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1. Introduction. The divisor function σk(N) :=
∑

d|N d
k is a basic

multiplicative function and plays an important role from the beginning of
the modern arithmetic study. In particular, σk(N) appears in the Fourier
coefficients of the (holomorphic) Eisenstein series Ek+1(τ). It is, however,
not so common to regard σk(N) as a sort of zeta function. In the present
paper, we treat σk(N) as a function of a complex variable k = −s. It is clear
that when N = 0 (or N → ∞) we have σ−s(N) → ζ(s), the Riemann zeta
function. There are at least two interpretations of Z1

N (s) :=
∑

n|N n
−s =

σ−s(N) as a zeta function in number theory:

• Fourier coefficients of real analytic Eisenstein series,
• Igusa zeta functions.

Concerning the first, we refer to Bump et al. [BCKV], where the so-
called “local Riemann hypothesis” is studied. In the case of the real analytic
Eisenstein series E(s, τ) for the modular group SL(2,Z), the Nth Fourier
coefficient is essentially given by

cN (s, τ) := Z1
N (2s− 1)Ks−1/2(2πN Im τ)e2πiRe τ .

Hence it satisfies the local Riemann hypothesis: if cN (s, τ) = 0 then Re s =
1/2. For the second, the interpretation comes from the (global) Igusa zeta
function ζIgusa(s,R) of a ring R defined as

ζIgusa(s,R) :=
∞∑

m=1

#Homring(R,Z/(m))m−s.

Then, in fact, it is easy to see that Z1
N (s) = ζIgusa(s,Z/(N)).
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The purpose of the present paper is, first, to study the function defined
by the series

ZmN (s) :=
∑

n1|n2|···|nm|N
(n1n2 · · ·nm)−s.(1.1)

We call ZmN (s) the multiple finite Riemann zeta function of type N . We
then study several basic properties of ZmN (s) such as an Euler product, a
functional equation, and an analogue of the Riemann hypothesis in an ele-
mentary way with the help of some q-series identity. We also study the limit
case Zm∞(s) :=

∑
n1|···|nm(n1 · · ·nm)−s.

Moreover, we generalize this zeta function in two directions. The first
one is to increase the number of variables. We prove that the Euler prod-
uct of a multi-variable version of ZmN (s) can be expressed in terms of the
complete symmetric polynomials with a remarkable specialization of vari-
ables (Theorem 3.2). The second is to add parameters indexed by a set of
positive integers. For general parameters, it seems difficult to calculate an
Euler product explicitly using symmetric functions with some meaningful
specialization of variables. If we restrict ourselves to the one variable case,
however, under a special but non-trivial specialization of parameters, we
show that the corresponding multiple zeta functions can be written as a
product of ζ(cs) with several constants c determined by the given parame-
ters and the Dirichlet series associated with generalized powerful numbers
(see Section 4). Moreover, we determine the condition for the Dirichlet se-
ries associated with such generalized powerful numbers to be extendable
as a meromorphic function to the entire plane C (see Theorem 4.8 and its
corollary). As a consequence, most of such Dirichlet series are shown to have
the imaginary axis as a natural boundary. The result is a generalization of
the one in [IS]. In the last section, we give two remarks on the number of
isomorphism classes of abelian groups and an analogous notion of Eisenstein
series.

Throughout the paper, we denote the sets of all integers, positive inte-
gers, non-negative integers, real numbers, and complex numbers by Z, Z>0,
Z≥0, R, and C, respectively.

2. Multiple finite Riemann zeta function. We prove the fundamen-
tal properties of the multiple finite Riemann zeta function ZmN (s) defined by
(1.1) and discuss some related Dirichlet series. First we have

Theorem 2.1. Let N be a positive integer.

(i) (Euler product)

ZmN (s) =
∏

p : prime

m∏

k=1

1− p−s(ordpN+k)

1− p−sk ,(2.1)
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where ordpN denotes the order of the p-factor in the prime decom-
position of N .

(ii) (Functional equation) ZmN (−s) = NmsZmN (s).
(iii) (Analogue of the Riemann hypothesis) All zeros of ZmN (s) lie on the

imaginary axis Re s = 0. More precisely , the zeros of ZmN (s) are of
the form

s =
2πin

(ordpN + k) log p
for k = 1, . . . ,m, p |N and n ∈ Z \ {0}.

Consequently , the order Multm(n, p, k) of the zero at the above value
of s is given by

Multm(n, p, k) =

#{(l, j) : 1 ≤ l ≤ m, j ∈ Z \ {0}, (ordpN + k)j = (ordpN + l)n}.
(iv) (Special value) When n is a positive integer one has ZmN (−n) ∈ Z.

For the proof of the theorem the following lemma is crucial.

Lemma 2.2. Let m be a positive integer. Then:

(i) For any integers l ≥ 0,

l∑

d=0

[
m− 1 + d
m− 1

]

q

qd =
[
m+ l
m

]

q

,(2.2)

where
[
n
k

]
q

is the q-binomial coefficient defined by

[
n
k

]

q

=
k∏

j=1

(1− qn+1−j)/(1− qj).

(ii) For |x| < 1, |q| < 1,
∞∑

d=0

[
m+ d
m

]

q

xd =
m∏

k=0

1
1− qkx.(2.3)

Proof. We prove (2.2) by induction on l. When l = 0, (2.2) clearly holds.
Suppose that it holds for l. Then we see that

l+1∑

d=0

[
m− 1 + d
m− 1

]

q

qd =
[
m+ l
m

]

q

+
[
m+ l
m− 1

]

q

ql+1 =
[
m+ l + 1

m

]

q

,

whence (2.2) is also true for l + 1.
The second formula (2.3) can be proved in the same manner by induction,

but on m. (It is also obtained from the so-called q-binomial theorem, see,
e.g., [AAR].)
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Proof of Theorem 2.1. The functional equation is easily seen from the
definition. Actually, we have

ZmN (−s) =
∑

n1|n2|···|nm|N
(n1n2 · · ·nm)s = Nms

∑

n1|n2|···|nm|N

(
n1

N

n2

N
· · · nm

N

)s

= NmsZmN (s).

To prove (2.1), we show that ZmN (s) is multiplicative with respect to N .
Suppose N and M are co-prime. Then

ZmNM (s) =
∑

n1|···|nm|NM
(n1 · · ·nm)−s

=
∑

c1|···|cm|N
(c1 · · · cm)−s

∑

d1|···|dm|M
(d1 · · · dm)−s = ZmN (s)ZmM (s),

because every divisor n of NM is uniquely written as n = cd, where c |N
and d |M . Hence, to get the Euler product expression (2.1) of ZmN (s) it
suffices to consider the case where N is a power of prime p. In this case, one
proves that

Zmpl (s) =
m∏

k=1

1− p−(l+k)s

1− p−sk(2.4)

by induction on m as follows: It is clear for m = 1. Suppose (2.4) is true for
m− 1. Then

Zmpl (s) =
∑

0≤j1≤···≤jm≤l
p−(j1+···+jm)s =

l∑

jm=0

Zm−1
pjm

(s)p−jms

=
l∑

d=0

m−1∏

k=1

1− p−(d+k)s

1− p−sk p−ds =
l∑

d=0

[
m− 1 + d

d

]

p−s
p−ds.

Therefore the assertion follows immediately from (2.2). This proves (2.4),
whence the Euler product for ZmN (s) follows.

Using (2.1), we observe that the meromorphic function ZmN (s) may have
zeros at each s = 2πin/(ordpN + k) log p for k = 1, . . . ,m, p |N and n ∈ Z.
Note, however, that since

ZmN (0) =
∏

p : prime

(
ordpN +m

m

)
6= 0,(2.5)

s = 0 is not a zero of ZmN (s). Suppose now that
2πin

(ordpN + k) log p
=

2πim
(ordqN + l) log q

for some 1 ≤ k, l ≤ m, p, q |N and n, j ∈ Z \ {0}. Then p(ordpN+k)j =
q(ordq N+l)n. This immediately shows that p = q and (ordpN + k)j =
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(ordpN + l)n. Hence the order of zero at s = 2πin/(ordpN + k) log p is
given by Multm(n, p, k). Obviously, Mult1(n, p, 1) = 1.

The last claim about the special value of ZmN (s) is clear from the defini-
tion.

Remark 2.1. Note that Zm
pl

(s) = Z lpm(s) from (2.4).

We next consider a Dirichlet series defined via the multiple finite Rie-
mann zeta functions. Put

ζm(s, t) :=
∞∑

n=1

Zmn (s)n−t.

Then, from (2.3), ζm(s, t) has the Euler product

ζm(s, t) =
∏

p : prime

( ∞∑

l=0

Zmpl (s)p
−lt
)

=
m∏

k=0

ζ(sk + t).(2.6)

We give a few examples:

Example 2.1. It is well known that

ζ1(−k, t) =
∞∑

n=1

σk(n)n−t = ζ(t)ζ(t− k) for Re t > k + 1.

Also, by (2.5), ζm(0, t) = ζ(t)m+1 for Re t > 1.

Example 2.2. Let l be a positive integer. For Re t > 1− l, we have

ζm(l, t+ l) =
m+1∏

k=1

ζ(t+ lk).

As m→∞, we have

lim
m→∞

ζm(l, t+ l) =
∞∏

k=1

ζ(t+ lk),

which is the higher Riemann zeta function ζl∞(s) studied in [KMW] (see
also [KW]). Note that ζl∞(s) satisfies a functional equation.

3. Multivariable version. We study a generalization of ZmN (s). For
γ = (γ1, . . . , γm) ∈ Zm>0 and N ∈ Z>0, define

ZγN (t1, . . . , tm) :=
∑

nγmm |···|nγ1
1 |N

n−γ1t1
1 · · ·n−γmtmm .(3.1)

This is multiplicative with respect to N . Notice that ZmN (s) = ZγN (s, . . . , s)

when γ = (1m) = (

m︷ ︸︸ ︷
1, . . . , 1). We can prove the following lemma in a similar

way to Theorem 2.1.
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Lemma 3.1. For l ≥ 0, define

Gγl (q1, . . . , qm) =
∑

l≥λ1≥···≥λm≥0
γj |λj

qλ1
1 · · · qλmm ,(3.2)

where the sum is taken over all partitions λ = (λ1, λ2, . . .) of length ≤ m
such that λ1 ≤ l and γj |λj for 1 ≤ j ≤ m. Then the Euler product of
ZγN (t1, . . . , tm) is given as

ZγN (t1, . . . , tm) =
∏

p : prime

GγordpN (p−t1 , . . . , p−tm).

Remark 3.1. Let f(n1, . . . , nm) be a multiplicative function with re-
spect to each nj . We define a multiple zeta function by

ZγN (f) =
∑

nγmm |···|nγ1
1 |N

f(n1, . . . , nm).

Then one can show that ZγN (f) is multiplicative, whence has the Euler
product ZγN (f) =

∏
p : prime Z

γ

pordp N (f).

We first look at the simplest case γ = (1m). We abbreviate respectively
Z

(1m)
N (t1, . . . , tm), G(1m)

l (q1, . . . , qm) to ZmN (t1, . . . , tm), Gml (q1, . . . , qm).

Theorem 3.2. Let

hj(x1, . . . , xm) =
∑

i1+···+im=j
ik∈Z≥0

xi11 · · ·ximm

be the jth complete symmetric polynomial. Then

Gml (q1, . . . , qm) =
l∑

j=0

hj(q1, q1q2, . . . , q1q2 · · · qm).(3.3)

In particular ,

Gm∞(q1, . . . , qm) := lim
l→∞

Gml (q1, . . . , qm) =
m∏

k=1

(1− q1q2 · · · qk)−1.

Proof. Since

hj(q1, q1q2, . . . , q1q2 · · · qm) =
∑

i1+i2+···+im=j

qi1+i2+···+im
1 qi2+···+im

2 · · · qimm

=
∑

j=λ1≥λ2≥···≥λm≥0

qλ1
1 qλ2

2 · · · qλmm ,

(3.3) is clear from the definition (3.2). The second formula follows from (3.3)
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together with the fact that
∞∑

j=0

hj(x1, . . . , xm)zj =
m∏

k=1

(1− xkz)−1 (see [M]).

As a corollary, we obtain the Euler product of ZmN (t1, . . . , tm).

Corollary 3.3. Let m and N be positive integers. Then

ZmN (t1, . . . , tm) =
∏

p : prime

(ordpN∑

j=0

hj(p−t1 , p−t1−t2 , . . . , p−t1−t2−···−tm)
)
.

Further , for Re tj > 1 (1 ≤ j ≤ m),

Zm∞(t1, . . . , tm) :=
∑

nm|···|n1

n−t11 · · ·n−tmm =
m∏

k=1

ζ(t1 + · · ·+ tk).

Since

Gγl (q1, . . . , qm) =
∑

0≤n≤l/γ1

qγ1n
∑

γ1n≥λ2≥···≥λm≥0
γj |λj (2≤j≤m)

qλ2
2 · · · qλmm

=
bl/γ1c∑

n=0

qγ1n
1 G(γ2,...,γm)

γ1n (q2, . . . , qm),

the recurrence equation among Gγ
l (q1, . . . , qm)’s can be obtained as follows.

Lemma 3.4. For γ = (γ1, . . . , γm) ∈ Zm>0, we have

Gγl (q1, . . . , qm) =
bl/γ1c∑

n=0

qγ1n
1 G(γ2,...,γm)

γ1n (q2, . . . , qm).

Here bxc is the largest integer not exceeding x.

The following lemma shows that to study Gγ
l (q1, . . . , qm) it is enough to

study the case where γ1, . . . , γm are relatively prime. The proof is straight-
forward.

Lemma 3.5. For γ = (dc1, . . . , dcm), we have

Gγl (q1, . . . , qm) = G
(c1,...,cm)
bl/dc (qd1 , . . . , q

d
m).

Let us calculate several Gγ(q1, . . . , qm) with special parameters γ.

Example 3.1. Let γ = (c, 1). Putting d = bl/cc, we see by Lemma 3.4
that

(3.4) G
(c,1)
l (q1, q2)

=
(1− qc(d+1)

1 )(1− (q1q2)c)− q2(1− qc1)(1− (q1q2)c(d+1))
(1− q2)(1− qc1)(1− (q1q2)c)

.
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Therefore

Z(c,1)
∞ (t1, t2) = ζ(t2)ζ(ct1)ζ(c(t1 + t2))

∏

p : prime

(1− p−t2 + p−ct1−t2 − p−ct1−ct2)

for Re tj > 1 (j = 1, 2). Thus, we may have various Euler products of the
form

∏
p : primeH(p−s, p−t), where H(S, T ) ∈ 1+S ·C[S, T ]+T ·C[S, T ] arises

from Z
(c,1)
∞ (t1, t2).

Example 3.2. We calculate G(cd,c,1)
∞ (q, q, q). Set q1 = q2 = q in (3.4).

Then

G
(c,1)
l (q, q) =

(1− qc(d+1))(1− q + qc − qcd+c+1)
(1− q)(1− q2c)

.

It follows from Lemma 3.4 that

G(cd,c,1)
∞ (q, q, q) =

1
(1− q)(1− q2c)

{
1− q + qc

1− qcd − qc(1 + qc)
1− q2cd +

q2c+1

1− q3cd

}
.

In particular, putting d = 1, we obtain

Z(c,c,1)
∞ (s) =

∑

n3|nc2|nc1

(nc1n
c
2n3)−s

= ζ(s)ζ(2cs)ζ(3cs)
∏

p : prime

(1− p−s + p−cs − p−(c+1)s + p−2cs).

4. Multiple zeta functions and powerful numbers. In this sec-
tion, we study Zγ∞(s) for γ = (k, k, . . . , k, 1) in connection with a certain
generalized notion of powerful numbers.

Let us first recall the definition of powerful numbers. A positive num-
ber n is called k-powerful if ordp n ≥ k for any prime number p unless
ordp n = 0 (see, e.g., [IS], [I]). Extending this, we arrive at a new no-
tion: a positive integer n is said to be an l-step k-powerful number if either
ordp n = 0, k, 2k, . . . , (l−1)k or ordp n ≥ lk for any prime number p. Clearly,
if n is an l-step k-powerful number, then n is a j-step k-powerful number
for each j (1 ≤ j ≤ l). In particular, 1-step k-powerful numbers are nothing
but the usual k-powerful numbers. Note also that every natural number is
an l-step 1-powerful number for any l; this agrees with the claim for k = 1
in Theorem 4.8 below.

As an example of l-step k-powerful numbers, we list the first few 2-step
2-powerful numbers: 1, 4, 9, 16, 25, 32, 36, 49, 64, 81, 100, 121, 128, 144,
169, 196, 225, 243, . . . . Note that in general an l-step k-powerful number
n has the canonical representation: n = ak1a

2k
2 · · · a

(l−1)k
l m, where a1, . . . , al

are square-free, m is (lk)-powerful and gcd(a1, . . . , al,m) = 1. Note also that
a k-powerful number m is uniquely expressed as m = bk1b

k+1
2 · · · b2k−1

k if we
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stipulate that b2, . . . , bk are all square-free. Put

fk,l(n) :=
{

1 if n is an l-step k-powerful number,

0 otherwise,

for a positive integer n. Define also Fk,l(s) :=
∑∞

n=1 fk,l(n)n−s. The arith-
metic function fk,l(n) is multiplicative with respect to n. Note that F1,l(s) =
ζ(s) for any l. We show that Zγ∞(s) is represented by the product of the Rie-
mann zeta functions times Fk,l(s).

Theorem 4.1. Let k, l be positive integers, and put γ = (

l︷ ︸︸ ︷
k, k, . . . , k, 1).

Then

Zγ∞(s) =
∑

nl+1|nkl |···|nk1

(nk1 · · ·nkl nl+1)−s(4.1)

= Fk,l(s)
l+1∏

j=2

ζ(jks) (Re s > 1).

In particular , Zm∞(s) =
∏m
j=1 ζ(js).

To prove the theorem, we need the following two lemmas.

Lemma 4.2. Let γ = (

l︷ ︸︸ ︷
k, k, . . . , k, 1). Then

Gγ∞(q) = Gγ∞(
l+1︷ ︸︸ ︷

q, q, . . . , q) =
l+1∏

j=1

1
1− qjk ·

1− q + qlk+1 − qk(l+1)

1− q .

Proof. By definition, we have

G(k,...,k,1)
∞ (q) =

∑

λ1≥···≥λl≥λl+1≥0
k|λj (1≤j≤l)

qλ1+···+λl+λl+1 =
∞∑

n=0

qn
∑

λ1≥···≥λl≥n
k|λj (1≤j≤l)

qλ1+···+λl

=
∑

λ1≥···≥λl≥0
k|λj (1≤j≤l)

qλ1+···+λl +
∞∑

a=0

k∑

b=1

qak+b
∑

λ1≥···≥λl≥ak+b
k|λj (1≤j≤l)

qλ1+···+λl

=
∑

µ1≥···≥µl≥0

qk(µ1+···+µl) +
∞∑

a=0

k∑

b=1

qak+b
∑

µ1≥···≥µl≥a+1

qk(µ1+···+µl)

= Gl∞(qk) +
∞∑

a=0

qak
k∑

b=1

qb
∑

ν1≥···≥νl≥0

qk{(ν1+a+1)+···+(νl+a+1)}

= Gl∞(qk) + qlk
( ∞∑

a=0

qk(l+1)a
)( k∑

b=1

qb
)( ∑

ν1≥···≥νl≥0

qk(ν1+···+νl)
)
.
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Since Gl∞(q) =
∏l
j=1(1− qj)−1, we have

G(k,...,k,1)
∞ (q) =

l∏

j=1

1
1− qjk

(
1 +

qkl

1− qk(l+1)
· q(1− q

k)
1− q

)

=
l+1∏

j=1

1
1− qjk ·

1− q + qlk+1 − qk(l+1)

1− q .

This proves the assertion.

The following lemma is easily obtained.

Lemma 4.3. We have

1− q + qlk+1 − qk(l+1)

1− q = (1− qk)
(

1 + qk + q2k + · · ·+ q(l−1)k + qlk
∞∑

j=0

qj
)
.

Proof of Theorem 4.1. It follows from Lemmas 4.2 and 4.3 that

Z(k,...,k,1)
∞ (s) =

∏

p : prime

G(k,...,k,1)
∞ (p−s)

=
∏

p : prime

( ∞∏

j=2

1
1− p−jks

)

×
∏

p : prime

(1 + p−ks + p−2ks + · · ·+ p−(l−1)ks + p−lks + p−(lk+1)s + · · ·)

=
l+1∏

j=2

ζ(jks) · Fk,l(s).

Now we determine when the Dirichlet series Fk,l(s) can be meromorphi-
cally extended to C. We recall the following result of Estermann’s [E] (see
[K] for a generalization). A polynomial f(T ) ∈ 1 + T · C[T ] is said to be
unitary if there is a unitary matrix M such that f(T ) = det(1−MT ).

Lemma 4.4. For f(T ) ∈ 1 + T · C[T ], put L(s, f) =
∏
p : prime f(p−s).

Then:

(i) f(T ) is unitary if and only if L(s, f) can be extended as a mero-
morphic function on C.

(ii) f(T ) is not unitary if and only if L(s, f) can be extended as a
meromorphic function in Re s > 0 with the natural boundary Re s
= 0; each point on Re s = 0 is a limit point of poles of L(s, f) in
Re s > 0.
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Since

Fk,l(s) =
∏

p : prime

(
1 + p−ks + p−2ks + · · ·+ p−(l−1)ks + p−lks

∞∑

j=0

p−js
)

= ζ(s)ζ(ks)
∏

p : prime

(1− p−s + p−(lk+1)s − p−k(l+1)s)

by Lemma 4.3, we only have to see whether the polynomialGk,l(T ) := 1−T+
T lk+1 − T k(l+1) is unitary or not. The polynomial Gk,l(T ) can be expressed
as Gk,l(T ) = (1− T k)Hk,l(T ) with Hk,l(T ) := 1 + (T k − T )

∑l−1
j=0 T

kj .

Proposition 4.5. The polynomial Gk,l(T ) is unitary if and only if k =
1, 2.

In order to prove this proposition, we need the following two lemmas.

Lemma 4.6. Let k ≥ 3. Then the unitary root α (i.e. |α| = 1) of the
polynomial Gk,l(T ) must satisfy αk = 1 or αk−2 = 1.

Proof. Let α = e2πiθ 6= 1 (θ ∈ R) be a unitary root of Gk,l(T ). Since

Gk,l(T )/(1− T ) = 1 + T lk+1(1− T k−1)/(1− T ),

we have 1 + αlk+1(1− αk−1)/(1− α) = 0 so that

|(1− αk−1)/(1− α)| = |α−(lk+1)| = 1.

Hence Reαk−1 = Reα, that is,

cos 2π(k − 1)θ − cos 2πθ = −2 sinπkθ sinπ(k − 2)θ = 0.

Thus we conclude that either kθ ∈ Z or (k − 2)θ ∈ Z. This proves the
lemma.

Lemma 4.7. Let k ≥ 3. Suppose that a complex number α satisfies αk−2

= 1. Then G′′k,l(α) 6= 0.

Proof. Since

G′′k,l(T ) = (lk + 1)lkT l(k−2)+2l−1 − (kl + k)(kl+ k − 1)T (k−2)(l+1)+2l,

if we assume that α satisfies G′′k,l(α) = 0 and αk−2 = 1, we have

G′′k,l(α) = (lk + 1)lkα2l−1 − (kl + k)(kl+ k − 1)α2l = 0.

This shows that α= l(lk+1)/(l+1)(kl+k − 1), which contradicts αk−2 =1.
Hence the assertion follows.

Proof of Proposition 4.5. Let l be a positive integer. Since the unitarity
of Gk,l(T ) and of Hk,l(T ) are equivalent, it suffices to check the latter. It is
clear that Hk,l(T ) is a unitary polynomial when k = 1, 2. Actually we have
H1,l(T ) = 1 and H2,l(T ) = 1 − T + T 2l+1 − T 2l+2 = (1 − T )(1 + T 2l+1),
which are indeed unitary.
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Suppose k ≥ 3. If Gk,l(T ) is unitary, then every root of Hk,l(T ) satisfies
αk = 1 or αk−2 = 1 by Lemma 4.6. However, if αk = 1 we immediately
see that Hk,l(α) = 1 + (1 − α)l. Thus, Hk,l(α) cannot be 0 because of
the unitarity of α. Thus any root of Hk,l(T ) must satisfy αk−2 = 1 and
αk 6= 1. By Lemma 4.7, the multiplicity of these roots of Hk,l(T ) is at
most 2. Since Hk,l(T ) is assumed to be unitary and Hk,l(1) 6= 0, it follows
that 2(k−3) ≥ degHk,l(T ) = lk. This is possible only when l = 1. Therefore
it is enough to prove that Hk,1(T ) is not unitary for k ≥ 3. We put Hk(T ) =
Hk,1(T ) = 1− T + T k for simplicity. If k is odd, then Hk(T ) has a real root
in the interval (−2,−1) since Hk(−1) = 1 > 0 and Hk(−2) = 3 − 2k < 0.
This implies Hk(T ) is not unitary.

Thus, it remains to consider the case where k is even and k ≥ 4. Suppose
that Hk(T ) is unitary and let eiθ (−π < θ ≤ π) be its unitary root. Then
cos kθ = cos θ−1 and sin kθ = sin θ. Since 1 = sin2 kθ+cos2 kθ = 2−2 cos θ,
we have θ = ±π/3. Further, since 1 = cos2 θ + sin2 θ = (cos kθ + 1)2 +
sin2 kθ = 2 cos kθ + 2, we have cos(kπ/3) = −1/2. Hence either k ≡ 2 or 4
(mod 6). On the other hand, since 1 = (cos θ− cos kθ)2 + (sin θ− sin kθ)2 =
2−2 cos(k−1)θ, we have cos((k−1)π/3) = 1/2. It follows that either k ≡ 0
or 2 (mod 6). Thus k ≡ 2 (mod 6).

Now we show that every unitary root of Hk(T ) is simple. If we assume
that β is a multiple root of Hk(T ), it follows that βk − β + 1 = 0 and
kβk−1 − 1 = 0. Then |β| = k−1/(k−1) and β = kβk by the second equation.
On the other hand, by the first equation, 1 = β − βk = (k − 1)βk so that
|β| = (k−1)−1/k. Therefore kk = |β|−k(k−1) = (k−1)k−1, which contradicts
the unitarity of Hk(T ). This completes the proof of the proposition.

Finally, we obtain the following generalization of the result in [IS] con-
cerning powerful numbers. The proof follows immediately from Lemma 4.4
and Proposition 4.5.

Theorem 4.8. Let k and l be positive integers. When k = 1, 2 we have

F1,l(s) = ζ(s), F2,l(s) =
ζ(2s)ζ((2l + 1)s)
ζ(2(2l + 1)s)

.

When k ≥ 3, Fk,l(s) is meromorphic in Re s > 0 and has a natural boundary
Re s = 0.

Corollary 4.9. Let Z(k,...,k,1)
∞ (s) be as in Theorem 4.1. Then for k =

1, 2 we have

Z(1,...,1,1)
∞ (s) =

l+1∏

j=1

ζ(js), Z(2,...,2,1)
∞ (s) =

ζ((2l + 1)s)
ζ(2(2l + 1)s)

l+1∏

j=1

ζ(2js).

For k ≥ 3, Z(k,...,k,1)
∞ (s) can be meromorphically extended to Re s > 0 with a

natural boundary Re s = 0.



Multiple finite Riemann zeta functions 185

5. Closing remarks. We give two remarks.

• The isomorphism classes of abelian groups A of order n are indexed by
the map λ from the set of all prime numbers to that of partitions such that

n =
∏

p : prime

p|λ(p)|, A ∼=
⊕

p : prime

`(λ(p))⊕

j=1

Z/pλj(p)Z,

where |λ(p)| and `(λ(p)) are the size and length of the partition λ(p) =
(λj(p))j≥1 respectively. The multiple finite Riemann zeta function is ex-
pressed also as ZmN (s) =

∑
n|Nm gmN (n)n−s. Here gmN (n) is the number of the

isomorphism classes of abelian groups of order n, parametrized by λ such
that λ1(p) ≤ m and `(λ(p)) ≤ ordpN for all p. It is clear that gmN (n) is
multiplicative with respect to n and N . Put gm∞(n) := limN→∞ gmN (n). Then
gm∞(n) is the number of isomorphism classes of abelian groups A of order n
which are direct sums of p-groups Ap such that pmAp = 0 for p |n.

We now study the asymptotic average for gm∞(n) and Zmn (σ) (σ ∈ R) with
respect to n. Thus we need the Tauberian theorem below (see, e.g., [MM]).

Lemma 5.1. Let F (t) =
∑∞

n=1 ann
−t be a Dirichlet series with non-

negative real coefficients which converges absolutely for Re t > β. Suppose
that F (t) has a meromorphic continuation to the region Re t ≥ β with a pole
of order α+ 1 at t = β for some α ≥ 0. Put

c :=
1
α!

lim
t→β

(t− β)α+1F (t).

Then ∑

n≤x
an = (c+ o(1))xβ(logx)α as x→∞.

Using this lemma, we easily obtain the following results. Let m be a
positive integer.

1. We have
∑

n≤x g
m
∞(n) = (ζ(2)ζ(3) · · · ζ(m) + o(1))x as x → ∞. In

other words, the asymptotic average of gm∞(n) with respect to n is the
product ζ(2)ζ(3) · · · ζ(m).

2. For a fixed σ > 0, when x→∞,
∑

n≤x
Zmn (σ) = (ζ(σ + 1)ζ(2σ + 1) · · · ζ(mσ + 1) + o(1))x,

∑

n≤x
Zmn (−σ) = (ζ(σ + 1)ζ(2σ + 1) · · · ζ(mσ + 1) + o(1))x1+mσ,

∑

n≤x
Zmn (0) =

∑

n≤x

∏

p : prime

(
ordp n+m

m

)
=
(

1
m!

+ o(1)
)
x(log x)m.
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Actually, since ζ(s) has a single pole at s = 1 and Ress=1 ζ(s) = 1, the
first assertion follows from (2.6) and Lemma 5.1. Next, fix σ ∈ R. By (2.6),
we have

ζm(σ, t) =
∞∑

n=1

Zmn (σ)n−t =
m∏

k=0

ζ(t+ kσ).

This shows that the abscissa of absolute convergence of the Dirichlet se-
ries ζm(σ, t) is t = max{1, 1 − mσ}. Hence the remaining formulas follow
similarly.

Remark 5.1. For g(n) := limm→∞ gm∞(n), it is well known (see [A]) that

∑

n≤x
g(n) =

( ∞∏

k=2

ζ(k)
)
x+O(

√
x).

Since Z1
n(0) = d(n) :=

∑
d|n 1, we have

∑
n≤x d(n) ∼ x log x. It is also

well known (see [Z]) that there exists a constant C such that
∑

n≤x d(n) =
x log x+ Cx+O(

√
x) in an elementary way.

• We define a multiple Eisenstein series with parameter s of type m by

Ems (q) =
∞∑

n=1

Zmn (1− s)qn.

We sometimes write Em
s (τ) instead of Em

s (q) when q = e2πiτ with τ ∈ C,
Im τ > 0. It is obvious that E1

k(q) is (essentially) the usual holomorphic
Eisenstein series of weight k. In this remark we make an experimental study
of Ems (q) when m = 2. First, the following is easily obtained:

Lemma 5.2. We have E2
s+1(q) =

∑∞
l=1
∑∞

N=1 σs(N)N sqNl.

Recall now the Fourier expansion of Ek+1(τ) of weight k+1 with k being
odd:

Ek+1(τ) = 1 +
1

ζ(k + 1)
· (2πi)k+1

k!

∞∑

n=1

σk(n)qn

(
= 1 +

1
ζ(k + 1)

· (2πi)k+1

k!
E1
k+1(τ)

)
.

Take the kth derivative of Ek+1(τ). Then, if k is odd, by Lemma 5.2 we
immediately get

E2
k+1(τ) =

ζ(k + 1)k!
(2πi)2k+1

∞∑

l=1

(
dk

dτk
Ek+1

)
(lτ).
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There is also an expression of E2
k+1(τ) similar to Ek+1(τ), when k is odd:

E2
k+1(τ) = − (2k)!

(2πi)2k+1

∞∑

l=1

∑

(c,d)=1
c>0

σk(cl)l−2k−1(cτ + d)−2k−1.
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