Unique range sets and uniqueness polynomials in positive characteristic II

by
Ta Thi Hoai An (Taipei), Julie Tzu-Yueh Wang (Taipei) and Pit-Mann Wong (Notre Dame, IN)

1. Introduction. Let \mathbf{K} be an algebraically closed field of characteristic $p \geq 0$, complete with respect to a non-archimedean absolute value. Let $\mathcal{M}^{*}(\mathbf{K})$ be the set of non-constant meromorphic functions defined on \mathbf{K} and \mathcal{F} be a non-empty subset of $\mathcal{M}^{*}(\mathbf{K})$. For $f \in \mathcal{F}$ and a set S in the range of f define

$$
E(f, S)=\bigcup_{a \in S}\left\{(z, m) \in \mathbf{K} \times \mathbb{Z}^{+}: f(z)=a \text { with multiplicity } m\right\}
$$

Two functions f and g of \mathcal{F} are said to share S, counting multiplicity, if $E(f, S)=E(g, S)$. A set S is called a unique range set, counting multiplicity, for \mathcal{F}, if the condition $E(f, S)=E(g, S)$ for $f, g \in \mathcal{F}$ implies that $f \equiv g$. A polynomial P defined over \mathbf{K} is called a uniqueness polynomial for \mathcal{F} if the condition $P(f)=P(g)$ for $f, g \in \mathcal{F}$ implies that $f \equiv g ; P$ is called a strong uniqueness polynomial if the condition $P(f)=c P(g)$ for $f, g \in \mathcal{F}$ and some non-zero constant c implies that $c=1$ and $f \equiv g$.

In [1] we showed, in the case of positive characteristic, that a special family of polynomials are strong uniqueness polynomials for non-archimedean meromorphic functions. This was accomplished by explicitly constructing, for the curves in \mathbf{P}^{2} associated to the special family, regular 1-form(s) of Wronskian type. It then follows from the non-archimedean uniformization theorem that these curves are non-archimedean hyperbolic, i.e., there is no non-constant non-archimedean analytic map into the curves. In dealing with more general forms of polynomials than those considered in [1] we are unable to explicitly construct regular 1 -form(s), i.e., regular sections of the canonical bundle \mathcal{K}_{C}, on the associated curves; however, we are able to construct explicitly regular m-fold symmetric product of 1 -form(s), i.e., regular sections of powers of the canonical bundle \mathcal{K}_{C}^{m}, and this still implies that
the associated curves are non-archimedean hyperbolic by the Berkovich Picard Theorem. Locally, on an open neighborhood (U, t) of a smooth point of a curve with local coordinate (uniformization parameter), a regular 1-form may be expressed as $a(t) d t$ where $a(t)$ is a regular function on U; analogously, a regular m-fold symmetric product of 1-form(s) is locally expressed as $a(t) d t^{\otimes m}$. Geometrically this means that, even though we cannot take a root to get a regular 1 -form on the curve $C\left(a(t)^{1 / m}\right.$ is not necessarily single-valued), this can be done in an appropriate branched cover.

In Section 3, we treat the case when the characteristic p of the ground field (the ground field \mathbf{K} is assumed to be algebraically closed complete with respect to a non-archimedean absolute value) is zero, and the case when $p>0$ and p does not divide the degree of the polynomial P. In these cases, we are able to give a complete classification without any extra assumption on the multiplicities of $P^{\prime}(X)=0$ as in [9]. We note that the proof for this case involves only the construction of regular 1-forms. This result is recorded as Theorem 1 below. We also note that this line of argument can apply to the complex case (cf. [2]).

In Section 4 , we treat the case where $p>0$ and p divides the degree of the polynomial P. For this, we need to construct regular products of 1 -forms. Unfortunately, we are unable to give a complete classification for this case. However, one can see from the statement of Theorem 2 (and the remarks after the theorem) that our results are indeed very sharp. Another result in this section concerns the unique range set problem for non-archimedean entire functions. If $p=0$ or if p does not divide the cardinality $|S|$ of a finite set $S \subset \mathbf{K}$, it is well known that S is a unique range set for nonarchimedean entire functions if and only if S is affinely rigid (cf. [5] and [8]). This characterization is false if p divides $|S|$ (cf. [4] and [8]). However, using Theorem 2, we are able to offer a precise classification for most cases.

Throughout this paper we will let $P(X)$ be a polynomial of degree n in $\mathbf{K}[X]$. We will use l to denote the number of distinct roots of $P^{\prime}(X)$, and we will denote those roots by $\alpha_{1}, \ldots, \alpha_{l}$. We will use m_{1}, \ldots, m_{l} to denote the multiplicities of the roots in P^{\prime}. Thus,

$$
P^{\prime}(X)=a\left(X-\alpha_{1}\right)^{m_{1}} \cdots\left(X-\alpha_{l}\right)^{m_{l}},
$$

where a is some non-zero constant. We will continually assume what we call

Hypothesis I:

$$
P\left(\alpha_{i}\right) \neq P\left(\alpha_{j}\right) \quad \text { whenever } i \neq j
$$

In other words, P is injective on the roots of P^{\prime}.
Without loss of generality, we assume that we have listed the α_{i} so that the m_{i} are non-increasing. We note that Hypothesis I is a generic condition,
and one can see later from our arguments that it makes the computation easier.

We now define three special cases of $P(X)$ as above:
(1A) $l=1$ and the multiplicity of $X-\alpha_{1}$ in $P(X)-P\left(\alpha_{1}\right)$ is $\geq m_{1}$.
(1B) $l=2, \min \left\{m_{1}, m_{2}\right\}=1$, and the multiplicity of $X-\alpha_{i}$ in $P(X)-$ $P\left(\alpha_{i}\right)$ is $m_{i}+1$ for $i=1,2$.
(1C) $n=4, l=3$, and there exists a permutation ϕ of $\{1,2,3\}$ such that $\phi(i) \neq i$ for $i=1,2,3$ and there exists a root w of $w^{2}+w+1=0$ such that

$$
w=\frac{P\left(\alpha_{i}\right)}{P\left(\alpha_{\phi(i)}\right)} \quad \text { for } i=1,2,3
$$

The main results of this article are:
Theorem 1. Let $P(X)$ be a polynomial as above satisfying Hypothesis I. Assume $p=0$, or $p>0$ and $p \nmid n$. Let S be the zero set of P and assume S is affinely rigid. Then:
(I) Either $P(X)$ belongs to (1A) or (1B) above, or $P(X)$ is a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{K})$.
(II) Either $P(X)$ belongs to (1A), (1B) or (1C) above, or $P(X)$ is a strong uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{K})$.

This result (and its proof) is similar, but a little more complicated than the corresponding result in the complex case (see [2]).

The situation is more complicated when $p \mid n$, and we require some additional notation. We use μ_{i} to denote the multiplicity of $X-\alpha_{i}$ in $P(X)-$ $P\left(\alpha_{i}\right)$. We define $b_{i, j}$ by writing

$$
P(X)-P\left(\alpha_{i}\right)=\sum_{j=\mu_{i}}^{n} b_{i, j}\left(X-\alpha_{i}\right)^{j}
$$

We then define the homogeneous forms $A_{i, \mu_{i}}(X, Y, Z)$ by

$$
\begin{aligned}
A_{i, \mu_{i}}(X, Y, Z)= & b_{i, \mu_{i}} Z\left[\frac{\left(X-\alpha_{i} Z\right)^{\mu_{i}}-\left(Y-\alpha_{i} Z\right)^{\mu_{i}}}{X-Y}\right] \\
& +b_{i, \mu_{i}+1}\left[\frac{\left(X-\alpha_{i} Z\right)^{\mu_{i}+1}-\left(Y-\alpha_{i} Z\right)^{\mu_{i}+1}}{X-Y}\right]
\end{aligned}
$$

Let $m=1+\sum_{i=1}^{l} m_{i}$. When $c \neq 0,1$ and $m_{1}=\cdots=m_{l}=1$, for a fixed permutation ϕ of $\{1, \ldots, l\}$ such that $\phi(i) \neq i$ we define the homogeneous forms $B_{i, m}(X, Y, Z)$ by

$$
B_{i, m}(X, Y, Z)=\sum_{j=2}^{m}\left[b_{i, j}\left(X-\alpha_{i} Z\right)^{j}-c b_{\phi(i), j}\left(Y-\alpha_{\phi(i)} Z\right)^{j}\right] Z^{m-j}
$$

We then let

$$
B(i, m):=B_{i, m}(X, Y, 1)
$$

We are now ready to state the following theorem:
Theorem 2. Let $P(X)$ be a polynomial as above satisfying Hypothesis I and such that $p \mid n$. Let S be the zero set of $P(X)$ and assume that S is affinely rigid. Let m_{i} be arranged in non-increasing order. Then
(I) $P(X)$ is a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{K})$ if (A), (B), or (C) holds, where:
(A) $l \geq 3$;
(B) $l=2$ and either:
(1) $m_{2} \geq 2$, or
(2) $m_{2}=1$ and either:
(a) $\mu_{1} \leq m_{1}$, or
(b) $\mu_{1}=m_{1}+1$ and either:
(i) $\left(m_{1}+2\right) \nmid n$, or
(ii) $\left(m_{1}+2\right) \mid n, A_{1, m_{1}}(X, Y, 1)$ is not a factor of $[P(X)-P(Y)] /(X-Y)$;
(C) $l=1$ and (1), (2) or (3) holds, where:
(1) $\mu_{1} \leq m_{1}-1$,
(2) $\mu_{1}=m_{1}$ and either:
(a) $\left(m_{1}+1\right) \nmid n$, or
(b) $\left(m_{1}+1\right) \mid n, p \geq 5$, and $A_{1, m_{1}}(X, Y, 1)$ is not factor of $[P(X)-P(Y)] /(X-Y)$,
(3) $\mu_{1}=m_{1}+1$, and either:
(a) $u=2, p \geq 5$, and $A_{1, m_{1}+1}(X, Y, 1)$ is not a factor of $P(X)-P(Y)$, or
(b) $u \geq 3$ and $m_{1} \geq 2$, except when $\left(m_{1}, p\right)=(2,2)$, or $\left(u, m_{1}, p\right)=(3,2,5)$, or $(3,3,3)$, where u is defined by writing $P(X)-P\left(\alpha_{1}\right)=b_{1, m_{1}+1}\left(X-\alpha_{1}\right)^{m_{1}+1}+$ $b_{1, m_{1}+u}\left(X-\alpha_{1}\right)^{m_{1}+u}+\cdots$ with $b_{1, m_{1}+u} \neq 0$.
(II) If $P(X)$ is a uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{K})$ then it is also a strong uniqueness polynomial for $\mathcal{M}(\mathbf{K})$ except in the following cases:
(A) $l=3, m_{1}=m_{2}=m_{3}=1,3|n-1,4| n$, there exists a permutation ϕ of $\{1,2,3\}$ such that $\phi(i) \neq i$ for $i=1,2,3$, and there exists a root w of $w^{2}+w+1=0$ such that

$$
w=\frac{P\left(\alpha_{i}\right)}{P\left(\alpha_{\phi(i)}\right)} \quad \text { for } i=1,2,3
$$

and such that $B(1,4)=B(2,4)=B(3,4)$ and it is not a factor of $P(X)-w P(Y)$;
(B) $l=2, m_{1}=m_{2}=1,3 \mid n$ and there exists a constant c different from 0,1 , and -1 such that for some i, j with $\{i, j\}=\{1,2\}$, we have $P\left(\alpha_{i}\right)=c P\left(\alpha_{j}\right)$ and $B(i, 3)$ is a factor of $P(X)-c P(Y)$;
(C) $l=2, m_{1}=m_{2}=1$, n is odd, $3 \mid n, P\left(\alpha_{1}\right)=-P\left(\alpha_{2}\right), B(1,3)=$ $B(2,3)$, and $B(1,3) /\left(X+Y-\alpha_{1}-\alpha_{2}\right)$ is a factor of $P(X)+P(Y)$.

Remark 1. The condition we find here is very sharp since $A_{1, \mu_{1}}$ (in (I)), $B_{1,4}, B_{1,3}\left(\right.$ in (II.A) and (II.B)) or $B_{1,3} /\left(X+Y-\alpha_{1} Z-\alpha_{2} Z\right)$ (in (II.C)) do define irreducible curves of genus 0 and degree larger than one.

REmark 2. If we assume that $p \geq 7$ and $m_{1} \geq 2$ when $l=1$, then the conditions in Theorem 2 are necessary and sufficient.

Let $\mathcal{A}^{*}(\mathbf{K})$ be the set of non-constant entire functions. It is well known that a polynomial is a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{K})$ if and only if its zero set is a unique range set of $\mathcal{A}^{*}(\mathbf{K})$. Let S be the set of zeros of $P(X)$. Suppose that $b_{1, p^{r}}$ and $b_{1, p^{r}-1}$ in the expansion of $P(X)-P\left(\alpha_{1}\right)$ are both non-zero. Similarly to [6], we consider the two-variable polynomial of degree $p^{r}-1$

$$
\begin{aligned}
\mathcal{F}_{p^{r}-1}(X, Y) & :=A_{1, p^{r}-1}(X, Y, 1) \\
& =b_{1, p^{r}}(X-Y)^{p^{r}-1}+b_{1, p^{r}-1} \frac{\left(X-\alpha_{1}\right)^{p^{r}-1}-\left(Y-\alpha_{1}\right)^{p^{r}-1}}{X-Y}
\end{aligned}
$$

For each s_{j} in S let $t_{j, 1}, \ldots, t_{j, p^{r}-1}$ be the $p^{r}-1$ solutions in t of the equation $\mathcal{F}_{p^{r}-1}\left(t, s_{j}\right)=0$. Then define

$$
T_{\mathcal{F}_{p^{r}-1}}(S)=\left\{t_{1,1}, \ldots, t_{1, p^{r}-1}, t_{2,1}, \ldots, t_{n, p^{r}-1}\right\}
$$

We say S is preserved by a Frobenius transformation $\mathcal{F}_{p^{r}-1}$ if $T_{\mathcal{F}_{p^{r}-1}}(S)=$ $\left(p^{r}-1\right) S$.

Corollary 1. Let $P(X)$ be a polynomial as above satisfying Hypothesis I and such that $p \mid n$. Let S be the zero set of $P(X)$.
(I) In cases (A) and (B) below, S is a unique range set for $\mathcal{A}^{*}(\mathbf{K})$ if and only if S is affinely rigid:
(A) $l \geq 2$;
(B) $l=1$, and either
(1) $\mu_{1} \leq m_{1}-1$, or
(2) $\mu_{1}=m_{1}$, and either
(a) $\left(m_{1}+1\right) \nmid n$, or
(b) $\left(m_{1}+1\right) \mid n$ and $p \geq 5$,
(3) $\mu_{1}=m_{1}+1 \geq 3$, and either
(a) $b_{1, m_{1}+2}=0$ and $p \geq 7$, or
(b) $b_{1, m_{1}+2} \neq 0$ and $m_{1}+2$ is not a power of p, and $p \geq 5$.
(II) When $l=1$, $\mu_{1}=m_{1}+1 \geq 3, p \geq 7, b_{1, p^{r}} \neq 0$, and $m_{1}+2=p^{r}$ for some $r \geq 1, S$ is a unique range set for $\mathcal{A}^{*}(\mathbf{K})$ if and only if S is affinely rigid and S is not preserved by the Frobenius transformation $\mathcal{F}_{p^{r}-1}(X, Y)$.
2. Symmetric products of regular differential forms. The starting point of [1] is the theorem of Berkovich that a projective irreducible algebraic curve defined over a complete non-archimedean field \mathbf{K} is hyperbolic if and only if it is of positive genus (cf. [3] and [7]). This means simply that there is no non-constant analytic map from \mathbf{K} into an irreducible projective algebraic curve R defined over \mathbf{K} if and only if there is a regular 1-form (an element of $H^{0}\left(R, \mathcal{K}_{R}\right)$, where \mathcal{K}_{R} is the canonical sheaf of R) on R which is not identically zero. Since $H^{0}\left(R, \mathcal{K}_{R}^{m}\right), m \geq 1$, is trivial if and only if R is a rational curve, this again means that there is no non-constant analytic map from \mathbf{K} into R if and only if there is a regular m-fold symmetric product of 1-form(s) (an element of $H^{0}\left(R, \mathcal{K}_{R}^{m}\right)$) on R.

For our purpose, we will need to consider plane curves which may have singularities. We now explain what we mean by a regular m-fold symmetric product of 1 -forms. Let R be a plane curve defined by a homogeneous polynomial $R(X, Y, Z)=0$ over \mathbf{K} and let \mathfrak{p} be a point of R. Let $[X]$, $[Y],[Z]$ be the residue classes of X, Y, Z respectively in the coordinate ring of R. Every 1-form of R can be represented as $Q([X],[Y],[Z]) d[X]$, where $Q([X],[Y],[Z])$ is a rational function in $[X],[Y],[Z]$. To check the regularity of a differential form, we will have to check it on each of the local parametrizations. To be more precise, $[X],[Y],[Z]$ can be analytically parametrized at a point $\mathfrak{p} \in R$ by

$$
\varphi=\left(\varphi_{0}, \varphi_{1}, \varphi_{2}\right): \Delta_{\varepsilon}=\left\{\left.t \in \mathbf{K}| | t\right|_{\nu}<\varepsilon\right\} \rightarrow R, \quad \varphi(0)=\mathfrak{p}
$$

The order of a polynomial $Q([X],[Y],[Z])$ (a rational function, or a differential form) in $[X],[Y],[Z]$ with respect to a local parametrization φ at \mathfrak{p} is defined by

$$
\operatorname{ord}_{\mathfrak{p}, \varphi} Q([X],[Y],[Z]):=\operatorname{ord}_{t} Q\left(\varphi_{0}, \varphi_{1}, \varphi_{2}\right)
$$

Clearly, this definition is independent of the choice of the representing classes of $[X],[Y],[Z]$. For simplicity of notation, we write $\operatorname{ord}_{\mathfrak{p}, \varphi} Q(X, Y, Z)$ for $\operatorname{ord}_{\mathfrak{p}, \varphi} Q([X],[Y],[Z])$, where φ is a local parametrization of the curve at \mathfrak{p}. A differential form ω in $[X],[Y],[Z]$ is regular at \mathfrak{p} if $\operatorname{ord}_{\mathfrak{p}, \varphi} \omega \geq 0$ for every analytic parametrization φ at \mathfrak{p}.

We deduce

Theorem 3. Let R be an irreducible projective plane curve defined over $\left(\mathbf{K},| |_{\nu}\right)$. The curve R admits a non-trivial global regular m-fold symmetric product of 1-forms if and only if R is non-archimedean hyperbolic.
3. Proof of Theorem 1. From now on we consider a polynomial P of the form

$$
P(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}
$$

Its derivative may be expressed as

$$
P^{\prime}(X)=a\left(X-\alpha_{1}\right)^{m_{1}} \cdots\left(X-\alpha_{l}\right)^{m_{l}}
$$

where $a \neq 0$ and $\alpha_{1}, \ldots, \alpha_{l}$ are the distinct roots of P^{\prime} and $m_{i} \geq 1$. We assume that P satisfies Hypothesis I, i.e.,

$$
\begin{equation*}
P\left(\alpha_{i}\right) \neq P\left(\alpha_{j}\right) \quad \text { for all } 1 \leq i \neq j \leq l \tag{3.0.1}
\end{equation*}
$$

We denote by μ_{i} the multiplicity of $X-\alpha_{i}$ in $P(X)-P\left(\alpha_{i}\right)$. Therefore,

$$
\begin{equation*}
P(X)-P\left(\alpha_{i}\right)=*\left(X-\alpha_{i}\right)^{\mu_{i}}+\cdots+*\left(X-\alpha_{i}\right)^{m_{i}+1}+\cdots+*\left(X-\alpha_{i}\right)^{n} \tag{3.0.2}
\end{equation*}
$$

Here, we use $*$ to indicate a non-zero element in \mathbf{K}. We will use this notation throughout the paper. Note that $\mu_{i} \leq m_{i}+1$ and that equality holds if the characteristic of \mathbf{K} is zero.

Let $F(X, Y, Z)$ be the homogenization of the polynomial of two variables

$$
\frac{P(X)-P(Y)}{X-Y}=\sum_{k=1}^{n} a_{k} \sum_{j=0}^{k-1} X^{k-1-j} Y^{j}
$$

so that

$$
\begin{equation*}
F(X, Y, Z)=\sum_{k=1}^{n} \sum_{j=0}^{k-1} a_{k} X^{k-1-j} Y^{j} Z^{n-k}=Z^{n} \frac{P(X / Z)-P(Y / Z)}{X-Y} \tag{3.0.3}
\end{equation*}
$$

Denote by C the curve defined by $F(X, Y, Z)=0$. Similarly, let $F_{c}(X, Y, Z)$ be the homogenization of the polynomial $P(X)-c P(Y)$ for $c \neq 0,1$, and denote by C_{c} the curve defined by $F_{c}(X, Y, Z)=0$. If f and g are nonarchimedean meromorphic functions such that $P(f)=P(g)$ or $P(f)=$ $c P(g)$, then $\phi=(f, g, 1)$ is a non-archimedean analytic map into C or C_{c} respectively. Our purpose is to construct respectively on C and each C_{c}, $c \neq 0,1$, a regular 1-form or a regular product of 1-forms which is non-trivial on each of its components. Then Theorem 3 implies that f and g have to be constant, i.e., $P(X)$ is a strong uniqueness polynomial.
3.1. On the curve $[F(X, Y, Z)=0]$. We may express the polynomial $F(X, Y, Z)$ as a polynomial in $X-\alpha_{i} Z$ and $Y-\alpha_{i} Z$:

$$
\begin{align*}
F(X, Y, Z)= & *\left[\frac{\left(X-\alpha_{i} Z\right)^{\mu_{i}}-\left(Y-\alpha_{i} Z\right)^{\mu_{i}}}{X-Y}\right] Z^{n-\mu_{i}} \tag{3.1.1}\\
& +*\left[\frac{\left(X-\alpha_{i} Z\right)^{w_{i}}-\left(Y-\alpha_{i} Z\right)^{w_{i}}}{X-Y}\right] Z^{n-w_{i}} \\
& +\cdots+*\left[\frac{\left(X-\alpha_{i} Z\right)^{n}-\left(Y-\alpha_{i} Z\right)^{n}}{X-Y}\right]
\end{align*}
$$

where w_{i} is the degree of the second non-vanishing term in (3.0.2).
From (3.1.1), and the fact that $F\left(\varphi_{0}, \varphi_{1}, \varphi_{2}\right)=0$ for any analytic parametrization $\varphi=\left(\varphi_{0}, \varphi_{1}, \varphi_{2}\right)$ at $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{i}, 1\right)$, it is easily seen that

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(X-\alpha_{i} Z\right)=\operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(Y-\alpha_{i} Z\right), \tag{3.1.2}
\end{equation*}
$$

hence

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{p}_{i}, \varphi}(X-Y)=\operatorname{ord}_{\mathfrak{p}_{i}}\left(X-\alpha_{i} Z-\left(Y-\alpha_{i} Z\right)\right) \geq \operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(X-\alpha_{i} Z\right) \tag{3.1.3}
\end{equation*}
$$ and

$$
\begin{align*}
\operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(\left(X-\alpha_{i} Z\right)^{\mu_{i}-1}+\cdots+(Y\right. & \left.\left.-\alpha_{i} Z\right)^{\mu_{i}-1}\right) \tag{3.1.4}\\
& \geq\left(w_{i}-1\right) \operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(X-\alpha_{i} Z\right) .
\end{align*}
$$

By Euler's Theorem the condition $F(X, Y, Z)=0$ is equivalent to

$$
X \frac{\partial F}{\partial X}+Y \frac{\partial F}{\partial Y}+Z \frac{\partial F}{\partial Z}=0
$$

The (Zariski) tangent space of C is defined by the equations $F(X, Y, Z)=0$ and

$$
d X \frac{\partial F}{\partial X}+d Y \frac{\partial F}{\partial Y}+d Z \frac{\partial F}{\partial Z}=0
$$

Then by Cramer's rule

$$
\begin{equation*}
\gamma:=\frac{W(X, Y)}{\frac{\partial F}{\partial Z}}=\frac{W(Y, Z)}{\frac{\partial F}{\partial X}}=\frac{W(Z, X)}{\frac{\partial F}{\partial Y}} \tag{3.1.5}
\end{equation*}
$$

is a well defined rational 1-form on $\pi^{-1}(C)\left(\pi: \mathbf{K}^{3} \backslash\{0\} \rightarrow \mathbf{P}^{2}\right.$ is the usual projection), where

$$
W(X, Y)=\left|\begin{array}{cc}
X & Y \\
d X & d Y
\end{array}\right|, \quad W(Y, Z)=\left|\begin{array}{cc}
Y & Z \\
d Y & d Z
\end{array}\right|, \quad W(Z, X)=\left|\begin{array}{cc}
Z & X \\
d Z & d X
\end{array}\right|
$$

are the Wronskians.
Lemma 1. Let P be a polynomial satisfying Hypothesis I and m_{i} be arranged in non-increasing order. Then any irreducible component of C admits a non-trivial regular 1-form in the following cases:
(i) $l \geq 3$, or $l=2$ and $m_{2} \geq 2$;
(ii) $p>0, l=2, m_{2}=1, \mu_{1} \leq m_{1}$, and the curve C has no linear components;
(iii) $p>0, l=1, \mu_{1} \leq m_{1}-1$, and the curve C has no linear components.

Proof. Differentiating and restricting to the curve $C=[F(X, Y, Z)=0]$ yields

$$
\begin{aligned}
& \frac{\partial F}{\partial X}(X, Y, Z)=\frac{a Z^{n-1-\sum_{i=1}^{l} m_{i}} \prod_{i=1}^{l}\left(X-\alpha_{i} Z\right)^{m_{i}}}{X-Y} \\
& \frac{\partial F}{\partial Y}(X, Y, Z)=\frac{-a Z^{n-1-\sum_{i=1}^{l} m_{i}} \prod_{i=1}^{l}\left(Y-\alpha_{i} Z\right)^{m_{i}}}{X-Y}
\end{aligned}
$$

By (3.1.5) and canceling out the common factors, we get the following rational 1-form:

$$
\begin{equation*}
\eta=\frac{W(Y, Z)}{\prod_{i=1}^{l}\left(X-\alpha_{i} Z\right)^{m_{i}}}=\frac{-W(X, Z)}{\prod_{i=1}^{l}\left(Y-\alpha_{i} Z\right)^{m_{i}}} \tag{3.1.6}
\end{equation*}
$$

well defined on $\pi^{-1}(C)$. Observe that η does not have any pole along $[Z=0]$ (because, as the line $Z=0$ is not an irreducible component of C, this would mean that $X=Y=0$ as well). On the finite part of C (i.e., $Z \neq 0)$ the only possible poles of $\eta\left(\right.$ on $\left.\pi^{-1}(C)\right)$ are the pull-back of the set $\left\{\left(\alpha_{i}, \alpha_{j}, 1\right) \in C \mid\right.$ $1 \leq i, j \leq l\}$ and Hypothesis I implies that $\alpha_{i}=\alpha_{j}$. Let $m=1+\sum_{i=1}^{l} m_{i}$ and

$$
\omega:=\frac{(X-Y)^{m-3}}{\prod_{i=1}^{l}\left(X-\alpha_{i} Z\right)^{m_{i}}} W(Y, Z)=(X-Y)^{m-3} \eta
$$

which is well defined on the curve C and has a possible pole at $\mathfrak{p}_{i}=$ $\left(\alpha_{i}, \alpha_{i}, 1\right), 1 \leq i \leq l$, along C. Moreover, one can see from (3.1.3) that for each $j=1, \ldots, l$,
$\operatorname{ord}_{\mathfrak{p}_{j}, \varphi} \omega \geq\left(m-3-m_{j}\right) \operatorname{ord}_{\mathfrak{p}_{j}, \varphi}\left(X-\alpha_{j} Z\right)=\left(\left(\sum_{i \neq j}^{l} m_{i}\right)-2\right) \operatorname{ord}_{\mathfrak{p}_{j}, \varphi}\left(X-\alpha_{j} Z\right)$,
which is ≥ 0 if $l \geq 3$ or $l=2$ and $m_{2} \geq 2$. Therefore, ω is a regular 1-form on C in these cases. It is easy to see that $X-Y$ is not a factor of $F(X, Y, Z)$. This completes the proof of (i).

For (ii), suppose that the multiplicity μ_{1} of $X-\alpha_{1}$ in $P(X)-P\left(\alpha_{1}\right)$ is no greater than m_{1}; then μ_{1} is divisible by p and can be written as $\mu_{1}=p^{a} b$ with $a, b \geq 1, p \nmid b$. Consider the form

$$
\omega:=\frac{W(Y, Z)(X-Y)^{p^{a}-1}\left(\left(X-\alpha_{1} Z\right)^{b-1}+\cdots+\left(Y-\alpha_{1} Z\right)^{b-1}\right)^{p^{a}}}{\left(X-\alpha_{1} Z\right)^{p^{a} b}\left(X-\alpha_{2} Z\right)}
$$

which is well defined on \mathbf{P}^{2}. Since $m_{1} \geq p^{a} b$ we can write ω as a product of η and a polynomial:
$\omega=(X-Y)^{p^{a}-1}\left(\left(X-\alpha_{1} Z\right)^{b-1}+\cdots+\left(Y-\alpha_{1} Z\right)^{b-1}\right)^{p^{a}}\left(X-\alpha_{1} Z\right)^{m_{1}-p^{a} b} \eta$, hence the poles of ω are poles of η. By (3.1.4), $\left(\alpha_{1}, \alpha_{1}, 1\right)$ is not a pole of ω and, by (3.1.3), $\left(\alpha_{2}, \alpha_{2}, 1\right)$ is not a pole of ω either. Thus ω is regular on C.

If the curve C has no linear components, then ω is a non-trivial regular 1-form on every component of C.

We now consider case (iii), where $l=1$ and $\mu_{1} \leq m_{1}-1$. Similarly, we may write $\mu_{1}=p^{a} b$ with $a, b \geq 1, p \nmid b$. Let $w_{1}-1$ be the degree of the second term in (3.1.1). If $w_{1} \neq m_{1}+1$, then w_{1} is divisible by p, hence $w_{1}-\mu_{1} \geq 2$. If $w_{1}=m_{1}+1$, then we also have $w_{1}-\mu_{1} \geq 2$ since $\mu_{1} \leq m_{1}-1$. We infer from (3.1.4) that

$$
\begin{aligned}
\omega & :=\frac{W(Y, Z)(X-Y)^{p^{a}-1}\left(\left(X-\alpha_{1} Z\right)^{b-1}+\cdots+\left(Y-\alpha_{1} Z\right)^{b-1}\right)^{p^{a}}}{\left(X-\alpha_{1} Z\right)^{\mu_{1}+1}} \\
& =(X-Y)^{p^{a}-1}\left(\left(X-\alpha_{1} Z\right)^{b-1}+\cdots+\left(Y-\alpha_{1} Z\right)^{b-1}\right)^{p^{a}}\left(X-\alpha_{1} Z\right)^{m_{1}-\mu_{1}-1} \eta
\end{aligned}
$$

is regular on the curve C. Moreover, it is non-trivial on every component of C if C has no linear components.
3.2. On the curve $\left[F_{c}(X, Y, Z)=0\right], c \neq 0,1$. We shall establish the results of Section 3.1 on the curve $\left[F_{c}(X, Y, Z)=0\right]$.

As in the previous subsection, we see that

$$
\gamma:=\frac{W(Y, Z)}{\frac{\partial F_{c}}{\partial X}}=\frac{W(Z, X)}{\frac{\partial F_{c}}{\partial Y}}=\frac{W(X, Y)}{\frac{\partial F_{c}}{\partial Z}}
$$

is a well defined rational 1-form on $\pi^{-1}\left(C_{c}\right)\left(\pi: \mathbf{K}^{3} \backslash\{0\} \rightarrow \mathbf{P}^{2}\right.$ is the usual projection). Differentiation yields on $C_{c}=\left[F_{c}(X, Y, Z)=0\right]$:

$$
\begin{aligned}
& \frac{\partial F_{c}}{\partial X}(X, Y, Z)=a Z^{n-1-\sum_{i=1}^{l} m_{i}} \prod_{i=1}^{l}\left(X-\alpha_{i} Z\right)^{m_{i}} \\
& \frac{\partial F_{c}}{\partial Y}(X, Y, Z)=-c a Z^{n-1-\sum_{i=1}^{l} m_{i}} \prod_{i=1}^{l}\left(Y-\alpha_{i} Z\right)^{m_{i}}
\end{aligned}
$$

Consider the rational 1-form (well defined on $\pi^{-1}\left(C_{c}\right)$)

$$
\begin{align*}
\eta & :=\frac{W(Y, Z)}{\left(X-\alpha_{1} Z\right)^{m_{1}} \cdots\left(X-\alpha_{l} Z\right)^{m_{l}}} \tag{3.2.1}\\
& \equiv \frac{W(Z, X)}{-c\left(Y-\alpha_{1} Z\right)^{m_{1}} \cdots\left(Y-\alpha_{l} Z\right)^{m_{l}}}
\end{align*}
$$

We see again that there are no poles along $[Z=0] \cap \pi^{-1}\left(C_{c}\right)$. Let

$$
l_{0}:=\#\left\{(i, j) \mid P\left(\alpha_{i}\right)=c P\left(\alpha_{j}\right)\right\}
$$

Since $P(X)$ satisfies Hypothesis I, it is easy to see that $0 \leq l_{0} \leq l$, and $l_{0}=l$ if and only if there exists a permutation ϕ of $\{1, \ldots, l\}$ such that $\left(\alpha_{i}, \alpha_{\phi(i)}, 1\right) \in C_{c}$ for any $i=1, \ldots, l$, i.e.,

$$
\frac{P\left(\alpha_{1}\right)}{P\left(\alpha_{\phi(1)}\right)}=\frac{P\left(\alpha_{2}\right)}{P\left(\alpha_{\phi(2)}\right)}=\cdots=\frac{P\left(\alpha_{l}\right)}{P\left(\alpha_{\phi(l)}\right)}=c
$$

Therefore, η has at most l_{0} possible poles at $\left(\alpha_{i}, \alpha_{j}, 1\right)$ with $P\left(\alpha_{i}\right)=c P\left(\alpha_{j}\right)$ along the curve C_{c}. For simplicity of notation, in what follows ϕ will always be a permutation of $(1, \ldots, l)$ such that $\phi(i)=j$ if $P\left(\alpha_{i}\right)=c P\left(\alpha_{j}\right)$.

We shall need the following:
Proposition 1. Let P be a polynomial satisfying Hypothesis I , and ϕ be a permutation of $\{1, \ldots, l\}$ such that $\phi(i)=j$ if $P\left(\alpha_{i}\right)=c P\left(\alpha_{j}\right)$. If there exists $1 \leq i \leq l$ such that $\left|m_{i}-m_{\phi(i)}\right| \geq 2$, then every irreducible component of C_{c} admits a non-trivial regular 1-form.

Proof. Without loss of generality, we may assume that $m_{i}-m_{\phi(i)} \geq 2$. Let

$$
\omega:=\frac{W(Y, Z)\left(Y-\alpha_{\phi(i)} Z\right)^{m_{i}-2}}{\left(X-\alpha_{i} Z\right)^{m_{i}}}
$$

which is well defined on \mathbf{P}^{2}. By (3.2.1), along the curve C_{c}, ω has only possible poles at $\left(\alpha_{i}, \alpha_{j}, 1\right), j \neq i$. Since P satisfies Hypothesis I, from the definition of the permutation ϕ we see that if $P\left(\alpha_{i}\right) \neq c P\left(\alpha_{\phi(i)}\right)$ then $\left(\alpha_{i}, \alpha_{j}, 1\right) \notin C_{c}$ for each $j \neq i$. Therefore, ω is regular on the curve C_{c}. Otherwise, from the relation

$$
\begin{aligned}
& \frac{W(Y, Z)\left(Y-\alpha_{\phi(i)} Z\right)^{m_{i}-2}}{\left(X-\alpha_{i} Z\right)^{m_{i}}} \\
& \quad=\left(Y-\alpha_{\phi(i)} Z\right)^{m_{i}-m_{\phi(i)}-2} \frac{W(Y, Z)\left(Y-\alpha_{\phi(i)} Z\right)^{m_{\phi(i)}}}{\left(X-\alpha_{i} Z\right)^{m_{i}}}
\end{aligned}
$$

and $m_{i}-m_{\phi(i)} \geq 2$, we see that a pole of ω is also a pole of

$$
\frac{W(Y, Z)\left(Y-\alpha_{\phi(i)} Z\right)^{m_{\phi(i)}}}{\left(X-\alpha_{i} Z\right)^{m_{i}}}
$$

which is however regular on C_{c} by (3.2.1) and Hypothesis I. It is easy to see that C_{c} has no factor of the form $a Y-b Z$, hence $W(Y, Z) \not \equiv 0$. This implies that ω is non-trivial on any component of C_{c}.

Remark. A similar result was obtained in [9] using the truncated second main theorem for rational functions of [10] and [11]. The proof above using the construction of a regular 1 -form is much simpler.

Let $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{\phi(i)}, 1\right)$ and $\mathfrak{p}_{j}=\left(\alpha_{j}, \alpha_{\phi(j)}, 1\right)$ be distinct points in \mathbf{P}^{2}. Let $L_{i j}$ be the linear form defined as follows:

$$
\begin{equation*}
L_{i j}:=\left(Y-\alpha_{\phi(j)} Z\right)-\frac{\alpha_{\phi(i)}-\alpha_{\phi(j)}}{\alpha_{i}-\alpha_{j}}\left(X-\alpha_{j} Z\right) \tag{3.2.2}
\end{equation*}
$$

In other words, $\left[L_{i j}=0\right]$ is the line passing through \mathfrak{p}_{i} and \mathfrak{p}_{j}. Thus $L_{i j}$ is also equal to

$$
\left(Y-\alpha_{\phi(i)} Z\right)-\frac{\alpha_{\phi(i)}-\alpha_{\phi(j)}}{\alpha_{i}-\alpha_{j}}\left(X-\alpha_{i} Z\right)
$$

It is clear from the definition that

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{p}_{i}, \varphi} L_{i j} \geq \min \left\{\operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(X-\alpha_{i} Z\right), \operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(Y-\alpha_{\phi(i)} Z\right)\right\} \tag{3.2.3}
\end{equation*}
$$

and
(3.2.4) $\operatorname{ord}_{\mathfrak{p}_{j, \varphi}} L_{i j} \geq \min \left\{\operatorname{ord}_{\mathfrak{p}_{j}, \varphi}\left(X-\alpha_{j} Z\right), \operatorname{ord}_{\mathfrak{p}_{j, \varphi}}\left(Y-\alpha_{\phi(j)} Z\right)\right\}$.

Lemma 2. Let P be a polynomial satisfying Hypothesis I and m_{i} be arranged in non-increasing order. If the curve C_{c} has no linear factor then any irreducible component of C_{c} admits a non-trivial regular 1-form except in the following cases:
(i) $l=l_{0}=3$ and $m_{1}=m_{2}=m_{3}=1$;
(ii) $l=2$ and $m_{1}=m_{2}=1$ and $l_{0}=1,2$;
(iii) $l=1$ and $m_{1}=1$.

Proof. If $l=1$, it is clear that η has no pole on $\pi^{-1}\left(C_{c}\right)$. Therefore

$$
\omega:=\frac{W(Y, Z)}{\left(X-\alpha_{1} Z\right)^{2}}=\left(X-\alpha_{1} Z\right)^{m_{1}-2} \eta
$$

is well defined and regular on C_{c} if $m_{1} \geq 2$. It is easy to see that [$\left.X-\alpha_{1} Z=0\right]$ is not a component of C_{c}, thus ω is non-trivial on any irreducible component of C_{c}.

We now assume that $l \geq 2$. If $m_{2} \geq 2$ then $m_{1}+m_{2}-2 \geq m_{1} \geq m_{i}$ for $1 \leq i \leq l$. The only possible poles of the 1 -form

$$
\omega:=\frac{W(Y, Z) L_{12}^{m_{1}+m_{2}-2}}{\left(X-\alpha_{1} Z\right)^{m_{1}}\left(X-\alpha_{2} Z\right)^{m_{2}}}
$$

on the curve C_{c} are $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{\phi(i)}, 1\right), i=1,2$. If $\operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(X-\alpha_{1} Z\right) \leq$ $\operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(Y-\alpha_{\phi(1)} Z\right)$ then $\operatorname{ord}_{\mathfrak{p}_{1, \varphi}} L_{12}=\operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(X-\alpha_{1} Z\right)$. Therefore, as $m_{1}+m_{2}-2 \geq m_{1}, \omega$ is regular at \mathfrak{p}_{1}. If $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)>\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}(Y-$ $\left.\alpha_{\phi(1)} Z\right)$ then $\operatorname{ord}_{\mathfrak{p}_{1, \varphi}} L_{12}=\operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(Y-\alpha_{\phi(1)} Z\right)$. By (3.2.1), on $\pi^{-1}\left(C_{c}\right)$ we have

$$
\frac{W(Y, Z)\left(Y-\alpha_{\phi(1)} Z\right)^{m_{\phi(1)}}}{\left(X-\alpha_{1} Z\right)^{m_{1}}} \equiv \frac{W(Z, X)\left(X-\alpha_{2} Z\right)^{m_{2}} \cdots\left(X-\alpha_{l} Z\right)^{m_{l}}}{-c\left(Y-\alpha_{\phi(2)} Z\right)^{m_{\phi(2)}} \cdots\left(Y-\alpha_{\phi(l)} Z\right)^{m_{\phi(l)}}}
$$

which is regular at $\pi^{-1}\left(\mathfrak{p}_{1}\right)$. The regularity of ω follows from this because $m_{1}+m_{2}-2 \geq m_{\phi(1)}$ and $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} L_{12}=\operatorname{ord}_{\mathfrak{p}_{1}}\left(Y-\alpha_{\phi(1)} Z\right)$. The regularity of ω at \mathfrak{p}_{2} is similarly established. Therefore ω is regular on C_{c} and is non-trivial on any component of C_{c} provided that it has no linear component.

It remains to consider the case $m_{2}=1$. Then $p \neq 2$ and $m_{i}=1$ for any $i=2, \ldots, l$. By Proposition 1, we only need to consider the cases $m_{1}=1$ and $m_{1}=2$. First, we suppose that $m_{1}=2$. Since $p \neq 2, \mu_{1}=m_{1}+1=3$. Similarly, we have $\mu_{\phi(1)}=m_{\phi(1)}+1=2$, since $\phi(1) \neq 1$ and $m_{i}=1$ for any
$i=2, \ldots, l$. Let

$$
\omega:=\frac{W(Y, Z) L_{12}}{\left(X-\alpha_{1} Z\right)^{2}\left(X-\alpha_{2} Z\right)}
$$

which is well defined in \mathbf{P}^{2} and the only possible poles on the curve C_{c} are $\mathfrak{p}_{1}=\left(\alpha_{1}, \alpha_{\phi(1)}, 1\right)$ and $\mathfrak{p}_{2}=\left(\alpha_{2}, \alpha_{\phi(2)}, 1\right)$. If $\mathfrak{p}_{i} \notin C_{c}$ then, on the curve C_{c}, ω is regular at this point. If $\mathfrak{p}_{1} \in C_{c}$ then from the expression of $F_{c}(X, Y, Z)=0$ at \mathfrak{p}_{1} we see readily that

$$
3 \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)=2 \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(Y-\alpha_{\phi(1)} Z\right)>0
$$

Hence,

$$
2 \leq \operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(X-\alpha_{1} Z\right)<\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(Y-\alpha_{\phi(1)} Z\right)
$$

and

$$
\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} L_{12}=\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)
$$

We infer that

$$
\begin{aligned}
\operatorname{ord}_{\mathfrak{p}_{1, \varphi}} \omega & =\operatorname{ord}_{\mathfrak{p}_{1, \varphi}} W(Y, Z)+\operatorname{ord}_{\mathfrak{p}_{1, \varphi}} L_{12}-2 \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right) \\
& \geq \operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(Y-\alpha_{\phi(1)} Z\right)-\operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(X-\alpha_{1} Z\right)-1 \geq 0
\end{aligned}
$$

Similarly, if $\mathfrak{p}_{2} \in C_{c}$ then

$$
2 \operatorname{ord}_{\mathfrak{p}_{2}, \varphi}\left(X-\alpha_{2} Z\right)=\left(m_{\phi(2)}+1\right) \operatorname{ord}_{\mathfrak{p}_{2}, \varphi}\left(Y-\alpha_{\phi(2)} Z\right)>0
$$

where $m_{\phi(2)}=1,2$. If $m_{\phi(2)}=1$ then we have $\operatorname{ord}_{\mathfrak{p}_{2}, \varphi}\left(Y-\alpha_{\phi(2)} Z\right)=$ $\operatorname{ord}_{\mathfrak{p}_{2, \varphi}}\left(X-\alpha_{2} Z\right)$ and ω is clearly regular at \mathfrak{p}_{2}. If $m_{\phi(2)}=2$ then $3 \operatorname{ord}_{\mathfrak{p}_{2}, \varphi}\left(Y-\alpha_{\phi(2)} Z\right)=2 \operatorname{ord}_{\mathfrak{p}_{2}, \varphi}\left(X-\alpha_{2} Z\right)>0$ and ω is also regular at \mathfrak{p}_{2}. Finally, we consider the case $m_{1}=1$. If $l_{0} \leq l-2$ then we may assume that $\left(\alpha_{1}, \alpha_{j}, 1\right)$ and $\left(\alpha_{2}, \alpha_{j}, 1\right)$ are not in C_{c} for any $1 \leq j \leq l$. This implies that the 1 -form

$$
\omega:=\frac{W(Y, Z)}{\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)}
$$

is regular on C_{c} by (3.2.1). If $l_{0}=l-1$, we may assume that $\left(\alpha_{1}, \alpha_{j}, 1\right) \notin C_{c}$ for any $1 \leq j \leq l$ and $\left(\alpha_{i}, \alpha_{\phi(i)}, 1\right) \in C_{c}$ for $2 \leq i \leq l$. Suppose that $l \geq 3$; then

$$
\omega:=\frac{W(Y, Z) L_{23}}{\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)\left(X-\alpha_{3} Z\right)}
$$

is well defined and regular on C_{c}. If $l_{0}=l$, we need $l \geq 4$, and

$$
\omega:=\frac{W(Y, Z) L_{12} L_{34}}{\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)\left(X-\alpha_{3} Z\right)\left(X-\alpha_{4} Z\right)}
$$

is regular on C_{c}. Since C_{c} has no linear component, the restriction of ω to any of its components is non-trivial by construction.

REmARK. In [9], there is another exceptional case: $n=5, l=l_{0}=2$, $m_{1}=m_{2}=2$ and $\mu_{i}=m_{i}+1$. This case actually can be eliminated since $X+Y-\alpha_{1} Z-\alpha_{2} Z$ is a linear factor of C_{c}, which means that S is not affine rigid.
3.3. Proof of Theorem 1. The curve in the following lemma is one of the exceptional cases in our results.

Lemma 3. Let λ_{1}, λ_{2} be non-zero constants and b be a positive integer. Let

$$
\begin{aligned}
& A(X, Y, Z) \\
& \quad=\lambda_{1}\left[\frac{(X-\alpha Z)^{b}-(Y-\alpha Z)^{b}}{X-Y}\right] Z+\lambda_{2}\left[\frac{(X-\alpha Z)^{b+1}-(Y-\alpha Z)^{b+1}}{X-Y}\right] .
\end{aligned}
$$

Then $[A(X, Y, Z)=0]$ is an irreducible curve of genus 0 .
Proof. Without loss of generality, we may assume that $\alpha=0$ by taking a linear transformation. Then

$$
A(X, Y, Z)=\lambda_{1}\left[\frac{X^{b}-Y^{b}}{X-Y}\right] Z+\lambda_{2}\left[\frac{X^{b+1}-Y^{b+1}}{X-Y}\right] .
$$

If $A(X, Y, Z)$ is reducible, then $b \geq 2$ and it can only be factored as

$$
A(X, Y, Z)=\left[H_{j}(X, Y) Z+H_{j+1}(X, Y)\right] G_{b-1-j}(X, Y)
$$

where H_{j}, H_{j+1} and G_{b-1-j} are homogeneous polynomials in X and Y of degree $j, j+1, b-j-1$ respectively. From the expression of $A(X, Y, Z)$, we have

$$
G_{b-1-j}(X, Y) \left\lvert\,\left[\frac{X^{b+1}-Y^{b+1}}{X-Y}\right] \quad\right. \text { and } \quad G_{b-1-j}(X, Y) \left\lvert\,\left[\frac{X^{b}-Y^{b}}{X-Y}\right]\right.
$$

Since $\operatorname{gcd}(b, b+1)=1$, this is impossible unless $G_{b-1-j}(X, Y)$ is constant. Therefore, this curve is irreducible.

It is clear that this curve has only one multiple point $(0,0,1)$ of multiplicity $b-1$. The deficiency is

$$
\delta_{A}=\frac{(\operatorname{deg} A-1)(\operatorname{deg} A-2)}{2}-\frac{(b-1)(b-2)}{2}=0 .
$$

Therefore the genus is 0 .
We are now in a position to prove Theorem 1. As indicated at the beginning of this section, $P(X)$ is a uniqueness polynomial for meromorphic functions if the curve C admits a regular 1-form non-trivial on each of its components; and $P(X)$ is a strong uniqueness polynomial for meromorphic functions if the curve C and each $C_{c}, c \neq 0,1$, admit a regular 1-form non-trivial on each of their components. Therefore by Lemma $1, P(X)$ is a uniqueness polynomial if its zero set S is affinely rigid except when (i) $l=1$ and $\mu_{1}=m_{1}$, (ii) $l=1$ and $\mu_{1}=m_{1}+1$, or (iii) $l=2, \min \left\{m_{1}, m_{2}\right\}=m_{2}=1$ and $\mu_{i}=m_{i}+1$ for $i=1,2$. Since $p \nmid n, n=\left(\sum_{i=1}^{l} m_{i}\right)+1$. Therefore, $n=m_{1}+1$ in cases (i), (ii), and $n=m_{1}+2$ in case (iii). Hence, one can
easily see that the curve C in case (i) is defined by

$$
\begin{aligned}
F(X, Y, Z)= & *\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}}-\left(Y-\alpha_{1} Z\right)^{m_{1}}}{X-Y}\right] Z \\
& +*\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+1}-\left(Y-\alpha_{1} Z\right)^{m_{1}+1}}{X-Y}\right] .
\end{aligned}
$$

Therefore, C is irreducible and its genus is 0 by Lemma 3 .
In case (ii), the curve C is defined by

$$
F(X, Y, Z)=*\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+1}-\left(Y-\alpha_{1} Z\right)^{m_{1}+1}}{X-Y}\right],
$$

which can be factorized into linear components. Therefore S is not affinely rigid.

In case (iii), the curve C is defined by

$$
\begin{aligned}
F(X, Y, Z)= & *\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+1}-\left(Y-\alpha_{1} Z\right)^{m_{1}+1}}{X-Y}\right] Z \\
& +*\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+2}-\left(Y-\alpha_{1} Z\right)^{m_{1}+2}}{X-Y}\right] .
\end{aligned}
$$

Therefore, C is irreducible and its genus is 0 by Lemma 3 .
Similarly, by Lemmas 1 and $2, P(X)$ is a strong uniqueness polynomial if its zero set S is affinely rigid except for cases (i)-(iii) above and (iv) $l=l_{0}=3$ and $m_{1}=m_{2}=m_{3}=1$. We have checked that $P(X)$ is not a uniqueness polynomial in the cases (i)-(iii). For case (iv), we have $n=4$, and

$$
\frac{P\left(\alpha_{1}\right)}{P\left(\alpha_{\phi(1)}\right)}=\frac{P\left(\alpha_{2}\right)}{P\left(\alpha_{\phi(2)}\right)}=\frac{P\left(\alpha_{3}\right)}{P\left(\alpha_{\phi(3)}\right)}=w,
$$

where $\{\phi(1), \phi(2), \phi(3)\}=\{1,2,3\}$ and $\phi(i) \neq i, i=1,2,3$, and $w^{2}+w+1$ $=0$. One checks easily that the curve $C_{w}=\left[F_{w}(X, Y, Z)=0\right]$ is irreducible and has genus 0 . Therefore, $P(X)$ is not a strong uniqueness polynomial in this case. This completes the proof of the theorem.
4. Proof of Theorem 2. The situation is more complicated if $n=$ $\operatorname{deg} P(X)$ is divisible by $p>0$ due to the fact that the curves C and C_{c} may have singularities at infinity in this case. We are unable to find regular 1 -forms, but, as we shall show, there exist products of 1 -forms (i.e., sections of \mathcal{K}_{C}^{m} and $\mathcal{K}_{C_{c}}^{m}$) which are regular and non-trivial on C and on each C_{c}, $c \neq 0,1$. In the following we set

$$
\begin{equation*}
m=1+\sum_{i=1}^{l} m_{i} . \tag{4.0.1}
\end{equation*}
$$

If n is divisible by p then m is clearly the largest exponent in $P(X)$ not divisible by p.
4.1. On the curve $[F(X, Y, Z)=0]$. Let $F(X, Y, Z)$ and all the other notation be the same as previously defined.

Lemma 4. Suppose that $p>0$ and $p \mid n$. Let $\operatorname{gcd}(n, m)=d$ and ξ_{d}^{j}, $0 \leq j \leq d-1$, be the primitive roots of $X^{d}=1$. Then the only possible poles of the differential form

$$
\zeta:=\frac{W(Y, Z)}{Z\left(X-\alpha_{1} Z\right)^{m_{1}} \cdots\left(X-\alpha_{l} Z\right)^{m_{l}}}
$$

on $\pi^{-1}(C)$ are the pull-backs of $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{i}, 1\right), 1 \leq i \leq l$, and $\mathfrak{q}_{j}=\left(\xi_{d}^{j}, 1,0\right)$, $0 \leq j \leq d-1$.

Proof. Since $p \mid n$, we have

$$
\begin{equation*}
\frac{\partial F}{\partial Z}(X, Y, Z)=a_{m}(n-m) Z^{n-m-1}\left(\sum_{i=0}^{m-1} X^{m-1-i} Y^{i}+Z H_{m-2}\right) \tag{4.1.1}
\end{equation*}
$$

where H_{m-2} is a homogeneous polynomial of degree $m-2$ in X, Y, Z. Restricting $\partial F / \partial X$ and $\partial F / \partial Y$ to the curve $C=[F(X, Y, Z)=0]$ yields

$$
\begin{aligned}
\frac{\partial F}{\partial X}(X, Y, Z) & =\frac{m a_{m} Z^{n-m} \prod_{i=1}^{l}\left(X-\alpha_{i} Z\right)^{m_{i}}}{X-Y} \\
\frac{\partial F}{\partial Y}(X, Y, Z) & =\frac{-m a_{m} Z^{n-m} \prod_{i=1}^{l}\left(Y-\alpha_{i} Z\right)^{m_{i}}}{X-Y}
\end{aligned}
$$

Together with (4.1.1) and (3.1.5), we have

$$
\begin{align*}
\zeta & =\frac{W(Y, Z)}{Z\left(X-\alpha_{1} Z\right)^{m_{1}} \cdots\left(X-\alpha_{l} Z\right)^{m_{l}}} \tag{4.1.2}\\
& \equiv-\frac{W(Z, X)}{Z\left(Y-\alpha_{1} Z\right)^{m_{1}} \ldots\left(Y-\alpha_{l} Z\right)^{m_{l}}} \\
& \equiv-\frac{W(X, Y)}{(X-Y)\left(X^{m-1}+X^{m-2} Y+\cdots+Y^{m-1}+Z H_{m-2}\right)}
\end{align*}
$$

which is a rational 1-form on $\pi^{-1}(C)$. Similarly to the proof of Lemma 1, one can easily verify that the only possible poles of ζ on $\pi^{-1}(C)$ are the pull-backs of $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{i}, 1\right), 1 \leq i \leq l$, and $(x, 1,0)$ with $x^{n}=1$ and $x^{m}=1$. For the latter case, it is easy to see that $\xi_{d}^{j}, 0 \leq j \leq d-1$, are the only solutions satisfying $x^{n}=1$ and $x^{m}=1$. Therefore, the pull-backs of $\mathfrak{q}_{j}=\left(\xi_{d}^{j}, 1,0\right), 0 \leq j \leq d-1$, are the only possible poles of ζ along $\pi^{-1}(C) \cap[Z=0]$.

Suppose that $*\left(X-\alpha_{i} Z\right)^{v}$ appears in the expression of (3.0.2), and suppose that there is a term $*\left(X-\alpha_{i} Z\right)^{v_{1}}$ following it. Let $A_{i, v-1} Z^{n-v}$ be the sum of the terms in (3.1.1) up to degree $v-1$ in X and Y, i.e.,

$$
\begin{align*}
A_{i, v-1}= & *\left[\frac{\left(X-\alpha_{i} Z\right)^{\mu_{i}}-\left(Y-\alpha_{i} Z\right)^{\mu_{i}}}{X-Y}\right] Z^{v-\mu_{i}}+\cdots \tag{4.1.3}\\
& +*\left[\frac{\left(X-\alpha_{i} Z\right)^{v}-\left(Y-\alpha_{i} Z\right)^{v}}{X-Y}\right]
\end{align*}
$$

We have the following estimates on its order at \mathfrak{p}_{i}, which is a point of C by (3.1.1), and \mathfrak{q}_{j}.

Lemma 5. We have
(i) $\operatorname{ord}_{\mathfrak{p}_{i, \varphi}}\left(A_{i, v-1}\right) \geq v \operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(X-\alpha_{i} Z\right)$;
(ii) $\operatorname{ord}_{\mathfrak{p}_{r}, \varphi}\left(A_{i, m-1}\right) \geq(p-1) \operatorname{ord}_{\mathfrak{p}_{r}, \varphi}\left(X-\alpha_{r} Z\right)$ for $1 \leq r \leq l$;
(iii) $p \mid-m \operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z+\operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left((X-Y) A_{i, m-1}\right)$ for $0 \leq j \leq d-1$.

Proof. We first note that from (3.1.1), $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{i}, 1\right), i=1, \ldots, l$, and $\mathfrak{q}_{j}, 0 \leq j \leq d-1$, are points of C. Moreover, (3.1.1) implies

$$
\operatorname{ord}_{\mathfrak{p}_{i, \varphi}}\left(A_{i, v-1}\right) \geq\left(v_{1}-1\right) \operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(X-\alpha_{i} Z\right) \geq v \operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(X-\alpha_{i} Z\right)
$$

This proves (i).
Since m is the largest exponent in $P(X)$ not divisible by p and n is divisible by p, we may write

$$
F(X, Y, Z)=A_{i, m-1} Z^{n-m}+(X-Y)^{p-1} H(X, Y, Z)
$$

where $H(X, Y, Z)$ is the homogeneous polynomial of degree $n-p$. Since $\mathfrak{p}_{r}=\left(\alpha_{r}, \alpha_{r}, 1\right) \in C$, this equation implies that $\mathfrak{p}_{r} \in\left[A_{i, m-1}(X, Y, Z)=0\right]$ and

$$
\operatorname{ord}_{\mathfrak{p}_{r}, \varphi}\left(A_{i, m-1}\right) \geq(p-1) \operatorname{ord}_{\mathfrak{p}_{r}, \varphi}(X-Y) \geq(p-1) \operatorname{ord}_{\mathfrak{p}_{r}, \varphi}\left(X-\alpha_{r} Z\right)
$$

This gives (ii).
Since $(X-Y) F(X, Y, Z)-(X-Y) A_{i, m-1} Z^{n-m}$ is a p th power, for $\mathfrak{q}_{j} \in C, j=0, \ldots, d-1$, we have

$$
p \mid(n-m) \operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z+\operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left((X-Y) A_{i, m-1}\right)
$$

which is equivalent to

$$
p \mid-m \operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z+\operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left((X-Y) A_{i, m-1}\right)
$$

since n is divisible by p. This shows (iii).
Lemma 6. Let $P(X)$ be a polynomial of degree n satisfying Hypothesis I. Let m_{i} be arranged in non-increasing order. Assume that $p>0$ and $p \mid n$. If the curve C has no linear components then any irreducible component of C admits a non-trivial regular product of 1-forms, i.e., elements of $H^{0}\left(C, \operatorname{sym}^{i} \mathcal{K}_{C}\right)$, in the following cases:
(i) $l \geq 3 ; l=2$ and $m_{2} \geq 2 ; l=2$ and $m_{2}=1$, and $\mu_{1} \leq m_{1}$; or $l=1$ and $\mu_{1} \leq m_{1}-1$;
(ii) $l=2, m_{2}=1, \mu_{1}=m_{1}+1$ and either
(a) $\left(m_{1}+2\right) \nmid n$, or
(b) $\left(m_{1}+2\right) \mid n$ and $A_{1, m_{1}+1}$ is not a factor of $F(X, Y, Z)$;
(iii) $l=1$ and $\mu_{1}=m_{1}$ and either
(a) $\left(m_{1}+1\right) \nmid n$, or
(b) $\left(m_{1}+1\right) \mid n, p \geq 5$, and $A_{1, m_{1}}$ is a factor of $F(X, Y, Z)$;
(iv) $l=1, \mu_{1}=m_{1}+1$, and either
(a) $u=2, p \geq 5$, and $A_{1, m_{1}+1}$ is not a factor of $F(X, Y, Z)$, or
(b) $u \geq 3$, and $m_{1} \geq 2$, except when $\left(m_{1}, p\right)=(2,2)$ or $\left(u, m_{1}, p\right)=$ $(3,2,5),(3,3,3)$, where u is defined by the expansion $P(X)=$ $P\left(\alpha_{1}\right)+*\left(X-\alpha_{1}\right)^{m_{1}+1}+*\left(X-\alpha_{1}\right)^{m_{1}+u}+$ higher order terms.

Proof. Part (i) is already covered by Lemma 1. The proof for the other cases is more involved as regards the verification of regularity of products of 1 -forms; to shorten the proof we will omit some arguments that have been done in the proof of Lemma 1.

Let $m=1+\sum_{i=1}^{l} m_{i}$. For case (ii), we have $m=m_{1}+2, \mu_{1}=m_{1}+1$, $\mu_{2}=2$, and hence $p \nmid m_{1}+2, p \nmid m_{1}+1$, and $p \neq 2$. Moreover,

$$
\begin{aligned}
A_{1, m_{1}+1}= & * Z\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+1}-\left(Y-\alpha_{1} Z\right)^{m_{1}+1}}{X-Y}\right] \\
& +*\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+2}-\left(Y-\alpha_{1} Z\right)^{m_{1}+2}}{X-Y}\right],
\end{aligned}
$$

which defines an irreducible curve of genus 0 by Lemma 3 . Let $e=3$ if the degree of the non-vanishing term after the degree $m_{1}+2$ in the expression of (3.0.2) is $m_{1}+3$, and $e=4$ otherwise. Take

$$
\omega=\left(\frac{W(Y, Z)}{Z\left(X-\alpha_{1} Z\right)^{m_{1}}\left(X-\alpha_{2} Z\right)}\right)^{m_{1}+e}\left((X-Y) A_{1, m_{1}+1} Z^{e-2}\right)^{m_{1}}
$$

which is well defined on \mathbf{P}^{2}. On the curve C, ω has possible poles only at $\mathfrak{p}_{j}=\left(\alpha_{j}, \alpha_{j}, 1\right), j=1,2$, and $\mathfrak{q}_{j}=\left(\xi_{d}^{j}, 1,0\right), 0 \leq j \leq d-1$, with $d=\operatorname{gcd}\left(n, m_{1}+2\right)$ and ξ_{d} a primitive root of $X^{d}=1$. It is clear that ω is regular at \mathfrak{p}_{1} since Lemma 5 (i) implies that

$$
\operatorname{ord}_{\mathfrak{p}_{1, \varphi}} A_{1, m_{1}+1} \geq\left(m_{1}+e-1\right) \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right) .
$$

By Lemma $5(\mathrm{ii}), \operatorname{ord}_{\mathfrak{p}_{2}, \varphi} A_{1, m_{1}+1} \geq(p-1) \operatorname{ord}_{\mathfrak{p}_{2}, \varphi}\left(X-\alpha_{2} Z\right)$, hence

$$
\operatorname{ord}_{\mathfrak{p}_{2}, \varphi} \omega \geq\left(m_{1} p-m_{1}-e\right) \operatorname{ord}_{\mathfrak{p}_{2}, \varphi}\left(X-\alpha_{2} Z\right) \geq m_{1}(p-1)-4 \geq 0
$$

as $p \geq 3$ or $p=3$ and $m_{1} \geq 2$. We note that if $p=3$, then $m_{1} \neq 1$ since $p \nmid m_{1}+2$. Therefore, this shows that ω is regular at \mathfrak{p}_{2}. For the points at infinity $\mathfrak{q}_{j}, j=0, \ldots, d-1$, observe that

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left(A_{1, m_{1}+1}(X-Y)\right)+\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z \geq 3, \tag{4.1.4}
\end{equation*}
$$

for if $\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} A_{1, m_{1}+1}(X-Y)=\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z=1$ then Lemma 5(iii) implies $m-1=m_{1}+1$ is divisible by p, which is impossible. Similarly if $m_{1}=1$ and $\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z=1$ then Lemma 5(iii) implies that $-3+\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} A_{1, m_{1}+1}(X-Y)$ is divisible by p, hence $\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} A_{1, m_{1}+1}(X-Y) \geq 3$. Therefore, we get

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left(A_{1, m_{1}+1}(X-Y)\right)+2 \operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z \geq 5 \quad \text { if } m_{1}=1 \tag{4.1.5}
\end{equation*}
$$

Moreover, if $m_{1}=1$ then we may take $e=4$ since the degree of the nonvanishing term following the degree 3 term cannot be 4 ; otherwise p would be 2 . In this case we get

$$
\begin{aligned}
\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} \omega & \geq-\left(m_{1}+e\right)+m_{1} \operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left(A_{1, m_{1}+1}(X-Y)\right)+m_{1}(e-2) \operatorname{ord}_{\mathfrak{q}_{j, \varphi}} Z \\
& \geq m_{1}\left[\operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left(A_{1, m_{1}+1}(X-Y)\right)+(e-2) \operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z-1\right]-e
\end{aligned}
$$

By (4.1.4) this implies that $\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} \omega \geq 2 m_{1}-4$, which is non-negative if $m_{1} \geq 2$. If $m_{1}=1$, then $e=4$ and the preceding inequality implies that

$$
\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} \omega \geq \operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left(A_{1, m_{1}+1}(X-Y)\right)+2 \operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z-5
$$

which is also non-negative by (4.1.5). This concludes the proof that ω is regular on C. We also need to check if ω is non-trivial on every component of C. For this, we will have to check if $\left[A_{1, m_{1}+1}=0\right]$ is a component of C since it is an irreducible curve of genus 0 . Suppose that $\left(m_{1}+2\right) \nmid n$ and $A_{1, m_{1}+1} \mid F(X, Y, Z)$. Then $(X-Y) A_{1, m_{1}+1} \mid(X-Y) F(X, Y, Z)$ and we see, by evaluating at $Z=0$, that $\left(X^{m_{1}+2}-Y^{m_{1}+2}\right) \mid\left(X^{n}-Y^{n}\right)$. Let ξ be a primitive root of $X^{m_{1}+2}=1$ in \mathbf{K}. If $\left(X^{m_{1}+2}-Y^{m_{1}+2}\right) \mid\left(X^{n}-Y^{n}\right)$ then $(\xi, 1)$ is also a solution of $X^{n}-Y^{n}$ and so $1=\xi^{n}$, which is impossible if $\left(m_{1}+2\right) \nmid n$. The proof breaks down if $\left(m_{1}+2\right) \mid n$ so it is necessary to assume, in this case, that $A_{1, m_{1}+1}$ is not a factor of $F(X, Y, Z)$.

For (iii), we have $l=1$ and $\mu_{1}=m_{1}=m-1$. Then m_{1} is divisible by p and can be written as $m_{1}=p^{a} b$ with $a, b \geq 1$. If $\operatorname{gcd}(n, m)=1$, then

$$
\omega:=\frac{W(Y, Z)(X-Y)^{p^{a}-1}\left(\left(X-\alpha_{1} Z\right)^{b-1}+\cdots+\left(Y-\alpha_{1} Z\right)^{b-1}\right)^{p^{a}}}{Z\left(X-\alpha_{1} Z\right)^{m_{1}}}
$$

is regular and non-trivial on any component of C if it has no linear components.

If $1<\operatorname{gcd}(n, m)=d<m$, we may write $m=m_{0} d$ with $m_{0} \geq 2$ and $d \geq 2$. Then $m-d-2=\left(m_{0}-1\right) d-2 \geq 0$. Let

$$
\omega:=\left(\frac{W(Y, Z)\left(X^{d}-Y^{d}\right)}{Z\left(X-\alpha_{1} Z\right)^{m_{1}}}\right)^{m_{1}} A_{1, m_{1}}^{m_{1}-d-1}
$$

Since $\mu_{1}=m_{1}$,

$$
\begin{aligned}
A_{1, m_{1}}= & * Z\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}}-\left(Y-\alpha_{1} Z\right)^{m_{1}}}{X-Y}\right] \\
& +*\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+1}-\left(Y-\alpha_{1} Z\right)^{m_{1}+1}}{X-Y}\right]
\end{aligned}
$$

which again defines an irreducible curve of genus 0 . Similarly, ω has only a possible pole at \mathfrak{p}_{1}. Since m_{1} is divisible by p, the degree of the term appearing after $\left(X-\alpha_{1}\right)^{m_{1}+1}$ in (3.0.2) is at least $m_{1}+p$. Note that such a term must exist since $p \nmid m$ and $p \mid n$. By Lemma 5 (i) we see that

$$
\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} A_{1, m_{1}} \geq\left(m_{1}+p\right) \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)
$$

thus

$$
\begin{align*}
\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} \omega & \geq\left[\left(m_{1}-d-1\right)\left(m_{1}+p\right)-m_{1}\left(m_{1}-d\right)\right] \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right) \tag{4.1.6}\\
& =\left[d\left(p m_{0}-m_{0}-p\right)-2 p+1\right] \operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(X-\alpha_{1} Z\right)
\end{align*}
$$

If $p=2$ then since $p \nmid m_{1}+1$ we have $m_{0} \geq 3$ and $d \geq 3$. Thus, by (4.1.6), $\operatorname{ord}_{\mathfrak{p}_{1, \varphi}} \omega$ is non-negative. If $m_{0} \geq 3$ and $p \geq 3$ then, by (4.1.6), $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} \omega \geq$ $2(2 p-3)-2 p+1=2 p-5$, which is positive. It remains to check the case $m_{0}=2$ and $p \geq 3$. Since $p \mid m-1$, if $m_{0}=2$ and $p \geq 5$ then $d \geq 3$, and (4.1.6) implies that $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} \omega$ is positive. Similarly, if $m_{0}=2$ and $p=3$, then d can only be 2 or greater than 5 . The latter case still implies that $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} \omega$ is non-negative. Thus, the only remaining case to be checked is $m_{0}=2, p=3$ and $d=2$. In this case we have

$$
\omega=\frac{W(Y, Z)\left(X^{2}-Y^{2}\right)}{Z\left(X-\alpha_{1} Z\right)^{3}}
$$

The expansion of $F(X, Y, Z)$ at $\mathfrak{p}_{1}=\left(\alpha_{1}, \alpha_{1}, 1\right)$ is given by

$$
(X-Y)^{2}+ \sum_{i=0}^{3}\left(X-\alpha_{1} Z\right)^{3-i}\left(Y-\alpha_{1} Z\right)^{i}+\text { higher order terms }
$$

which implies that

$$
2 \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}(X-Y)=3 \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)
$$

This means that $\operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(X-\alpha_{1} Z\right) \geq 2$ and that

$$
\begin{aligned}
\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} \omega & \geq \operatorname{ord}_{\mathfrak{p}_{1, \varphi}}(X+Y)+\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}(X-Y)-2 \operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(X-\alpha_{1} Z\right)-1 \\
& \geq \frac{1}{2} \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)-1 \geq 0
\end{aligned}
$$

Thus regularity is established in every case. Since $\left[A_{1, m_{1}}=0\right]$ is an irreducible curve of genus 0 , we conclude that ω is non-trivial on any component of C provided that $A_{1, m_{1}}$ is not a factor of $F(X, Y, Z)$. Moreover, as $m=m_{1}+1$ and $A_{1, m_{1}}=A_{1, m-1}$, we conclude as before that $A_{1, m-1}$ is not a factor of $F(X, Y, Z)$ if $m \nmid n$.

For (iii.b), we have $m \mid n$ and $\mu_{1}=m_{1}=m-1$. Assume that $p \geq 5$. Let $m_{1}+u\left(\geq m_{1}+2\right)$ be the degree of the non-vanishing term next to $\left(X-\alpha_{1}\right)^{m}$ in the expansion of $P(X)$ in (3.0.2). Since $p \mid m_{1}$ and $p \geq 5$, we
have $p \mid u, m_{1} \geq 5$ and $u \geq 5$. Then

$$
\omega:=\left(\frac{W(Y, Z)}{Z\left(X-\alpha_{1} Z\right)^{m_{1}}}\right)^{m_{1}+u}\left(A_{1, m_{1}}(X-Y)\right)^{m_{1}} Z^{(u-2)\left(m_{1}-1\right)-2}
$$

is regular at \mathfrak{p}_{1}. This follows easily from the inequalities

$$
\begin{aligned}
& (u-2)\left(m_{1}-1\right)-2 \geq 0 \\
& \operatorname{ord}_{\mathfrak{p}_{1}, \varphi} A_{1, m_{1}} \geq\left(m_{1}+u-1\right) \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right) \\
& \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}(X-Y) \geq \operatorname{ord}_{\mathfrak{p}_{1, \varphi}}\left(X-\alpha_{1} Z\right)
\end{aligned}
$$

At the points at infinity $\mathfrak{q}_{j}, j=0,1, \ldots, m-1$, we have (as $u \geq 5$ and $m_{1} \geq 5$)

$$
\begin{aligned}
\operatorname{ord}_{\mathfrak{q}_{j}, \varphi} \omega \geq & \left((u-2)\left(m_{1}-1\right)-2\right) \operatorname{ord}_{\mathfrak{q}_{j}, \varphi} Z \\
& +m_{1} \operatorname{ord}_{\mathfrak{q}_{j}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)-m_{1}-u \\
\geq & (u-2) m_{1}-u-u=(u-2)\left(m_{1}-2\right)-4 \geq 0
\end{aligned}
$$

Since $\left[A_{1, m_{1}}=0\right]$ is an irreducible curve of genus $0, \omega$ is regular and nontrivial on any component of C only if $A_{1, m_{1}}$ is not a factor of $F(X, Y, Z)$.

For (iv.a), we have $l=1, \mu_{1}=m_{1}+1=m$ and $u=2$, where $m_{1}+u$ $\left(\geq m_{1}+2\right)$ is the degree of the non-vanishing term following $\left(X-\alpha_{1}\right)^{m}$ in the expansion of $P(X)$ in (3.0.2). Similarly, in this case

$$
\begin{aligned}
A_{1, m_{1}+1}= & * Z\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+1}-\left(Y-\alpha_{1} Z\right)^{m_{1}+1}}{X-Y}\right] \\
& +*\left[\frac{\left(X-\alpha_{1} Z\right)^{m_{1}+2}-\left(Y-\alpha_{1} Z\right)^{m_{1}+2}}{X-Y}\right]
\end{aligned}
$$

which gives an irreducible curve of genus 0 . If $n=m_{1}+2$ then $F(X, Y, Z)=$ $A_{1, m_{1}+1}$. Hence the curve C is irreducible and has genus 0 . If $n \geq m_{1}+3$ then there is a non-vanishing term following $\left(X-\alpha_{1}\right)^{m_{1}+2}$ in the expansion of $P(X)$ in (3.0.2) with degree $v>m_{1}+2$. Since $p \mid m_{1}+2$ and $p \mid v$, we have $v \geq m_{1}+2+p$ and $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} A_{1, m_{1}+1} \geq\left(m_{1}+1+p\right) \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)$ by Lemma 5(i). Observe that the condition $p \mid m_{1}+2$ implies that $m_{1} \geq p-2$, hence $m_{1} \geq 3$ and $m_{1}-2 \geq p-4 \geq 1$ if $p \geq 5$. From this, it is easy to see that $\left(m_{1}-2\right)(p-2) \geq 6$ if $p \geq 5$ and $\left(p, m_{1}\right) \neq(5,3)$. Take

$$
\omega:=\left(\frac{W(Y, Z)}{\left(X-\alpha_{1} Z\right)^{m_{1}}}\right)^{m_{1}+1} A_{1, m_{1}+1}^{m_{1}-2}
$$

Then

$$
\begin{aligned}
\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} \omega & \geq\left[\left(m_{1}+1+p\right)\left(m_{1}-2\right)-m_{1}\left(m_{1}+1\right)\right] \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right) \\
& =\left[\left(m_{1}-2\right)(p-2)-6\right] \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)
\end{aligned}
$$

is non-negative if $p \geq 5$ and $\left(p, m_{1}\right) \neq(5,3)$. Therefore, ω is regular and non-trivial on any component of C if $A_{1, m_{1}+1}$ is not factor of C. For the
remaining case, i.e., $\left(p, m_{1}\right)=(5,3)$, we take

$$
\omega:=\left(\frac{W(Y, Z)}{Z\left(X-\alpha_{1} Z\right)^{3}}\right)^{5} A_{1,4}(X-Y)\left(\left(X-\alpha_{1} Z\right)^{4}-\left(Y-\alpha_{1} Z\right)^{4}\right) Z,
$$

which is well defined in \mathbf{P}^{2} and can have poles only at \mathfrak{p}_{1} and at \mathfrak{q}_{i}, the points at infinity. Let \mathfrak{q} be one of the points \mathfrak{q}_{i}. By Lemma $5(\mathrm{i})$, we have

$$
5 \mid \operatorname{ord}_{\mathfrak{q}, \varphi} Z+\operatorname{ord}_{\mathfrak{q}, \varphi}\left(\left(X-\alpha_{1} Z\right)^{4}-\left(Y-\alpha_{1} Z\right)^{4}\right),
$$

and hence $\operatorname{ord}_{\mathfrak{q}} Z+\operatorname{ord}_{\mathfrak{q}, \varphi}\left(\left(X-\alpha_{1} Z\right)^{4}-\left(Y-\alpha_{1} Z\right)^{4}\right) \geq 5$. Therefore, ω is regular at the points at infinity. At \mathfrak{p}_{1}, we see from the expansion of $F(X, Y, Z)$ in (3.1.1) that

$$
\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(\left(X-\alpha_{1} Z\right)^{4}-\left(Y-\alpha_{1} Z\right)^{4}\right) \geq 5 \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)
$$

and $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(A_{1,4}(X-Y)\right) \geq 10 \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)$, hence ω is also regular at \mathfrak{p}_{1}.

For (iv.b), we have $l=1, \mu_{1}=m_{1}+1=m$, and $u \geq 3$. We note that in this case $p \mid m_{1}+u$ and we need to exclude the following cases: $m_{1}=2$ and $p=2 ;\left(u, m_{1}\right)=(3,2)$, which gives $p=5$; and $\left(u, m_{1}\right)=(3,3)$, which gives $p=3$. The first two conditions and $p \mid m_{1}+u$ imply that $u \geq 5$ if $m_{1}=2$. Take

$$
\omega:=\left(\frac{W(Y, Z)}{Z\left(X-\alpha_{1} Z\right)^{m_{1}}}\right)^{m_{1}+u}\left(A_{1, m_{1}}(X-Y)\right)^{m_{1}} Z^{(u-2)\left(m_{1}-1\right)-2},
$$

where $A_{1, m_{1}}(X-Y)=\left(X-\alpha_{1} Z\right)^{m_{1}+1}-\left(Y-\alpha_{1} Z\right)^{m_{1}+1}$. The assumption implies that $m_{1} \geq 3$ or $m_{1}=2$ and $u \geq 5$, hence $(u-2)\left(m_{1}-1\right)-2 \geq 0$. Since $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi} A_{1, m_{1}} \geq\left(m_{1}+u-1\right) \operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)$ and $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}(X-Y) \geq$ $\operatorname{ord}_{\mathfrak{p}_{1}, \varphi}\left(X-\alpha_{1} Z\right)$, it is clear that ω is regular at \mathfrak{p}_{1}. Let \mathfrak{q} be one of the poles at infinity. Then

$$
\begin{align*}
\operatorname{ord}_{\mathfrak{q}, \varphi} \omega \geq & \left((u-2) m_{1}-u\right) \operatorname{ord}_{\mathfrak{q}, \varphi} Z+m_{1} \operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right) \tag{4.1.7}\\
& -m_{1}-u \\
\geq & (u-2) m_{1}-u-u=(u-2)\left(m_{1}-2\right)-4
\end{align*}
$$

which is non-negative except when $m_{1}=2$ or $\left(u, m_{1}\right)=(3,3),(3,4),(3,5)$, $(4,3),(5,3)$. Since $p \mid u+m_{1}$ and $p \nmid m_{1}+1,\left(u, m_{1}\right)$ cannot be (5,3) nor $(3,5)$. Similarly, if $\left(u, m_{1}\right)=(3,3)$ then $p=3$. This case is ruled out by our assumption. We are left with the cases: $\left(u, m_{1}\right)=(3,4),(4,3)$, or $m_{1}=2$. Since $p \mid m_{1}+u$, the first two cases occur only when $p=7$, and $u \geq p-2$ if $m_{1}=2$. Moreover, since $\left(m_{1}, p\right) \neq(2,5)$ we must have $p \geq 7$ if $m_{1}=2$. The inequality (4.1.7) becomes

$$
\begin{array}{ll}
\operatorname{ord}_{\mathfrak{q}, \varphi} Z+4 \operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)-7 & \text { if }\left(u, m_{1}\right)=(3,4), \tag{4.1.8}\\
2 \operatorname{rd}_{\mathfrak{q}, \varphi} Z+3 \operatorname{rd}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)-7 & \text { if }\left(u, m_{1}\right)=(4,3), \\
(p-6)\left(\operatorname{ord}_{\mathfrak{q}, \varphi} Z-1\right)+2 \operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)-6 & \text { if } m_{1}=2,
\end{array}
$$

respectively. On the other hand, by Lemma 5 (iii) we have (4.1.11) $\quad 7 \mid \operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)-5 \operatorname{ord}_{\mathfrak{q}, \varphi} Z \quad$ if $\left(u, m_{1}\right)=(3,4)$,
(4.1.12) $\quad 7 \mid \operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)-4 \operatorname{ord}_{\mathfrak{q}, \varphi} Z \quad$ if $\left(u, m_{1}\right)=(4,3)$,
(4.1.13) $\quad p \mid \operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)-3 \operatorname{ord}_{\mathfrak{q}, \varphi} Z \quad$ if $m_{1}=2$.

For $\operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right) \geq 2,(4.1 .8)$ is non-negative. If $\operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)$ $=1$ then $\operatorname{ord}_{\mathfrak{q}, \varphi} Z \geq 3$ by (4.1.11), hence (4.1.8) is non-negative. Similarly, if $\operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right) \geq 2$ then (4.1.9) is non-negative; if ord $\mathfrak{q}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)$ $=1$ then $\operatorname{ord}_{\mathfrak{q}, \varphi} Z \geq 2$ by (4.1.12), hence (4.1.9) is non-negative. If $p>7$ and $m_{1}=2$ it is easily checked that (4.1.10) is non-negative. If $p=7$, then (4.1.13) implies that $\operatorname{ord}_{\mathfrak{q}, \varphi} Z \geq 5$ if $\operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)=1$, and $\operatorname{ord}_{\mathfrak{q}, \varphi} Z \geq 3$ if $\operatorname{ord}_{\mathfrak{q}, \varphi}\left(A_{1, m_{1}}(X-Y)\right)=2$. Again we conclude that (4.1.10) is non-negative. Since the curve C has no linear factors, ω is regular and non-trivial on any component of C. This concludes the proof of the lemma. -
4.2. On the curve $\left[F_{c}(X, Y, Z)=0\right], c \neq 0,1$. We shall use the notation of Section 3, and recall that

$$
P(X)-P\left(\alpha_{i}\right)=\sum_{j=\mu_{i}}^{n} b_{i, j}\left(X-\alpha_{i}\right)^{j} .
$$

If $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{\phi(i)}, 1\right) \in C_{c}$, then we may write

$$
\begin{align*}
F_{c}(X, Y, Z)= & \sum_{j=\mu_{i}}^{n} b_{i, j} Z^{n-j}\left(X-\alpha_{i} Z\right)^{j} \tag{4.2.1}\\
& -c \sum_{j=\mu_{\phi(i)}}^{n} b_{\phi(i), j} Z^{n-j}\left(Y-\alpha_{\phi(i)} Z\right)^{j}
\end{align*}
$$

Denote by $B_{i, m}$ the following sum:

$$
\begin{aligned}
B_{i, m}(X, Y, Z)= & \sum_{j=\mu_{i}}^{m} b_{i, j} Z^{m-j}\left(X-\alpha_{i} Z\right)^{j} \\
& -c \sum_{j=\mu_{\phi(i)}}^{m} b_{\phi(i), j} Z^{m-j}\left(Y-\alpha_{\phi(i)} Z\right)^{j}
\end{aligned}
$$

If $p \mid n$, then $m=1+\sum_{i=1}^{l} m_{i}<n$, and so there exists an integer $u_{i}>m$ such that $b_{i, u_{i}} \neq 0$ or $b_{\phi(i), u_{i}} \neq 0$, and $b_{i, j}=b_{\phi(i), j}=0$ for $m<j<u_{i}$. In other words, u_{i} is the degree in X and Y of the non-vanishing terms in (4.2.1) following $B_{i, m}$. Then, at \mathfrak{p}_{i},

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{p}_{i}, \varphi} B_{i, m} \geq u_{i} \min \left\{\operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(X-\alpha_{i} Z\right), \operatorname{ord}_{\mathfrak{p}_{i}, \varphi}\left(Y-\alpha_{\phi(i)} Z\right)\right\} \tag{4.2.2}
\end{equation*}
$$

and at $\mathfrak{q}_{i}=\left(x_{i}, 1,0\right)$ such that $x_{i}^{m}=c$ and $x_{i}^{n}=c$, we have

$$
\begin{equation*}
p \mid \operatorname{ord}_{\mathfrak{q}_{i}, \varphi} B_{i, m}-m \operatorname{ord}_{\mathfrak{q}_{i}, \varphi} Z \tag{4.2.3}
\end{equation*}
$$

Lemma 7. Let P be a polynomial of degree n satisfying Hypothesis I . Assume that $p>0$ and $p \mid n$. If the curve C_{c} has no linear components, then each component of C_{c} admits a non-trivial product of 1-forms in the following cases:
(i) $l \geq 4 ; l=2,3$ and $\max \left\{m_{i}\right\} \geq 2$; or $l=1$ and $m_{1} \geq 2$;
(ii) $l=3, m_{1}=m_{2}=m_{3}=1$, and $B_{1,4}$ is not a factor of $F_{c}(X, Y, Z)$ if $l_{0}=l=3,3|n-1,4| n$, and $B_{1,4}=B_{2,4}=B_{3,4}$;
(iii) $l=2, m_{1}=m_{2}=1, l_{0}=1$, and $B_{i, 3}$ is not a factor of $F_{c}(X, Y, Z)$ if $3 \mid n$ and $\left(\alpha_{i}, \alpha_{\phi(i)}, 1\right) \in C_{c}$;
(iv) $l=2, m_{1}=m_{2}=1, l_{0}=2$ and $B_{1,3}=B_{2,3}$, and $B_{1,3} /(X+Y-$ $\left.\left(\alpha_{1}+\alpha_{2}\right) Z\right)$ is not a factor of $F_{c}(X, Y, Z)$ if n is odd, and $3 \mid n$.

Remark. In (ii), we let $\widetilde{P}_{1}(X)=P_{0}(X)-\left(P_{0}\left(\alpha_{1}\right)-c P_{0}\left(\alpha_{\phi(1)}\right)\right) /(1-c)$, where $P(X)=\sum_{i=0}^{n} a_{i} X^{i}$ and $P_{0}(X)=\sum_{i=0}^{4} a_{i} X^{i}$. Then the sum $B_{1,4}$ is the homogenization of $\widetilde{P}_{1}(X)-c \widetilde{P}_{1}(Y)$, and $B_{1,4}=B_{2,4}=B_{3,4}$ is equivalent to the conditions that $\widetilde{P}_{1}\left(\alpha_{i}\right)=c \widetilde{P}_{1}\left(\alpha_{\phi(i)}\right)$ for $i=1,2,3$. These statements will be verified in the proof of the lemma.

Proof of Lemma 7. From Lemma 2, we already have (i), and (ii) in the case $l_{0}<3$. It remains to consider the cases (ii) for $l_{0}=3$, (iii), and (iv). We have

$$
\begin{aligned}
& \frac{\partial F_{c}}{\partial X}(X, Y, Z)=m a_{m} Z^{n-m} \prod_{i=1}^{l}\left(X-\alpha_{i} Z\right)^{m_{i}} \\
& \frac{\partial F_{c}}{\partial Y}(X, Y, Z)=-m c a_{m} Z^{n-m} \prod_{i=1}^{l}\left(Y-\alpha_{i} Z\right)^{m_{i}} \\
& \frac{\partial F_{c}}{\partial Z}(X, Y, Z)=(n-m) a_{m} Z^{n-m-1}\left(X^{m}-c Y^{m}+Z G_{m-1}\right)
\end{aligned}
$$

where G_{m-1} is homogeneous polynomial of degree $m-1$. From these we get

$$
\frac{W(Y, Z)}{Z \prod_{i=1}^{l}\left(X-\alpha_{i} Z\right)^{m_{i}}} \equiv \frac{W(Z, X)}{-c Z \prod_{i=1}^{l}\left(Y-\alpha_{i} Z\right)^{m_{i}}} \equiv \frac{W(X, Y)}{-\left(X^{m}-c Y^{m}+Z G_{m-1}\right)}
$$

This 1-form will be denoted by θ. We see that on the curve C_{c}, a point at infinity $\mathfrak{q}_{i}=\left(x_{i}, 1,0\right)$ is a pole of θ only if $x_{i}^{m}=c$ and $x_{i}^{n}=c$.

We first consider the case $l=l_{0}=3$ and $m_{1}=m_{2}=m_{3}=1$. We have $m=4$ and $p \neq 2,3$ in this case. We note that if $p=3$ and $l_{0}=l=3$ then $c=1$, which is impossible. Moreover, the constant c is a solution of the equation $w^{2}+w+1=0$ and the only possible poles of θ are $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{\phi(i)}, 1\right)$, $i=1,2,3$, and $\mathfrak{q}_{j}=\left(x_{j}, 1,0\right)$ satisfying $x_{j}^{4}=w$ and $x_{j}^{n}=w$. The solutions of $X^{4}=w$ are $w,-w, w \xi,-w \xi$, where ξ is a primitive root of $X^{4}=1$. If $3 \nmid n-1$, none of these can be a solution of $X^{n}=w$, which implies that θ has
no pole at infinity; if $3 \mid n-1$ and $2 \nmid n$, i.e., $\operatorname{gcd}(n, m)=1$, then $(w, 1,0)$ is the only possible pole of θ at infinity; if $3|n-1,2| n$ and $4 \nmid n$, then $(w, 1,0)$ and $(-w, 1,0)$ are the only two possible poles of θ at infinity; if $3 \mid n-1$ and $4 \mid n$, then it has four possible poles at infinity. For the first two cases, i.e., $3 \nmid n-1$ or $3 \mid n-1$ and $2 \nmid n$, we may take

$$
\omega=\frac{W(Y, Z) L_{12} L_{30}}{Z\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)\left(X-\alpha_{3} Z\right)}
$$

where L_{30} is the line passing through $\left(\alpha_{3}, \alpha_{\phi(3)}, 1\right)$ and $(w, 1,0)$. Similarly, ω is regular and is non-trivial on each component of C_{c} if C_{c} has no linear factor. For the other two cases, i.e., $3 \mid n-1$, and $2 \mid n$, we take

$$
\omega=\left(\frac{W(Y, Z) L_{12}}{Z\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)\left(X-\alpha_{3} Z\right)}\right)^{p} B_{3,4} Z^{p-4}
$$

which is regular at \mathfrak{p}_{1} and \mathfrak{p}_{2}. Since $m_{3}=m_{\phi(3)}=1$, we have $\operatorname{ord}_{\mathfrak{p}_{3}}\left(X-\alpha_{3}\right)=$ $\operatorname{ord}_{\mathfrak{p}_{3}}\left(Y-\alpha_{\phi(3)}\right)$. Hence inequality (4.2.2) and $u_{i} \geq p$ imply that ω is regular at \mathfrak{p}_{3}. At the point at infinity $\mathfrak{q}=(w, 1,0)$,

$$
\begin{equation*}
\operatorname{ord}_{\mathfrak{q}, \varphi} \omega \geq \operatorname{ord}_{\mathfrak{q}, \varphi} B_{3,4}+(p-4) \operatorname{ord}_{\mathfrak{q}, \varphi} Z-p \tag{4.2.4}
\end{equation*}
$$

By (4.2.3), $\operatorname{ord}_{\mathfrak{q}, \varphi} B_{3,4}-4 \operatorname{ord}_{\mathfrak{q}, \varphi} Z$ is divisible by p. Moreover, $\operatorname{ord}_{\mathfrak{q}, \varphi} B_{3,4}+$ $(p-4) \operatorname{ord}_{\mathfrak{q}, \varphi} Z$ is greater than zero since $p \geq 5$. Hence, it is greater than p and this implies that the integer in (4.2.4) is not negative. Therefore ω is regular on C_{c}. To check that ω is non-trivial on each component of C_{c} we analyze further the sum $B_{i, 4}, i=1,2,3$. We write $P(X)=P_{0}(X)+Q(X)$, where $P(X)=\sum_{j=0}^{n} a_{j} X^{j}, P_{0}(X)=\sum_{j=0}^{4} a_{j} X^{j}$ and $Q(X)=\sum_{j=5}^{n} a_{j} X^{j}$. Then $P(X)-P\left(\alpha_{i}\right)=P_{0}(X)-P_{0}\left(\alpha_{i}\right)+Q(X)-Q\left(\alpha_{i}\right)$. The sum $B_{i, 4}$ is the homogenization of $P_{0}(X)-P_{0}\left(\alpha_{i}\right)-c\left(P_{0}(Y)-P_{0}\left(\alpha_{\phi(i)}\right)\right)$, since $p \geq 5$ and the degree of each term in $Q(X)$ is divisible by p. On the other hand, let

$$
\widetilde{P}_{i}(X):=P_{0}(X)-\frac{P_{0}\left(\alpha_{i}\right)-c P_{0}\left(\alpha_{\phi(i)}\right)}{1-c}
$$

then $\widetilde{P}_{i}(X)-c \widetilde{P}_{i}(Y)=P_{0}(X)-P_{0}\left(\alpha_{i}\right)-c\left(P_{0}(Y)-P_{0}\left(\alpha_{\phi(i)}\right)\right)$ and we see that $B_{i, 4}$ is also the homogenization of $\widetilde{P}_{i}(X)-c \widetilde{P}_{i}(Y)$. Since $\operatorname{deg} P_{0}=4$ and $p \neq 2$, we see that each of the four points at infinity of $\left[B_{i, 4}=0\right]$ has multiplicity one and so are non-singular points. At finite points, we see that the only possible singular points of $\left[B_{i, 4}=0\right]$ are $\left(\alpha_{j}, \alpha_{\phi(j)}, 1\right), j=1,2,3$, with multiplicity 2 since $\widetilde{P}_{i}^{\prime}(X)=P^{\prime}(X)$. Clearly, $\mathfrak{p}_{i}=\left(\alpha_{i}, \alpha_{\phi(i)}, 1\right) \in B_{i, 4}$. If there exists one $j \neq i$ such that $\left(\alpha_{j}, \alpha_{\phi(j)}, 1\right) \notin\left[B_{i, 4}=0\right]$, then it is easy to see that $\left[B_{i, 4}=0\right]$ is irreducible and has genus at least 1 . In this case, there exists a non-trivial regular 1-form on $\left[B_{i, 4}=0\right]$, and ω is non-trivial on every component of C_{c} other than $\left[B_{i, 4}=0\right]$. We now consider the case $\mathfrak{p}_{j} \in B_{i, 4}$ for each $j \neq i$. Then $\widetilde{P}_{i}\left(\alpha_{j}\right)=c \widetilde{P}_{i}\left(\alpha_{\phi(j)}\right)$, equivalently, $P_{0}\left(\alpha_{j}\right)-c P_{0}\left(\alpha_{\phi(j)}\right)=$
$P_{0}\left(\alpha_{i}\right)-c P_{0}\left(\alpha_{\phi(i)}\right)$. Since $B_{i, 4}$ is the homogenization of $P_{0}(X)-P_{0}\left(\alpha_{i}\right)-$ $c\left(P_{0}(Y)-P_{0}\left(\alpha_{\phi(i)}\right)\right)$, this implies that $B_{j, 4}=B_{i, 4}$. Therefore, in this case we have $B_{1,4}=B_{2,4}=B_{3,4}$, and $\left[B_{i, 4}=0\right]$ has three ordinary multiple points of multiplicity 2. If $\left[B_{i, 4}=0\right]$ is reducible, then Bézout's theorem implies that it consists of a line and a smooth irreducible curve of genus 1 ; if $\left[B_{i, 4}=0\right.$] is irreducible, then it is a curve of genus 0 . The first case is certainly fine since C_{c} does not have a linear factor, and a component of genus 1 admits a non-trivial regular one form. Therefore, we only need to assume that $B_{i, 4}$ is not a factor of $F_{c}(X, Y, Z)$ if $B_{1,4}=B_{2,4}=B_{3,4}$. However, if $B_{i, 4}$ is a factor of $F_{c}(X, Y, Z)$, then we see that $\left(X^{4}-w Y^{4}\right) \mid\left(X^{n}-w Y^{n}\right)$ by evaluating $B_{i, 4}$ and $F_{c}(X, Y, Z)$ at $Z=0$. Since $w^{3}=1$ and $3 \mid n-1$, we have $w^{n}=1$. This implies that $\left(X^{4}-(w Y)^{4}\right) \mid\left(X^{n}-(w Y)^{n}\right)$, which, however, is impossible if $4 \nmid n$.

For (iii), we may assume that $\mathfrak{p}_{1}=\left(\alpha_{1}, \alpha_{2}, 1\right) \in C_{c}$ and $\left(\alpha_{2}, \alpha_{1}, 1\right) \notin C_{c}$. Then the only possible poles of θ are \mathfrak{p}_{1} and $\mathfrak{q}=(x, 1,0)$ satisfying $x^{3}=c$ and $x^{n}=c$. Suppose that $\xi^{3}=c$; then $X^{3}=c$ has three possible solutions $\xi, w \xi$ and $w^{2} \xi$, where $w^{2}+w+1=0$. Therefore, if $3 \nmid n, \theta$ has at most one pole (i.e., $\left.\mathfrak{q}_{0}=(\xi, 1,0)\right)$ at infinity. In this case, we take

$$
\omega=\frac{W(Y, Z) L_{10}}{Z\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)},
$$

where L_{10} is a line passing through \mathfrak{p}_{1} and \mathfrak{q}_{0}. If $3 \mid n$, then we take

$$
\omega=\left(\frac{W(Y, Z)}{Z\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)}\right)^{p} B_{1,3} Z^{p-3} .
$$

One checks (by an argument analogous to the one given in the previous case) that ω is indeed regular on C_{c} and that $B_{1,3}$ defines an irreducible curve of genus 0 . Therefore it is necessary to assume that $B_{1,3}$ is not a factor of $F_{c}(X, Y, Z)$.

For (iv), $l=l_{0}=2$ and $m_{1}=m_{2}=1$ imply that $p \neq 2,3, c=-1$, and θ has poles at infinity, say $(x, 1,0)$, only if $x^{3}=-1$ and $x^{n}=-1$. Obviously θ has no pole at infinity if n is even. If n is odd and $3 \nmid n$ then $(-1,1,0)$ is the only pole of θ at infinity. In this case, we take

$$
\omega=\frac{W(Y, Z) L_{12}}{Z\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)} .
$$

Since the line $\left[L_{12}=X+Y-\left(\alpha_{1}+\alpha_{2}\right) Z=0\right.$] passes through the points $\mathfrak{p}_{1}=\left(\alpha_{1}, \alpha_{2}, 1\right), \mathfrak{p}_{2}=\left(\alpha_{2}, \alpha_{1}, 1\right)$ and $(1,-1,0), \omega$ is regular at these points. If n is odd and $3 \mid n$ we claim that $B_{1,3}=B_{2,3}$. For simplicity, write

$$
P^{\prime}(X)=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right) Q(X) .
$$

Then

$$
P(X)-P\left(\alpha_{1}\right)=\left(\frac{\alpha_{1}-\alpha_{2}}{2}\left(X-\alpha_{1}\right)^{2}+\frac{1}{3}\left(X-\alpha_{1}\right)^{3}+\cdots\right) R(X) .
$$

Here Q and R are polynomials. We deduce from this that

$$
\begin{aligned}
B_{1,3} & =\frac{\alpha_{1}-\alpha_{2}}{2}\left[\left(X-\alpha_{1} Z\right)^{2}-\left(Y-\alpha_{2} Z\right)^{2}\right] Z+\frac{1}{3}\left[\left(X-\alpha_{1} Z\right)^{3}+\left(Y-\alpha_{2} Z\right)^{3}\right] \\
B_{2,3} & =\frac{\alpha_{2}-\alpha_{1}}{2}\left[\left(X-\alpha_{2} Z\right)^{2}-\left(Y-\alpha_{1} Z\right)^{2}\right] Z+\frac{1}{3}\left[\left(X-\alpha_{2} Z\right)^{3}+\left(Y-\alpha_{1} Z\right)^{3}\right]
\end{aligned}
$$

Clearly, $X+Y-\left(\alpha_{1}+\alpha_{2}\right) Z$ is a linear factor of $B_{1,3}$ and $B_{2,3}$; moreover, it is easily seen that $B_{1,3}=B_{2,3}$ and $B_{1,3} /\left(X+Y-\left(\alpha_{1}+\alpha_{2}\right) Z\right)$ is irreducible and defines a curve of genus 0 . Thus

$$
\omega=\left(\frac{W(Y, Z)}{Z\left(X-\alpha_{1} Z\right)\left(X-\alpha_{2} Z\right)}\right)^{p} B_{1,3} Z^{p-3}
$$

is regular on C_{c} and is non-trivial on each component of C_{c} if $B_{1,3} /(X+$ $\left.Y-\left(\alpha_{1}+\alpha_{2}\right) Z\right)$ is not a factor of $F_{c}(X, Y, Z)$.
4.3. Proof of Theorem 2 and Corollary 1. Theorem 2 follows directly from Lemmas 6 and 7.

We now prove the corollary. It is well known that if S is not affinely rigid, then $P(X)$ is not a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{K})$. From now on we suppose that S is affinely rigid. When $l \geq 3, P(X)$ is already a strong uniqueness polynomial for $\mathcal{M}^{*}(\mathbf{K})$ except when $l=l_{0}=3, m_{1}=$ $m_{2}=m_{3}=1,3|n-1,4| n, B_{1,4}=B_{2,4}=B_{3,4}$, and $B_{1,4}$ is a factor of $F_{c}(X, Y, Z)$. We actually proved that in this case $\left[B_{1,4}=0\right]$ is irreducible and of genus 0 . From our proof of Lemma 7 , we see that on the components of C_{c} other than $\left[B_{1,4}=0\right.$], the product of 1-forms we constructed is regular and non-vanishing. Thus those components must be of positive genus. On the other hand, we have shown in the proof of Lemma 7 that $B_{1,4}(X, Y, 1)$ can be written as $\widetilde{P}_{1}(X)-c \widetilde{P}_{1}(Y)$ with $\operatorname{deg} \widetilde{P}_{1}(X)=4$. Since $p \neq 2, p \nmid 4$, \widetilde{P}_{1} is a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{K})$ if and only if $\widetilde{P}_{1}(X)-$ $c \widetilde{P}_{1}(Y)$ and $\left(\widetilde{P}_{1}(X)-\widetilde{P}_{1}(Y)\right) /(X-Y)$ have no linear factors. Therefore, $B_{1,4}(X, Y, 1)=0$ cannot admit a solution consisting of a pair of non-constant non-archimedean entire functions. Therefore, $P(X)$ is a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{K})$ if $l \geq 3$. Moreover, this argument works analogously for cases (I.A), (I.B.1), and (I.B.2) since the polynomials $A_{1, m_{1}}(X, Y, 1)$ (in Theorem 2(I.B.2.b.ii) and (I.C.2)) and $B_{1,3}(X, Y, 1)$ (in Theorem 2(II.C)) do not admit any solution consisting of a pair of non-constant non-archimedean entire functions.

It now remains to consider the case when $l=1$ and $\mu_{1}=m_{1}+1$. Then

$$
P(X)-P\left(\alpha_{1}\right)=b_{1, m_{1}+1}\left(X-\alpha_{1}\right)^{m_{1}+1}+b_{1, m_{1}+2}\left(X-\alpha_{1}\right)^{m_{1}+2}+\cdots
$$

If $b_{1, m_{1}+2}=0$, then Theorem 2(I.C.3.b) implies that $P(X)$ is also a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{K})$ provided $m_{1} \geq 2$ and $p \geq 7$. Therefore (I.B.3.a) holds. If $b_{1, m_{1}+2} \neq 0$, we let

$$
P_{0}(X)=b_{1, m_{1}+1}\left(X-\alpha_{1}\right)^{m_{1}+1}+b_{1, m_{1}+2}\left(X-\alpha_{1}\right)^{m_{1}+2}
$$

Then as was shown in [1], the polynomial $P_{0}(X)$ is a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{K})$ if and only if $m_{1}+2=p^{r} s, p \nmid s, s \geq 2$. We also note that in this case,

$$
\frac{P_{0}(X)-P_{0}(Y)}{X-Y}=A_{1, m_{1}+1}(X, Y, 1)
$$

Therefore, $A_{1, m_{1}+1}(X, Y, 1)=0$ has no solutions in $\mathcal{A}^{*}(\mathbf{K}) \times \mathcal{A}^{*}(\mathbf{K})$ if $m_{1}+2$ is not a power of p. Hence, $P(X)$ is a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{K})$ in the case (I.B.3.b) by Theorem 2(I.C.3.a).

We now prove (II). We let $m_{1}+2=p^{r}$ for some positive integer r. From Theorem 2(I.C.3.a) and the previous discussion, $P(X)$ is not a strong uniqueness polynomial for $\mathcal{A}^{*}(\mathbf{K})$ if and only if $F(X, Y, Z)$ is divisible by $A_{1, m_{1}+1}=A_{1, p^{r}-1}$. This condition is equivalent to $P(X)-P(Y)$ being divisible by

$$
\begin{aligned}
A_{1, p^{r}-1}(X, Y, 1) & =b_{1, p^{r}-1} \frac{\left(X-\alpha_{1}\right)^{p^{r}-1}-\left(Y-\alpha_{1}\right)^{p^{r}-1}}{X-Y}+b_{1, p^{r}}(X-Y)^{p^{r}-1} \\
& =\mathcal{F}_{p^{r}-1}(X, Y)
\end{aligned}
$$

If $P(X)-P(Y)$ is divisible by $\mathcal{F}_{p^{r}-1}(X, Y)$, then $\left(p^{r}-1\right) S=T_{\mathcal{F}_{p^{r}-1}}(S)$ by the lemma stated at the end of this section, which was proved in [6] over \mathbb{C}, but its proof works for any field. On the other hand, if $\left(p^{r}-1\right) S=T_{\mathcal{F}_{p^{r}-1}}(S)$, one see easily that the points $\left\{\left(t_{i j}, s_{i}, 1\right) \mid 1 \leq i \leq n, 1 \leq j \leq p^{r}-1\right\}$ are in the intersection of two curves defined by $P(X)-P(Y)$ and $\mathcal{F}_{p^{r}-1}(X, Y)$ and the sum of the relevant intersection multiplicities is $n\left(p^{r}-1\right)$. Moreover, the curves have one extra intersection point $(1,1,0)$ at infinity, which implies they must have a common component by Bézout's theorem. Since $A_{1, m_{1}+1}(X, Y, Z)$ is irreducible, this implies that $\mathcal{F}_{p^{r}-1}(X, Y)$ is a factor of $P(X)-P(Y)$.

Lemma (cf. [6]). Let $P(X)=\left(X-s_{1}\right) \cdots\left(X-s_{n}\right)$ be a monic polynomial with divisor of zeros S in \mathbf{K}. Let $R(x, y)=x^{d}+\cdots$ be a degree d polynomial in $\mathbf{K}[x, y]$ such that $R(x, y)$ divides $P(x)-b P(y)$ with some $b \neq 0$ in \mathbf{K}. Then

$$
[P(X)]^{d}=\prod_{i=1}^{n} R\left(x, s_{i}\right)
$$

References

[1] T. T. H. An, J. T.-Y. Wang and P.-M. Wong, Unique range sets and uniqueness polynomials in positive characteristic, Acta Arith. 109 (2003), 259-280.
[2] -, -, -, Strong uniqueness polynomials: the complex case, Complex Var. Theory Appl. 49 (2004), 25-54.
[3] V.Berkovich, Spectral Theory and Analytic Geometry over Non-Archimedean Fields, Math. Surveys Monogr. 33, Amer. Math. Soc., Providence, RI, 1990.
[4] A. Boutabaa, W. Cherry and A. Escassut, Unique range sets in positive characteristic, Acta Arith. 103 (2002), 169-189.
[5] A. Boutabaa, A. Escassut and L. Haddad, On uniqueness of p-adic entire functions, Indag. Math. 8 (1997), 145-155.
[6] W. Cherry and J. T.-Y. Wang, Uniqueness polynomials for entire functions, Internat. J. Math. 13 (2002), 323-332.
[7] -, -, Non-Archimedean analytic maps to algebraic curves, in: Value Distribution Theory and Complex Dynamics, W. Cherry and C.-C. Yang (eds.), Contemp. Math. 303, Amer. Math. Soc., 2002, 7-36.
[8] W. Cherry and C.-C. Yang, Uniqueness of non-archimedean entire functions sharing sets of values counting multiplicity, Proc. Amer. Math. Soc. 127 (1999), 967-971.
[9] J. T.-Y. Wang, Uniqueness polynomials and bi-unique range sets for rational functions and non-archimedean meromorphic functions, Acta Arith. 104 (2002), 183200.
[10] -, The truncated second main theorem of function fields, J. Number Theory 58 (1996), 139-157.
[11] -, A note on Wronskians and $A B C$ theorem in function fields of prime characteristic, Manuscripta Math. 98 (1999), 255-264.

Institute of Mathematics
Academia Sinica
Nankang, Taipei 11529, Taiwan, R.O.C.
E-mail: tthan@math.sinica.edu.tw
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556, U.S.A.
jwang@math.sinica.edu.tw E-mail: wong.2@nd.edu

Received on 16.6.2003
and in revised form on 14.9.2004

