implies that f and g have to
be constant, i.e., P (X) is a strong uniqueness polynomial.

3.1. On the curve [F (X,Y,Z) = 0]. We may express the polynomial
F (X,Y,Z) as a polynomial in X − αiZ and Y − αiZ:
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F (X,Y,Z) = ∗
[

(X − αiZ)µi − (Y − αiZ)µi

X − Y

]
Zn−µi(3.1.1)

+ ∗
[

(X − αiZ)wi − (Y − αiZ)wi

X − Y

]
Zn−wi

+ · · ·+ ∗
[

(X − αiZ)n − (Y − αiZ)n

X − Y

]
,

where wi is the degree of the second non-vanishing term in (3.0.2).
From (3.1.1), and the fact that F (ϕ0, ϕ1, ϕ2) = 0 for any analytic para-

metrization ϕ = (ϕ0, ϕ1, ϕ2) at pi = (αi, αi, 1), it is easily seen that

ordpi,ϕ(X − αiZ) = ordpi,ϕ(Y − αiZ),(3.1.2)
hence

ordpi,ϕ(X −Y ) = ordpi(X −αiZ − (Y −αiZ)) ≥ ordpi,ϕ(X −αiZ)(3.1.3)

and

(3.1.4) ordpi,ϕ((X − αiZ)µi−1 + · · ·+ (Y − αiZ)µi−1)

≥ (wi − 1) ordpi,ϕ(X − αiZ).

By Euler’s Theorem the condition F (X,Y,Z) = 0 is equivalent to

X
∂F

∂X
+ Y

∂F

∂Y
+ Z

∂F

∂Z
= 0.

The (Zariski) tangent space of C is defined by the equations F (X,Y,Z) = 0
and

dX
∂F

∂X
+ dY

∂F

∂Y
+ dZ

∂F

∂Z
= 0.

Then by Cramer’s rule

γ :=
W (X,Y )

∂F
∂Z

=
W (Y,Z)

∂F
∂X

=
W (Z,X)

∂F
∂Y

(3.1.5)

is a well defined rational 1-form on π−1(C) (π : K3 \ {0} → P2 is the usual
projection), where

W (X,Y ) =

∣∣∣∣∣
X Y

dX dY

∣∣∣∣∣ , W (Y,Z) =

∣∣∣∣∣
Y Z

dY dZ

∣∣∣∣∣ , W (Z,X) =

∣∣∣∣∣
Z X

dZ dX

∣∣∣∣∣
are the Wronskians.

Lemma 1. Let P be a polynomial satisfying Hypothesis I and mi be ar-
ranged in non-increasing order. Then any irreducible component of C admits
a non-trivial regular 1-form in the following cases:

(i) l ≥ 3, or l = 2 and m2 ≥ 2;
(ii) p > 0, l = 2, m2 = 1, µ1 ≤ m1, and the curve C has no linear

components;
(iii) p > 0, l = 1, µ1 ≤ m1−1, and the curve C has no linear components.
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Proof. Differentiating and restricting to the curve C = [F (X,Y,Z) = 0]
yields

∂F

∂X
(X,Y,Z) =

aZn−1−∑l
i=1 mi

∏l
i=1(X − αiZ)mi

X − Y ,

∂F

∂Y
(X,Y,Z) =

−aZn−1−∑l
i=1 mi

∏l
i=1(Y − αiZ)mi

X − Y .

By (3.1.5) and canceling out the common factors, we get the following ra-
tional 1-form:

η =
W (Y,Z)

∏l
i=1(X − αiZ)mi

=
−W (X,Z)

∏l
i=1(Y − αiZ)mi

,(3.1.6)

well defined on π−1(C). Observe that η does not have any pole along [Z = 0]
(because, as the line Z = 0 is not an irreducible component of C, this would
mean that X = Y = 0 as well). On the finite part of C (i.e., Z 6= 0) the only
possible poles of η (on π−1(C)) are the pull-back of the set {(αi, αj , 1) ∈ C |
1 ≤ i, j ≤ l} and Hypothesis I implies that αi = αj . Let m = 1 +

∑l
i=1mi

and

ω :=
(X − Y )m−3

∏l
i=1(X − αiZ)mi

W (Y,Z) = (X − Y )m−3η,

which is well defined on the curve C and has a possible pole at pi =
(αi, αi, 1), 1 ≤ i ≤ l, along C. Moreover, one can see from (3.1.3) that
for each j = 1, . . . , l,

ordpj ,ϕ ω≥ (m−3−mj) ordpj ,ϕ(X−αjZ) =
(( l∑

i6=j
mi

)
−2
)

ordpj ,ϕ(X−αjZ),

which is ≥ 0 if l ≥ 3 or l = 2 and m2 ≥ 2. Therefore, ω is a regular 1-form
on C in these cases. It is easy to see that X−Y is not a factor of F (X,Y,Z).
This completes the proof of (i).

For (ii), suppose that the multiplicity µ1 of X − α1 in P (X)− P (α1) is
no greater than m1; then µ1 is divisible by p and can be written as µ1 = pab
with a, b ≥ 1, p - b. Consider the form

ω :=
W (Y,Z)(X − Y )p

a−1((X − α1Z)b−1 + · · ·+ (Y − α1Z)b−1)p
a

(X − α1Z)pab(X − α2Z)
,

which is well defined on P2. Since m1 ≥ pab we can write ω as a product of
η and a polynomial:

ω = (X − Y )p
a−1((X −α1Z)b−1 + · · ·+ (Y −α1Z)b−1)p

a
(X −α1Z)m1−pabη,

hence the poles of ω are poles of η. By (3.1.4), (α1, α1, 1) is not a pole of ω
and, by (3.1.3), (α2, α2, 1) is not a pole of ω either. Thus ω is regular on C.
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If the curve C has no linear components, then ω is a non-trivial regular
1-form on every component of C.

We now consider case (iii), where l = 1 and µ1 ≤ m1 − 1. Similarly, we
may write µ1 = pab with a, b ≥ 1, p - b. Let w1−1 be the degree of the second
term in (3.1.1). If w1 6= m1 + 1, then w1 is divisible by p, hence w1−µ1 ≥ 2.
If w1 = m1 + 1, then we also have w1 − µ1 ≥ 2 since µ1 ≤ m1 − 1. We infer
from (3.1.4) that

ω :=
W (Y,Z)(X−Y )p

a−1((X−α1Z)b−1 + · · ·+ (Y − α1Z)b−1)p
a

(X−α1Z)µ1+1

= (X−Y )p
a−1((X−α1Z)b−1 + · · ·+ (Y −α1Z)b−1)p

a
(X−α1Z)m1−µ1−1η

is regular on the curve C. Moreover, it is non-trivial on every component of
C if C has no linear components.

3.2. On the curve [Fc(X,Y,Z) = 0], c 6= 0, 1. We shall establish the
results of Section 3.1 on the curve [Fc(X,Y,Z) = 0].

As in the previous subsection, we see that

γ :=
W (Y,Z)

∂Fc
∂X

=
W (Z,X)

∂Fc
∂Y

=
W (X,Y )

∂Fc
∂Z

is a well defined rational 1-form on π−1(Cc) (π : K3 \ {0} → P2 is the usual
projection). Differentiation yields on Cc = [Fc(X,Y,Z) = 0]:

∂Fc
∂X

(X,Y,Z) = aZn−1−∑l
i=1 mi

l∏

i=1

(X − αiZ)mi ,

∂Fc
∂Y

(X,Y,Z) = −caZn−1−∑l
i=1 mi

l∏

i=1

(Y − αiZ)mi .

Consider the rational 1-form (well defined on π−1(Cc))

η :=
W (Y,Z)

(X − α1Z)m1 · · · (X − αlZ)ml
(3.2.1)

≡ W (Z,X)
−c(Y − α1Z)m1 · · · (Y − αlZ)ml

.

We see again that there are no poles along [Z = 0] ∩ π−1(Cc). Let

l0 := #{(i, j) | P (αi) = cP (αj)}.
Since P (X) satisfies Hypothesis I, it is easy to see that 0 ≤ l0 ≤ l, and
l0 = l if and only if there exists a permutation φ of {1, . . . , l} such that
(αi, αφ(i), 1) ∈ Cc for any i = 1, . . . , l, i.e.,

P (α1)
P (αφ(1))

=
P (α2)
P (αφ(2))

= · · · = P (αl)
P (αφ(l))

= c.
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Therefore, η has at most l0 possible poles at (αi, αj , 1) with P (αi) = cP (αj)
along the curve Cc. For simplicity of notation, in what follows φ will always
be a permutation of (1, . . . , l) such that φ(i) = j if P (αi) = cP (αj).

We shall need the following:

Proposition 1. Let P be a polynomial satisfying Hypothesis I, and φ be
a permutation of {1, . . . , l} such that φ(i) = j if P (αi) = cP (αj). If there
exists 1 ≤ i ≤ l such that |mi−mφ(i)| ≥ 2, then every irreducible component
of Cc admits a non-trivial regular 1-form.

Proof. Without loss of generality, we may assume that mi −mφ(i) ≥ 2.
Let

ω :=
W (Y,Z)(Y − αφ(i)Z)mi−2

(X − αiZ)mi
,

which is well defined on P2. By (3.2.1), along the curve Cc, ω has only
possible poles at (αi, αj , 1), j 6= i. Since P satisfies Hypothesis I, from
the definition of the permutation φ we see that if P (αi) 6= cP (αφ(i)) then
(αi, αj , 1) 6∈ Cc for each j 6= i. Therefore, ω is regular on the curve Cc.
Otherwise, from the relation

W (Y,Z)(Y − αφ(i)Z)mi−2

(X − αiZ)mi

= (Y − αφ(i)Z)mi−mφ(i)−2 W (Y,Z)(Y − αφ(i)Z)mφ(i)

(X − αiZ)mi

and mi −mφ(i) ≥ 2, we see that a pole of ω is also a pole of

W (Y,Z)(Y − αφ(i)Z)mφ(i)

(X − αiZ)mi
,

which is however regular on Cc by (3.2.1) and Hypothesis I. It is easy to see
that Cc has no factor of the form aY − bZ, hence W (Y,Z) 6≡ 0. This implies
that ω is non-trivial on any component of Cc.

Remark. A similar result was obtained in [9] using the truncated second
main theorem for rational functions of [10] and [11]. The proof above using
the construction of a regular 1-form is much simpler.

Let pi = (αi, αφ(i), 1) and pj = (αj , αφ(j), 1) be distinct points in P2. Let
Lij be the linear form defined as follows:

Lij := (Y − αφ(j)Z)−
αφ(i) − αφ(j)

αi − αj
(X − αjZ).(3.2.2)

In other words, [Lij = 0] is the line passing through pi and pj . Thus Lij is
also equal to

(Y − αφ(i)Z)−
αφ(i) − αφ(j)

αi − αj
(X − αiZ).
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It is clear from the definition that

ordpi,ϕ Lij ≥ min{ordpi,ϕ(X − αiZ), ordpi,ϕ(Y − αφ(i)Z)}(3.2.3)

and

ordpj ,ϕ Lij ≥ min{ordpj ,ϕ(X − αjZ), ordpj ,ϕ(Y − αφ(j)Z)}.(3.2.4)

Lemma 2. Let P be a polynomial satisfying Hypothesis I and mi be ar-
ranged in non-increasing order. If the curve Cc has no linear factor then
any irreducible component of Cc admits a non-trivial regular 1-form except
in the following cases:

(i) l = l0 = 3 and m1 = m2 = m3 = 1;
(ii) l = 2 and m1 = m2 = 1 and l0 = 1, 2;
(iii) l = 1 and m1 = 1.

Proof. If l = 1, it is clear that η has no pole on π−1(Cc). Therefore

ω :=
W (Y,Z)

(X − α1Z)2 = (X − α1Z)m1−2η

is well defined and regular on Cc if m1 ≥ 2. It is easy to see that
[X − α1Z = 0] is not a component of Cc, thus ω is non-trivial on any
irreducible component of Cc.

We now assume that l ≥ 2. If m2 ≥ 2 then m1 +m2 − 2 ≥ m1 ≥ mi for
1 ≤ i ≤ l. The only possible poles of the 1-form

ω :=
W (Y,Z)Lm1+m2−2

12

(X − α1Z)m1(X − α2Z)m2

on the curve Cc are pi = (αi, αφ(i), 1), i = 1, 2. If ordp1,ϕ(X − α1Z) ≤
ordp1,ϕ(Y − αφ(1)Z) then ordp1,ϕ L12 = ordp1,ϕ(X − α1Z). Therefore, as
m1 + m2 − 2 ≥ m1, ω is regular at p1. If ordp1,ϕ(X − α1Z) > ordp1,ϕ(Y −
αφ(1)Z) then ordp1,ϕ L12 = ordp1,ϕ(Y − αφ(1)Z). By (3.2.1), on π−1(Cc) we
have
W (Y,Z)(Y − αφ(1)Z)mφ(1)

(X − α1Z)m1
≡ W (Z,X)(X − α2Z)m2 · · · (X − αlZ)ml

−c(Y − αφ(2)Z)mφ(2) · · · (Y − αφ(l)Z)mφ(l)
,

which is regular at π−1(p1). The regularity of ω follows from this because
m1+m2−2 ≥ mφ(1) and ordp1,ϕ L12 = ordp1(Y −αφ(1)Z). The regularity of ω
at p2 is similarly established. Therefore ω is regular on Cc and is non-trivial
on any component of Cc provided that it has no linear component.

It remains to consider the case m2 = 1. Then p 6= 2 and mi = 1 for any
i = 2, . . . , l. By Proposition 1, we only need to consider the cases m1 = 1
and m1 = 2. First, we suppose that m1 = 2. Since p 6= 2, µ1 = m1 + 1 = 3.
Similarly, we have µφ(1) = mφ(1) + 1 = 2, since φ(1) 6= 1 and mi = 1 for any
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i = 2, . . . , l. Let

ω :=
W (Y,Z)L12

(X − α1Z)2(X − α2Z)
,

which is well defined in P2 and the only possible poles on the curve Cc are
p1 = (α1, αφ(1), 1) and p2 = (α2, αφ(2), 1). If pi 6∈ Cc then, on the curve Cc, ω
is regular at this point. If p1 ∈ Cc then from the expression of Fc(X,Y,Z) = 0
at p1 we see readily that

3 ordp1,ϕ(X − α1Z) = 2 ordp1,ϕ(Y − αφ(1)Z) > 0.
Hence,

2 ≤ ordp1,ϕ(X − α1Z) < ordp1,ϕ(Y − αφ(1)Z)
and

ordp1,ϕ L12 = ordp1,ϕ(X − α1Z).

We infer that

ordp1,ϕ ω = ordp1,ϕW (Y,Z) + ordp1,ϕ L12 − 2 ordp1,ϕ(X − α1Z)

≥ ordp1,ϕ(Y − αφ(1)Z)− ordp1,ϕ(X − α1Z)− 1 ≥ 0.

Similarly, if p2 ∈ Cc then

2 ordp2,ϕ(X − α2Z) = (mφ(2) + 1) ordp2,ϕ(Y − αφ(2)Z) > 0,

where mφ(2) = 1, 2. If mφ(2) = 1 then we have ordp2,ϕ(Y − αφ(2)Z) =
ordp2,ϕ (X − α2Z) and ω is clearly regular at p2. If mφ(2) = 2 then
3 ordp2,ϕ(Y − αφ(2)Z) = 2 ordp2,ϕ(X − α2Z) > 0 and ω is also regular at p2.
Finally, we consider the case m1 = 1. If l0 ≤ l− 2 then we may assume that
(α1, αj , 1) and (α2, αj , 1) are not in Cc for any 1 ≤ j ≤ l. This implies that
the 1-form

ω :=
W (Y,Z)

(X − α1Z)(X − α2Z)

is regular on Cc by (3.2.1). If l0 = l−1, we may assume that (α1, αj , 1) 6∈ Cc
for any 1 ≤ j ≤ l and (αi, αφ(i), 1) ∈ Cc for 2 ≤ i ≤ l. Suppose that l ≥ 3;
then

ω :=
W (Y,Z)L23

(X − α1Z)(X − α2Z)(X − α3Z)
is well defined and regular on Cc. If l0 = l, we need l ≥ 4, and

ω :=
W (Y,Z)L12L34

(X − α1Z)(X − α2Z)(X − α3Z)(X − α4Z)
is regular on Cc. Since Cc has no linear component, the restriction of ω to
any of its components is non-trivial by construction.

Remark. In [9], there is another exceptional case: n = 5, l = l0 = 2,
m1 = m2 = 2 and µi = mi + 1. This case actually can be eliminated since
X+Y −α1Z−α2Z is a linear factor of Cc, which means that S is not affine
rigid.
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3.3. Proof of Theorem 1. The curve in the following lemma is one of the
exceptional cases in our results.

Lemma 3. Let λ1, λ2 be non-zero constants and b be a positive integer.
Let

A(X,Y,Z)

= λ1

[
(X − αZ)b − (Y − αZ)b

X − Y

]
Z + λ2

[
(X − αZ)b+1 − (Y − αZ)b+1

X − Y

]
.

Then [A(X,Y,Z) = 0] is an irreducible curve of genus 0.

Proof. Without loss of generality, we may assume that α = 0 by taking
a linear transformation. Then

A(X,Y,Z) = λ1

[
Xb − Y b

X − Y

]
Z + λ2

[
Xb+1 − Y b+1

X − Y

]
.

If A(X,Y,Z) is reducible, then b ≥ 2 and it can only be factored as

A(X,Y,Z) = [Hj(X,Y )Z +Hj+1(X,Y )]Gb−1−j(X,Y ),

where Hj , Hj+1 and Gb−1−j are homogeneous polynomials in X and Y of
degree j, j+ 1, b− j− 1 respectively. From the expression of A(X,Y,Z), we
have

Gb−1−j(X,Y )

∣∣∣∣
[
Xb+1 − Y b+1

X − Y

]
and Gb−1−j(X,Y )

∣∣∣∣
[
Xb − Y b

X − Y

]
.

Since gcd(b, b + 1) = 1, this is impossible unless Gb−1−j(X,Y ) is constant.
Therefore, this curve is irreducible.

It is clear that this curve has only one multiple point (0, 0, 1) of multi-
plicity b− 1. The deficiency is

δA =
(degA− 1)(degA− 2)

2
− (b− 1)(b− 2)

2
= 0.

Therefore the genus is 0.

We are now in a position to prove Theorem 1. As indicated at the begin-
ning of this section, P (X) is a uniqueness polynomial for meromorphic func-
tions if the curve C admits a regular 1-form non-trivial on each of its compo-
nents; and P (X) is a strong uniqueness polynomial for meromorphic func-
tions if the curve C and each Cc, c 6= 0, 1, admit a regular 1-form non-trivial
on each of their components. Therefore by Lemma 1, P (X) is a unique-
ness polynomial if its zero set S is affinely rigid except when (i) l = 1 and
µ1 = m1, (ii) l = 1 and µ1 = m1 + 1, or (iii) l = 2, min{m1,m2} = m2 = 1
and µi = mi + 1 for i = 1, 2. Since p -n, n = (

∑l
i=1mi) + 1. Therefore,

n = m1 + 1 in cases (i), (ii), and n = m1 + 2 in case (iii). Hence, one can
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easily see that the curve C in case (i) is defined by

F (X,Y,Z) = ∗
[

(X − α1Z)m1 − (Y − α1Z)m1

X − Y

]
Z

+ ∗
[

(X − α1Z)m1+1 − (Y − α1Z)m1+1

X − Y

]
.

Therefore, C is irreducible and its genus is 0 by Lemma 3.
In case (ii), the curve C is defined by

F (X,Y,Z) = ∗
[

(X − α1Z)m1+1 − (Y − α1Z)m1+1

X − Y

]
,

which can be factorized into linear components. Therefore S is not affinely
rigid.

In case (iii), the curve C is defined by

F (X,Y,Z) = ∗
[

(X − α1Z)m1+1 − (Y − α1Z)m1+1

X − Y

]
Z

+ ∗
[

(X − α1Z)m1+2 − (Y − α1Z)m1+2

X − Y

]
.

Therefore, C is irreducible and its genus is 0 by Lemma 3.
Similarly, by Lemmas 1 and 2, P (X) is a strong uniqueness polynomial

if its zero set S is affinely rigid except for cases (i)–(iii) above and (iv)
l = l0 = 3 and m1 = m2 = m3 = 1. We have checked that P (X) is not a
uniqueness polynomial in the cases (i)–(iii). For case (iv), we have n = 4,
and P (α1)

P (αφ(1))
=

P (α2)
P (αφ(2))

=
P (α3)
P (αφ(3))

= w,

where {φ(1), φ(2), φ(3)} = {1, 2, 3} and φ(i) 6= i, i = 1, 2, 3, and w2 + w + 1
= 0. One checks easily that the curve Cw = [Fw(X,Y,Z) = 0] is irreducible
and has genus 0. Therefore, P (X) is not a strong uniqueness polynomial in
this case. This completes the proof of the theorem.

4. Proof of Theorem 2. The situation is more complicated if n =
degP (X) is divisible by p > 0 due to the fact that the curves C and Cc
may have singularities at infinity in this case. We are unable to find regular
1-forms, but, as we shall show, there exist products of 1-forms (i.e., sections
of KmC and KmCc) which are regular and non-trivial on C and on each Cc,
c 6= 0, 1. In the following we set

m = 1 +
l∑

i=1

mi.(4.0.1)

If n is divisible by p then m is clearly the largest exponent in P (X) not
divisible by p.
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4.1. On the curve [F (X,Y,Z) = 0]. Let F (X,Y,Z) and all the other
notation be the same as previously defined.

Lemma 4. Suppose that p > 0 and p |n. Let gcd(n,m) = d and ξjd,
0 ≤ j ≤ d− 1, be the primitive roots of Xd = 1. Then the only possible poles
of the differential form

ζ :=
W (Y,Z)

Z(X − α1Z)m1 · · · (X − αlZ)ml

on π−1(C) are the pull-backs of pi = (αi, αi, 1), 1 ≤ i ≤ l, and qj = (ξjd, 1, 0),
0 ≤ j ≤ d− 1.

Proof. Since p |n, we have

(4.1.1)
∂F

∂Z
(X,Y,Z) = am(n−m)Zn−m−1

(m−1∑

i=0

Xm−1−iY i + ZHm−2

)
,

where Hm−2 is a homogeneous polynomial of degree m − 2 in X,Y,Z. Re-
stricting ∂F/∂X and ∂F/∂Y to the curve C = [F (X,Y,Z) = 0] yields

∂F

∂X
(X,Y,Z) =

mamZ
n−m∏l

i=1(X − αiZ)mi

X − Y ,

∂F

∂Y
(X,Y,Z) =

−mamZn−m
∏l
i=1(Y − αiZ)mi

X − Y .

Together with (4.1.1) and (3.1.5), we have

ζ =
W (Y,Z)

Z(X − α1Z)m1 · · · (X − αlZ)ml
(4.1.2)

≡ − W (Z,X)
Z(Y − α1Z)m1 . . . (Y − αlZ)ml

≡ − W (X,Y )
(X − Y )(Xm−1 +Xm−2Y + · · ·+ Y m−1 + ZHm−2)

,

which is a rational 1-form on π−1(C). Similarly to the proof of Lemma 1,
one can easily verify that the only possible poles of ζ on π−1(C) are the
pull-backs of pi = (αi, αi, 1), 1 ≤ i ≤ l, and (x, 1, 0) with xn = 1 and
xm = 1. For the latter case, it is easy to see that ξjd, 0 ≤ j ≤ d − 1, are
the only solutions satisfying xn = 1 and xm = 1. Therefore, the pull-backs
of qj = (ξjd, 1, 0), 0 ≤ j ≤ d − 1, are the only possible poles of ζ along
π−1(C) ∩ [Z = 0].

Suppose that ∗(X−αiZ)v appears in the expression of (3.0.2), and sup-
pose that there is a term ∗(X − αiZ)v1 following it. Let Ai,v−1Z

n−v be the
sum of the terms in (3.1.1) up to degree v − 1 in X and Y , i.e.,
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Ai,v−1 = ∗
[

(X − αiZ)µi − (Y − αiZ)µi

X − Y

]
Zv−µi + · · ·(4.1.3)

+ ∗
[

(X − αiZ)v − (Y − αiZ)v

X − Y

]
.

We have the following estimates on its order at pi, which is a point of C by
(3.1.1), and qj .

Lemma 5. We have

(i) ordpi,ϕ(Ai,v−1) ≥ v ordpi,ϕ(X − αiZ);
(ii) ordpr,ϕ(Ai,m−1) ≥ (p− 1) ordpr ,ϕ(X − αrZ) for 1 ≤ r ≤ l;
(iii) p | −m ordqj ,ϕ Z + ordqj ,ϕ((X − Y )Ai,m−1) for 0 ≤ j ≤ d− 1.

Proof. We first note that from (3.1.1), pi = (αi, αi, 1), i = 1, . . . , l, and
qj , 0 ≤ j ≤ d− 1, are points of C. Moreover, (3.1.1) implies

ordpi,ϕ(Ai,v−1) ≥ (v1 − 1) ordpi,ϕ(X − αiZ) ≥ v ordpi,ϕ(X − αiZ).

This proves (i).
Since m is the largest exponent in P (X) not divisible by p and n is

divisible by p, we may write

F (X,Y,Z) = Ai,m−1Z
n−m + (X − Y )p−1H(X,Y,Z),

where H(X,Y,Z) is the homogeneous polynomial of degree n − p. Since
pr = (αr, αr, 1) ∈ C, this equation implies that pr ∈ [Ai,m−1(X,Y,Z) = 0]
and

ordpr ,ϕ(Ai,m−1) ≥ (p− 1) ordpr,ϕ(X − Y ) ≥ (p− 1) ordpr ,ϕ(X − αrZ).

This gives (ii).
Since (X − Y )F (X,Y,Z) − (X − Y )Ai,m−1Z

n−m is a pth power, for
qj ∈ C, j = 0, . . . , d− 1, we have

p | (n−m) ordqj ,ϕ Z + ordqj ,ϕ((X − Y )Ai,m−1),

which is equivalent to

p | −m ordqj ,ϕ Z + ordqj ,ϕ((X − Y )Ai,m−1)

since n is divisible by p. This shows (iii).

Lemma 6. Let P (X) be a polynomial of degree n satisfying Hypothe-
sis I. Let mi be arranged in non-increasing order. Assume that p > 0 and
p |n. If the curve C has no linear components then any irreducible compo-
nent of C admits a non-trivial regular product of 1-forms, i.e., elements of
H0(C, symiKC), in the following cases:

(i) l ≥ 3; l = 2 and m2 ≥ 2; l = 2 and m2 = 1, and µ1 ≤ m1; or l = 1
and µ1 ≤ m1 − 1;

(ii) l = 2, m2 = 1, µ1 = m1 + 1 and either
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(a) (m1 + 2) -n, or
(b) (m1 + 2) |n and A1,m1+1 is not a factor of F (X,Y,Z);

(iii) l = 1 and µ1 = m1 and either

(a) (m1 + 1) -n, or
(b) (m1 + 1) |n, p ≥ 5, and A1,m1 is a factor of F (X,Y,Z);

(iv) l = 1, µ1 = m1 + 1, and either

(a) u = 2, p ≥ 5, and A1,m1+1 is not a factor of F (X,Y,Z), or
(b) u ≥ 3, and m1 ≥ 2, except when (m1, p) = (2, 2) or (u,m1, p) =

(3, 2, 5), (3, 3, 3), where u is defined by the expansion P (X) =
P (α1) + ∗(X − α1)m1+1 + ∗(X − α1)m1+u + higher order terms.

Proof. Part (i) is already covered by Lemma 1. The proof for the other
cases is more involved as regards the verification of regularity of products of
1-forms; to shorten the proof we will omit some arguments that have been
done in the proof of Lemma 1.

Let m = 1 +
∑l

i=1mi. For case (ii), we have m = m1 + 2, µ1 = m1 + 1,
µ2 = 2, and hence p -m1 + 2, p -m1 + 1, and p 6= 2. Moreover,

A1,m1+1 = ∗Z
[

(X − α1Z)m1+1 − (Y − α1Z)m1+1

X − Y

]

+ ∗
[

(X − α1Z)m1+2 − (Y − α1Z)m1+2

X − Y

]
,

which defines an irreducible curve of genus 0 by Lemma 3. Let e = 3 if the
degree of the non-vanishing term after the degree m1 + 2 in the expression
of (3.0.2) is m1 + 3, and e = 4 otherwise. Take

ω =
(

W (Y,Z)
Z(X − α1Z)m1(X − α2Z)

)m1+e

((X − Y )A1,m1+1Z
e−2)m1 ,

which is well defined on P2. On the curve C, ω has possible poles only
at pj = (αj , αj , 1), j = 1, 2, and qj = (ξjd, 1, 0), 0 ≤ j ≤ d − 1, with
d = gcd(n,m1 + 2) and ξd a primitive root of Xd = 1. It is clear that ω is
regular at p1 since Lemma 5(i) implies that

ordp1,ϕA1,m1+1 ≥ (m1 + e− 1) ordp1,ϕ(X − α1Z).

By Lemma 5(ii), ordp2,ϕA1,m1+1 ≥ (p− 1) ordp2,ϕ(X − α2Z), hence

ordp2,ϕ ω ≥ (m1p−m1 − e) ordp2,ϕ(X − α2Z) ≥ m1(p− 1)− 4 ≥ 0

as p ≥ 3 or p = 3 and m1 ≥ 2. We note that if p = 3, then m1 6= 1 since
p -m1 + 2. Therefore, this shows that ω is regular at p2. For the points at
infinity qj , j = 0, . . . , d− 1, observe that

ordqj ,ϕ(A1,m1+1(X − Y )) + ordqj ,ϕ Z ≥ 3,(4.1.4)
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for if ordqj ,ϕA1,m1+1(X − Y ) = ordqj ,ϕ Z = 1 then Lemma 5(iii) implies
m−1 = m1 +1 is divisible by p, which is impossible. Similarly if m1 = 1 and
ordqj ,ϕ Z = 1 then Lemma 5(iii) implies that −3 + ordqj ,ϕA1,m1+1(X − Y )
is divisible by p, hence ordqj ,ϕA1,m1+1(X − Y ) ≥ 3. Therefore, we get

ordqj ,ϕ(A1,m1+1(X − Y )) + 2 ordqj ,ϕ Z ≥ 5 if m1 = 1.(4.1.5)

Moreover, if m1 = 1 then we may take e = 4 since the degree of the non-
vanishing term following the degree 3 term cannot be 4; otherwise p would
be 2. In this case we get

ordqj ,ϕ ω ≥ −(m1 + e) +m1 ordqj ,ϕ(A1,m1+1(X − Y )) +m1(e− 2) ordqj ,ϕ Z

≥ m1[ordqj ,ϕ(A1,m1+1(X − Y )) + (e− 2) ordqj ,ϕ Z − 1]− e.
By (4.1.4) this implies that ordqj ,ϕ ω ≥ 2m1 − 4, which is non-negative if
m1 ≥ 2. If m1 = 1, then e = 4 and the preceding inequality implies that

ordqj ,ϕ ω ≥ ordqj ,ϕ(A1,m1+1(X − Y )) + 2 ordqj ,ϕ Z − 5,

which is also non-negative by (4.1.5). This concludes the proof that ω is
regular on C. We also need to check if ω is non-trivial on every component
of C. For this, we will have to check if [A1,m1+1 = 0] is a component of C
since it is an irreducible curve of genus 0. Suppose that (m1 + 2) -n and
A1,m1+1 |F (X,Y,Z). Then (X−Y )A1,m1+1 | (X−Y )F (X,Y,Z) and we see,
by evaluating at Z = 0, that (Xm1+2 − Y m1+2) | (Xn − Y n). Let ξ be a
primitive root of Xm1+2 = 1 in K. If (Xm1+2 − Y m1+2) | (Xn − Y n) then
(ξ, 1) is also a solution of Xn − Y n and so 1 = ξn, which is impossible
if (m1 + 2) -n. The proof breaks down if (m1 + 2) |n so it is necessary to
assume, in this case, that A1,m1+1 is not a factor of F (X,Y,Z).

For (iii), we have l = 1 and µ1 = m1 = m− 1. Then m1 is divisible by p
and can be written as m1 = pab with a, b ≥ 1. If gcd(n,m) = 1, then

ω :=
W (Y,Z)(X − Y )p

a−1((X − α1Z)b−1 + · · ·+ (Y − α1Z)b−1)p
a

Z(X − α1Z)m1

is regular and non-trivial on any component of C if it has no linear compo-
nents.

If 1 < gcd(n,m) = d < m, we may write m = m0d with m0 ≥ 2 and
d ≥ 2. Then m− d− 2 = (m0 − 1)d− 2 ≥ 0. Let

ω :=
(
W (Y,Z)(Xd − Y d)
Z(X − α1Z)m1

)m1

Am1−d−1
1,m1

.

Since µ1 = m1,

A1,m1 = ∗Z
[

(X − α1Z)m1 − (Y − α1Z)m1

X − Y

]

+ ∗
[

(X − α1Z)m1+1 − (Y − α1Z)m1+1

X − Y

]
,
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which again defines an irreducible curve of genus 0. Similarly, ω has only
a possible pole at p1. Since m1 is divisible by p, the degree of the term
appearing after (X − α1)m1+1 in (3.0.2) is at least m1 + p. Note that such
a term must exist since p -m and p |n. By Lemma 5(i) we see that

ordp1,ϕA1,m1 ≥ (m1 + p) ordp1,ϕ(X − α1Z),

thus

ordp1,ϕ ω ≥ [(m1 − d−1)(m1 + p)−m1(m1 − d)] ordp1,ϕ(X− α1Z)(4.1.6)

= [d(pm0 −m0 − p)− 2p+ 1] ordp1,ϕ(X − α1Z).

If p = 2 then since p -m1 + 1 we have m0 ≥ 3 and d ≥ 3. Thus, by (4.1.6),
ordp1,ϕ ω is non-negative. If m0 ≥ 3 and p ≥ 3 then, by (4.1.6), ordp1,ϕ ω ≥
2(2p− 3)− 2p+ 1 = 2p− 5, which is positive. It remains to check the case
m0 = 2 and p ≥ 3. Since p |m − 1, if m0 = 2 and p ≥ 5 then d ≥ 3, and
(4.1.6) implies that ordp1,ϕ ω is positive. Similarly, if m0 = 2 and p = 3,
then d can only be 2 or greater than 5. The latter case still implies that
ordp1,ϕ ω is non-negative. Thus, the only remaining case to be checked is
m0 = 2, p = 3 and d = 2. In this case we have

ω =
W (Y,Z)(X2 − Y 2)
Z(X − α1Z)3 .

The expansion of F (X,Y,Z) at p1 = (α1, α1, 1) is given by

∗(X − Y )2 + ∗
3∑

i=0

(X − α1Z)3−i(Y − α1Z)i + higher order terms,

which implies that

2 ordp1,ϕ(X − Y ) = 3 ordp1,ϕ(X − α1Z).

This means that ordp1,ϕ(X − α1Z) ≥ 2 and that

ordp1,ϕ ω ≥ ordp1,ϕ(X + Y ) + ordp1,ϕ(X − Y )− 2 ordp1,ϕ(X − α1Z)− 1

≥ 1
2

ordp1,ϕ(X − α1Z)− 1 ≥ 0.

Thus regularity is established in every case. Since [A1,m1 = 0] is an irre-
ducible curve of genus 0, we conclude that ω is non-trivial on any compo-
nent of C provided that A1,m1 is not a factor of F (X,Y,Z). Moreover, as
m = m1 + 1 and A1,m1 = A1,m−1, we conclude as before that A1,m−1 is not
a factor of F (X,Y,Z) if m -n.

For (iii.b), we have m |n and µ1 = m1 = m − 1. Assume that p ≥ 5.
Let m1 + u (≥ m1 + 2) be the degree of the non-vanishing term next to
(X − α1)m in the expansion of P (X) in (3.0.2). Since p |m1 and p ≥ 5, we
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have p |u, m1 ≥ 5 and u ≥ 5. Then

ω :=
(

W (Y,Z)
Z(X − α1Z)m1

)m1+u

(A1,m1(X − Y ))m1Z(u−2)(m1−1)−2

is regular at p1. This follows easily from the inequalities

(u− 2)(m1 − 1)− 2 ≥ 0,

ordp1,ϕA1,m1 ≥ (m1 + u− 1) ordp1,ϕ(X − α1Z),

ordp1,ϕ(X − Y ) ≥ ordp1,ϕ(X − α1Z).

At the points at infinity qj , j = 0, 1, . . . ,m − 1, we have (as u ≥ 5 and
m1 ≥ 5)

ordqj ,ϕ ω ≥ ((u− 2)(m1 − 1)− 2) ordqj ,ϕ Z

+m1 ordqj ,ϕ(A1,m1(X − Y ))−m1 − u
≥ (u− 2)m1 − u− u = (u− 2)(m1 − 2)− 4 ≥ 0.

Since [A1,m1 = 0] is an irreducible curve of genus 0, ω is regular and non-
trivial on any component of C only if A1,m1 is not a factor of F (X,Y,Z).

For (iv.a), we have l = 1, µ1 = m1 + 1 = m and u = 2, where m1 + u
(≥ m1 + 2) is the degree of the non-vanishing term following (X − α1)m in
the expansion of P (X) in (3.0.2). Similarly, in this case

A1,m1+1 = ∗Z
[

(X − α1Z)m1+1 − (Y − α1Z)m1+1

X − Y

]

+ ∗
[

(X − α1Z)m1+2 − (Y − α1Z)m1+2

X − Y

]
,

which gives an irreducible curve of genus 0. If n = m1 +2 then F (X,Y,Z) =
A1,m1+1. Hence the curve C is irreducible and has genus 0. If n ≥ m1 + 3
then there is a non-vanishing term following (X−α1)m1+2 in the expansion
of P (X) in (3.0.2) with degree v > m1 + 2. Since p |m1 + 2 and p | v, we
have v ≥ m1 +2+p and ordp1,ϕA1,m1+1 ≥ (m1 +1+p) ordp1,ϕ(X−α1Z) by
Lemma 5(i). Observe that the condition p |m1 + 2 implies that m1 ≥ p− 2,
hence m1 ≥ 3 and m1 − 2 ≥ p − 4 ≥ 1 if p ≥ 5. From this, it is easy to see
that (m1 − 2)(p− 2) ≥ 6 if p ≥ 5 and (p,m1) 6= (5, 3). Take

ω :=
(

W (Y,Z)
(X − α1Z)m1

)m1+1

Am1−2
1,m1+1.

Then

ordp1,ϕ ω ≥ [(m1 + 1 + p)(m1 − 2)−m1(m1 + 1)] ordp1,ϕ(X − α1Z)

= [(m1 − 2)(p− 2)− 6] ordp1,ϕ(X − α1Z)

is non-negative if p ≥ 5 and (p,m1) 6= (5, 3). Therefore, ω is regular and
non-trivial on any component of C if A1,m1+1 is not factor of C. For the
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remaining case, i.e., (p,m1) = (5, 3), we take

ω :=
(

W (Y,Z)
Z(X − α1Z)3

)5

A1,4(X − Y )((X − α1Z)4 − (Y − α1Z)4)Z,

which is well defined in P2 and can have poles only at p1 and at qi, the
points at infinity. Let q be one of the points qi. By Lemma 5(i), we have

5 | ordq,ϕ Z + ordq,ϕ((X − α1Z)4 − (Y − α1Z)4),

and hence ordq Z + ordq,ϕ((X − α1Z)4 − (Y − α1Z)4) ≥ 5. Therefore, ω
is regular at the points at infinity. At p1, we see from the expansion of
F (X,Y,Z) in (3.1.1) that

ordp1,ϕ((X − α1Z)4 − (Y − α1Z)4) ≥ 5 ordp1,ϕ(X − α1Z)

and ordp1,ϕ(A1,4(X − Y )) ≥ 10 ordp1,ϕ(X − α1Z), hence ω is also regular
at p1.

For (iv.b), we have l = 1, µ1 = m1 + 1 = m, and u ≥ 3. We note that in
this case p |m1 + u and we need to exclude the following cases: m1 = 2 and
p = 2; (u,m1) = (3, 2), which gives p = 5; and (u,m1) = (3, 3), which gives
p = 3. The first two conditions and p |m1 + u imply that u ≥ 5 if m1 = 2.
Take

ω :=
(

W (Y,Z)
Z(X − α1Z)m1

)m1+u

(A1,m1(X − Y ))m1Z(u−2)(m1−1)−2,

where A1,m1(X − Y ) = (X − α1Z)m1+1 − (Y − α1Z)m1+1. The assumption
implies that m1 ≥ 3 or m1 = 2 and u ≥ 5, hence (u − 2)(m1 − 1) − 2 ≥ 0.
Since ordp1,ϕA1,m1 ≥ (m1 + u− 1) ordp1,ϕ(X − α1Z) and ordp1,ϕ(X − Y ) ≥
ordp1,ϕ(X−α1Z), it is clear that ω is regular at p1. Let q be one of the poles
at infinity. Then

ordq,ϕ ω ≥ ((u− 2)m1 − u) ordq,ϕ Z +m1 ordq,ϕ(A1,m1(X − Y ))(4.1.7)

−m1 − u
≥ (u− 2)m1 − u− u = (u− 2)(m1 − 2)− 4,

which is non-negative except when m1 = 2 or (u,m1) = (3, 3), (3, 4), (3, 5),
(4, 3), (5, 3). Since p |u + m1 and p -m1 + 1, (u,m1) cannot be (5, 3) nor
(3, 5). Similarly, if (u,m1) = (3, 3) then p = 3. This case is ruled out by our
assumption. We are left with the cases: (u,m1) = (3, 4), (4, 3), or m1 = 2.
Since p |m1 + u, the first two cases occur only when p = 7, and u ≥ p − 2
if m1 = 2. Moreover, since (m1, p) 6= (2, 5) we must have p ≥ 7 if m1 = 2.
The inequality (4.1.7) becomes

ordq,ϕ Z + 4 ordq,ϕ(A1,m1(X − Y ))− 7 if (u,m1)=(3, 4),(4.1.8)

2 ordq,ϕ Z + 3 ordq,ϕ(A1,m1(X − Y ))− 7 if (u,m1)=(4, 3),(4.1.9)

(p−6)(ordq,ϕ Z−1)+2 ordq,ϕ(A1,m1(X−Y ))−6 if m1 = 2,(4.1.10)
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respectively. On the other hand, by Lemma 5(iii) we have

7 | ordq,ϕ(A1,m1(X − Y ))− 5 ordq,ϕ Z if (u,m1) = (3, 4),(4.1.11)

7 | ordq,ϕ(A1,m1(X − Y ))− 4 ordq,ϕ Z if (u,m1) = (4, 3),(4.1.12)

p | ordq,ϕ(A1,m1(X − Y ))− 3 ordq,ϕ Z if m1 = 2.(4.1.13)

For ordq,ϕ(A1,m1(X−Y ))≥2, (4.1.8) is non-negative. If ordq,ϕ(A1,m1(X−Y ))
= 1 then ordq,ϕ Z ≥ 3 by (4.1.11), hence (4.1.8) is non-negative. Similarly, if
ordq,ϕ(A1,m1(X−Y ))≥2 then (4.1.9) is non-negative; if ordq,ϕ(A1,m1(X−Y ))
= 1 then ordq,ϕ Z ≥ 2 by (4.1.12), hence (4.1.9) is non-negative. If p > 7
and m1 = 2 it is easily checked that (4.1.10) is non-negative. If p = 7,
then (4.1.13) implies that ordq,ϕ Z ≥ 5 if ordq,ϕ(A1,m1(X − Y )) = 1, and
ordq,ϕ Z ≥ 3 if ordq,ϕ(A1,m1(X − Y )) = 2. Again we conclude that (4.1.10)
is non-negative. Since the curve C has no linear factors, ω is regular and
non-trivial on any component of C. This concludes the proof of the lemma.

4.2. On the curve [Fc(X,Y,Z) = 0], c 6= 0, 1. We shall use the notation
of Section 3, and recall that

P (X)− P (αi) =
n∑

j=µi

bi,j(X − αi)j .

If pi = (αi, αφ(i), 1) ∈ Cc, then we may write

Fc(X,Y,Z) =
n∑

j=µi

bi,jZ
n−j(X − αiZ)j(4.2.1)

− c
n∑

j=µφ(i)

bφ(i),jZ
n−j(Y − αφ(i)Z)j .

Denote by Bi,m the following sum:

Bi,m(X,Y,Z) =
m∑

j=µi

bi,jZ
m−j(X − αiZ)j

− c
m∑

j=µφ(i)

bφ(i),jZ
m−j(Y − αφ(i)Z)j.

If p |n, then m = 1 +
∑l

i=1mi < n, and so there exists an integer ui > m
such that bi,ui 6= 0 or bφ(i),ui 6= 0, and bi,j = bφ(i),j = 0 for m < j < ui.
In other words, ui is the degree in X and Y of the non-vanishing terms in
(4.2.1) following Bi,m. Then, at pi,

ordpi,ϕBi,m ≥ ui min{ordpi,ϕ(X − αiZ), ordpi,ϕ(Y − αφ(i)Z)};(4.2.2)

and at qi = (xi, 1, 0) such that xmi = c and xni = c, we have

p | ordqi,ϕBi,m −m ordqi,ϕ Z.(4.2.3)
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Lemma 7. Let P be a polynomial of degree n satisfying Hypothesis I.
Assume that p > 0 and p |n. If the curve Cc has no linear components,
then each component of Cc admits a non-trivial product of 1-forms in the
following cases:

(i) l ≥ 4; l = 2, 3 and max{mi} ≥ 2; or l = 1 and m1 ≥ 2;
(ii) l = 3, m1 = m2 = m3 = 1, and B1,4 is not a factor of Fc(X,Y,Z)

if l0 = l = 3, 3 |n− 1, 4 |n, and B1,4 = B2,4 = B3,4;
(iii) l = 2, m1 = m2 = 1, l0 = 1, and Bi,3 is not a factor of Fc(X,Y,Z)

if 3 |n and (αi, αφ(i), 1) ∈ Cc;
(iv) l = 2, m1 = m2 = 1, l0 = 2 and B1,3 = B2,3, and B1,3/(X + Y −

(α1 + α2)Z) is not a factor of Fc(X,Y,Z) if n is odd , and 3 |n.

Remark. In (ii), we let P̃1(X) = P0(X)− (P0(α1)−cP0(αφ(1)))/(1−c),
where P (X) =

∑n
i=0 aiX

i and P0(X) =
∑4

i=0 aiX
i. Then the sum B1,4 is

the homogenization of P̃1(X)−cP̃1(Y ), and B1,4 = B2,4 = B3,4 is equivalent
to the conditions that P̃1(αi) = cP̃1(αφ(i)) for i = 1, 2, 3. These statements
will be verified in the proof of the lemma.

Proof of Lemma 7. From Lemma 2, we already have (i), and (ii) in the
case l0 < 3. It remains to consider the cases (ii) for l0 = 3, (iii), and (iv).
We have

∂Fc
∂X

(X,Y,Z) = mamZ
n−m

l∏

i=1

(X − αiZ)mi ,

∂Fc
∂Y

(X,Y,Z) = −mcamZn−m
l∏

i=1

(Y − αiZ)mi ,

∂Fc
∂Z

(X,Y,Z) = (n−m)amZn−m−1(Xm − cY m + ZGm−1),

where Gm−1 is homogeneous polynomial of degree m−1. From these we get

W (Y,Z)

Z
∏l
i=1(X− αiZ)mi

≡ W (Z,X)

−cZ∏l
i=1(Y − αiZ)mi

≡ W (X,Y )
−(Xm − cY m+ ZGm−1)

.

This 1-form will be denoted by θ. We see that on the curve Cc, a point at
infinity qi = (xi, 1, 0) is a pole of θ only if xmi = c and xni = c.

We first consider the case l = l0 = 3 and m1 = m2 = m3 = 1. We have
m = 4 and p 6= 2, 3 in this case. We note that if p = 3 and l0 = l = 3
then c = 1, which is impossible. Moreover, the constant c is a solution of the
equation w2+w+1 = 0 and the only possible poles of θ are pi = (αi, αφ(i), 1),
i = 1, 2, 3, and qj = (xj , 1, 0) satisfying x4

j = w and xnj = w. The solutions
of X4 = w are w,−w,wξ,−wξ, where ξ is a primitive root of X4 = 1. If
3 -n−1, none of these can be a solution of Xn = w, which implies that θ has
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no pole at infinity; if 3 |n− 1 and 2 -n, i.e., gcd(n,m) = 1, then (w, 1, 0) is
the only possible pole of θ at infinity; if 3 |n−1, 2 |n and 4 -n, then (w, 1, 0)
and (−w, 1, 0) are the only two possible poles of θ at infinity; if 3 |n− 1 and
4 |n, then it has four possible poles at infinity. For the first two cases, i.e.,
3 -n− 1 or 3 |n− 1 and 2 -n, we may take

ω =
W (Y,Z)L12L30

Z(X − α1Z)(X − α2Z)(X − α3Z)
,

where L30 is the line passing through (α3, αφ(3), 1) and (w, 1, 0). Similarly,
ω is regular and is non-trivial on each component of Cc if Cc has no linear
factor. For the other two cases, i.e., 3 |n− 1, and 2 |n, we take

ω =
(

W (Y,Z)L12

Z(X − α1Z)(X − α2Z)(X − α3Z)

)p
B3,4Z

p−4,

which is regular at p1 and p2. Sincem3 = mφ(3) = 1, we have ordp3(X−α3) =
ordp3(Y −αφ(3)). Hence inequality (4.2.2) and ui ≥ p imply that ω is regular
at p3. At the point at infinity q = (w, 1, 0),

ordq,ϕ ω ≥ ordq,ϕB3,4 + (p− 4) ordq,ϕ Z − p.(4.2.4)

By (4.2.3), ordq,ϕB3,4− 4 ordq,ϕ Z is divisible by p. Moreover, ordq,ϕB3,4 +
(p − 4) ordq,ϕ Z is greater than zero since p ≥ 5. Hence, it is greater than
p and this implies that the integer in (4.2.4) is not negative. Therefore ω is
regular on Cc. To check that ω is non-trivial on each component of Cc we
analyze further the sum Bi,4, i = 1, 2, 3. We write P (X) = P0(X) + Q(X),
where P (X) =

∑n
j=0 ajX

j , P0(X) =
∑4

j=0 ajX
j and Q(X) =

∑n
j=5 ajX

j .
Then P (X)−P (αi) = P0(X)−P0(αi) +Q(X)−Q(αi). The sum Bi,4 is the
homogenization of P0(X)− P0(αi)− c(P0(Y )− P0(αφ(i))), since p ≥ 5 and
the degree of each term in Q(X) is divisible by p. On the other hand, let

P̃i(X) := P0(X)−
P0(αi)− cP0(αφ(i))

1− c ;

then P̃i(X) − cP̃i(Y ) = P0(X) − P0(αi) − c(P0(Y ) − P0(αφ(i))) and we see
that Bi,4 is also the homogenization of P̃i(X) − cP̃i(Y ). Since degP0 = 4
and p 6= 2, we see that each of the four points at infinity of [Bi,4 = 0] has
multiplicity one and so are non-singular points. At finite points, we see that
the only possible singular points of [Bi,4 = 0] are (αj , αφ(j), 1), j = 1, 2, 3,

with multiplicity 2 since P̃ ′i (X) = P ′(X). Clearly, pi = (αi, αφ(i), 1) ∈ Bi,4.
If there exists one j 6= i such that (αj , αφ(j), 1) 6∈ [Bi,4 = 0], then it is easy to
see that [Bi,4 = 0] is irreducible and has genus at least 1. In this case, there
exists a non-trivial regular 1-form on [Bi,4 = 0], and ω is non-trivial on every
component of Cc other than [Bi,4 = 0]. We now consider the case pj ∈ Bi,4
for each j 6= i. Then P̃i(αj) = cP̃i(αφ(j)), equivalently, P0(αj)−cP0(αφ(j)) =



140 T. T. H. An et al.

P0(αi) − cP0(αφ(i)). Since Bi,4 is the homogenization of P0(X) − P0(αi) −
c(P0(Y )−P0(αφ(i))), this implies that Bj,4 = Bi,4. Therefore, in this case we
have B1,4 = B2,4 = B3,4, and [Bi,4 = 0] has three ordinary multiple points of
multiplicity 2. If [Bi,4 = 0] is reducible, then Bézout’s theorem implies that
it consists of a line and a smooth irreducible curve of genus 1; if [Bi,4 = 0]
is irreducible, then it is a curve of genus 0. The first case is certainly fine
since Cc does not have a linear factor, and a component of genus 1 admits a
non-trivial regular one form. Therefore, we only need to assume that Bi,4 is
not a factor of Fc(X,Y,Z) if B1,4 = B2,4 = B3,4. However, if Bi,4 is a factor
of Fc(X,Y,Z), then we see that (X4−wY 4) | (Xn−wY n) by evaluating Bi,4
and Fc(X,Y,Z) at Z = 0. Since w3 = 1 and 3 |n− 1, we have wn = 1. This
implies that (X4 − (wY )4) | (Xn − (wY )n), which, however, is impossible if
4 -n.

For (iii), we may assume that p1 = (α1, α2, 1) ∈ Cc and (α2, α1, 1) 6∈ Cc.
Then the only possible poles of θ are p1 and q = (x, 1, 0) satisfying x3 = c
and xn = c. Suppose that ξ3 = c; then X3 = c has three possible solutions
ξ, wξ and w2ξ, where w2 +w + 1 = 0. Therefore, if 3 -n, θ has at most one
pole (i.e., q0 = (ξ, 1, 0)) at infinity. In this case, we take

ω =
W (Y,Z)L10

Z(X − α1Z)(X − α2Z)
,

where L10 is a line passing through p1 and q0. If 3 |n, then we take

ω =
(

W (Y,Z)
Z(X − α1Z)(X − α2Z)

)p
B1,3Z

p−3.

One checks (by an argument analogous to the one given in the previous case)
that ω is indeed regular on Cc and that B1,3 defines an irreducible curve of
genus 0. Therefore it is necessary to assume that B1,3 is not a factor of
Fc(X,Y,Z).

For (iv), l = l0 = 2 and m1 = m2 = 1 imply that p 6= 2, 3, c = −1, and θ
has poles at infinity, say (x, 1, 0), only if x3 = −1 and xn = −1. Obviously
θ has no pole at infinity if n is even. If n is odd and 3 -n then (−1, 1, 0) is
the only pole of θ at infinity. In this case, we take

ω =
W (Y,Z)L12

Z(X − α1Z)(X − α2Z)
.

Since the line [L12 = X + Y − (α1 + α2)Z = 0] passes through the points
p1 = (α1, α2, 1), p2 = (α2, α1, 1) and (1,−1, 0), ω is regular at these points.
If n is odd and 3 |n we claim that B1,3 = B2,3. For simplicity, write

P ′(X) = (X − α1)(X − α2)Q(X).
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Then

P (X)− P (α1) =
(
α1 − α2

2
(X − α1)2 +

1
3

(X − α1)3 + · · ·
)
R(X).

Here Q and R are polynomials. We deduce from this that

B1,3 =
α1− α2

2
[(X− α1Z)2− (Y − α2Z)2]Z+

1
3

[(X− α1Z)3+ (Y − α2Z)3],

B2,3 =
α2− α1

2
[(X− α2Z)2− (Y − α1Z)2]Z+

1
3

[(X− α2Z)3+ (Y − α1Z)3].

Clearly, X +Y − (α1 +α2)Z is a linear factor of B1,3 and B2,3; moreover, it
is easily seen that B1,3 = B2,3 and B1,3/(X +Y − (α1 +α2)Z) is irreducible
and defines a curve of genus 0. Thus

ω =
(

W (Y,Z)
Z(X − α1Z)(X − α2Z)

)p
B1,3Z

p−3

is regular on Cc and is non-trivial on each component of Cc if B1,3/(X +
Y − (α1 + α2)Z) is not a factor of Fc(X,Y,Z).

4.3. Proof of Theorem 2 and Corollary 1. Theorem 2 follows directly
from Lemmas 6 and 7.

We now prove the corollary. It is well known that if S is not affinely
rigid, then P (X) is not a strong uniqueness polynomial for A∗(K). From
now on we suppose that S is affinely rigid. When l ≥ 3, P (X) is already
a strong uniqueness polynomial for M∗(K) except when l = l0 = 3, m1 =
m2 = m3 = 1, 3 |n − 1, 4 |n, B1,4 = B2,4 = B3,4, and B1,4 is a factor of
Fc(X,Y,Z). We actually proved that in this case [B1,4 = 0] is irreducible
and of genus 0. From our proof of Lemma 7, we see that on the components
of Cc other than [B1,4 = 0], the product of 1-forms we constructed is regular
and non-vanishing. Thus those components must be of positive genus. On
the other hand, we have shown in the proof of Lemma 7 that B1,4(X,Y, 1)
can be written as P̃1(X) − cP̃1(Y ) with deg P̃1(X) = 4. Since p 6= 2, p - 4,
P̃1 is a strong uniqueness polynomial for A∗(K) if and only if P̃1(X) −
cP̃1(Y ) and (P̃1(X) − P̃1(Y ))/(X − Y ) have no linear factors. Therefore,
B1,4(X,Y, 1) = 0 cannot admit a solution consisting of a pair of non-constant
non-archimedean entire functions. Therefore, P (X) is a strong uniqueness
polynomial for A∗(K) if l ≥ 3. Moreover, this argument works analogously
for cases (I.A), (I.B.1), and (I.B.2) since the polynomials A1,m1(X,Y, 1) (in
Theorem 2(I.B.2.b.ii) and (I.C.2)) and B1,3(X,Y, 1) (in Theorem 2(II.C)) do
not admit any solution consisting of a pair of non-constant non-archimedean
entire functions.

It now remains to consider the case when l = 1 and µ1 = m1 + 1. Then

P (X)− P (α1) = b1,m1+1(X − α1)m1+1 + b1,m1+2(X − α1)m1+2 + · · · .
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If b1,m1+2 = 0, then Theorem 2(I.C.3.b) implies that P (X) is also a strong
uniqueness polynomial for A∗(K) provided m1 ≥ 2 and p ≥ 7. Therefore
(I.B.3.a) holds. If b1,m1+2 6= 0, we let

P0(X) = b1,m1+1(X − α1)m1+1 + b1,m1+2(X − α1)m1+2.

Then as was shown in [1], the polynomial P0(X) is a strong uniqueness
polynomial for A∗(K) if and only if m1 + 2 = prs, p - s, s ≥ 2. We also note
that in this case,

P0(X)− P0(Y )
X − Y = A1,m1+1(X,Y, 1).

Therefore, A1,m1+1(X,Y, 1) = 0 has no solutions in A∗(K)×A∗(K) if m1 +2
is not a power of p. Hence, P (X) is a strong uniqueness polynomial forA∗(K)
in the case (I.B.3.b) by Theorem 2(I.C.3.a).

We now prove (II). We let m1 + 2 = pr for some positive integer r.
From Theorem 2(I.C.3.a) and the previous discussion, P (X) is not a strong
uniqueness polynomial for A∗(K) if and only if F (X,Y,Z) is divisible by
A1,m1+1 = A1,pr−1. This condition is equivalent to P (X) − P (Y ) being
divisible by

A1,pr−1(X,Y, 1) = b1,pr−1
(X − α1)p

r−1 − (Y − α1)p
r−1

X − Y + b1,pr(X − Y )p
r−1

= Fpr−1(X,Y ).

If P (X)−P (Y ) is divisible by Fpr−1(X,Y ), then (pr − 1)S = TFpr−1(S) by
the lemma stated at the end of this section, which was proved in [6] over C,
but its proof works for any field. On the other hand, if (pr−1)S = TFpr−1(S),
one see easily that the points {(tij , si, 1) | 1 ≤ i ≤ n, 1 ≤ j ≤ pr − 1} are
in the intersection of two curves defined by P (X)− P (Y ) and Fpr−1(X,Y )
and the sum of the relevant intersection multiplicities is n(pr − 1). More-
over, the curves have one extra intersection point (1, 1, 0) at infinity, which
implies they must have a common component by Bézout’s theorem. Since
A1,m1+1(X,Y,Z) is irreducible, this implies that Fpr−1(X,Y ) is a factor of
P (X)− P (Y ).

Lemma (cf. [6]). Let P (X) = (X−s1) · · · (X−sn) be a monic polynomial
with divisor of zeros S in K. Let R(x, y) = xd+ · · · be a degree d polynomial
in K[x, y] such that R(x, y) divides P (x) − bP (y) with some b 6= 0 in K.
Then

[P (X)]d =
n∏

i=1

R(x, si).
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