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1. Introduction. The divisor function ox(N) = > ;n d* is a basic
multiplicative function and plays an important role from the beginning of
the modern arithmetic study. In particular, ox(N) appears in the Fourier
coefficients of the (holomorphic) Eisenstein series Fyy1(7). It is, however,
not so common to regard ox(N) as a sort of zeta function. In the present

paper, we treat (V) as a function of a complex variable k = —s. It is clear
that when N =0 (or N — o0) we have o_4(N) — ((s), the Riemann zeta
function. There are at least two interpretations of ZX(s) = Doannt =

o_s(N) as a zeta function in number theory:

e Fourier coefficients of real analytic Eisenstein series,

e [gusa zeta functions.

Concerning the first, we refer to Bump et al. [BCKV], where the so-
called “local Riemann hypothesis” is studied. In the case of the real analytic

Eisenstein series F(s,7) for the modular group SL(2,Z), the Nth Fourier
coefficient is essentially given by

CN(S,T) = Zjl\l(QS — 1)K5_1/2(27TNImT)e27riReT.

Hence it satisfies the local Riemann hypothesis: if cy(s,7) = 0 then Re s =
1/2. For the second, the interpretation comes from the (global) Igusa zeta
function ¢'8%2(s, R) of a ring R defined as

¢'8(s, R) Z #Homying (R, Z/(m))m

m=1

Then, in fact, it is easy to see that Zx(s) = ¢'8"3(s,Z/(N)).
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The purpose of the present paper is, first, to study the function defined
by the series
(1.1) ZR(s)== Y (nang---np) "

nina|-nm|N
We call Z}}(s) the multiple finite Riemann zeta function of type N. We
then study several basic properties of Z3}(s) such as an Euler product, a
functional equation, and an analogue of the Riemann hypothesis in an ele-
mentary way with the help of some ¢-series identity. We also study the limit
case ZZ(8) 1= 3 | fngn (M1 1) .

Moreover, we generalize this zeta function in two directions. The first
one is to increase the number of variables. We prove that the FKuler prod-
uct of a multi-variable version of Z}}(s) can be expressed in terms of the
complete symmetric polynomials with a remarkable specialization of vari-
ables (Theorem 3.2). The second is to add parameters indexed by a set of
positive integers. For general parameters, it seems difficult to calculate an
Euler product explicitly using symmetric functions with some meaningful
specialization of variables. If we restrict ourselves to the one variable case,
however, under a special but non-trivial specialization of parameters, we
show that the corresponding multiple zeta functions can be written as a
product of ((cs) with several constants ¢ determined by the given parame-
ters and the Dirichlet series associated with generalized powerful numbers
(see Section 4). Moreover, we determine the condition for the Dirichlet se-
ries associated with such generalized powerful numbers to be extendable
as a meromorphic function to the entire plane C (see Theorem 4.8 and its
corollary). As a consequence, most of such Dirichlet series are shown to have
the imaginary axis as a natural boundary. The result is a generalization of
the one in [IS]. In the last section, we give two remarks on the number of
isomorphism classes of abelian groups and an analogous notion of Eisenstein
series.

Throughout the paper, we denote the sets of all integers, positive inte-
gers, non-negative integers, real numbers, and complex numbers by Z, Z~g,
Z>p, R, and C, respectively.

2. Multiple finite Riemann zeta function. We prove the fundamen-
tal properties of the multiple finite Riemann zeta function Z}/(s) defined by
(1.1) and discuss some related Dirichlet series. First we have

THEOREM 2.1. Let N be a positive integer.

(i) (Euler product)
s(ord N+k)

(2.1) = 11 H 1= ,

p:prime k=1




Multiple finite Riemann zeta functions 175

where ord, N denotes the order of the p-factor in the prime decom-
position of N.

(ii) (Punctional equation) Z3}(—s) = N™Z}(s).

(iii) (Analogue of the Riemann hypothesis) All zeros of Z}(s) lie on the
imaginary azis Res = 0. More precisely, the zeros of Z}}(s) are of
the form

_ 2min
~ (ord, N + k)logp
Consequently, the order Mult™ (n, p, k) of the zero at the above value
of s is given by
Mult™(n, p, k) =
#{(1,j): 1 <1 <m, jeZ\{0}, (ordy N+ k)j = (ord, N +I)n}.

(iv) (Special value) When n is a positive integer one has Z3(—n) € Z.

fork=1,....,m, p| N andn € Z\ {0}.

For the proof of the theorem the following lemma is crucial.
LEMMA 2.2. Let m be a positive integer. Then:
(i) For any integers ! > 0,
!
m—1+4+d d __ m+1
22) St e=
d=0 q q

n

where [k:]q s the g-binomial coefficient defined by

mq - ﬁ“ —q") /(1 ¢).

j=1
(ii) For |x| <1, |q| < 1,

(2.3) i {m; d} q:cd - ﬁ : _1qu.

d=0 k=0

Proof. We prove (2.2) by induction on [. When | = 0, (2.2) clearly holds.
Suppose that it holds for . Then we see that

- m—14+d| 4 m+1 m+1| 14 m+1+1
S ' = + T ¢ = :
m—1 m m—1 m
d=0 q q q q
whence (2.2) is also true for [ + 1.

The second formula (2.3) can be proved in the same manner by induction,
but on m. (It is also obtained from the so-called g-binomial theorem, see,
e.g., [AAR].) =
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Proof of Theorem 2.1. The functional equation is easily seen from the
definition. Actually, we have

m s ms n1ng nmS
o= Y Gumemyonm S (W2 )

nina|-|nm|N nina|-|nm|N
_ ATmS ym

To prove (2.1), we show that Z}/(s) is multiplicative with respect to N.
Suppose N and M are co-prime. Then

ZRu(s) = D (mnw) ™

nil-nm|NM
= 3 (aen)™ > (drde) = ZR () ZE(s),
cillem|N di |- |dm|M

because every divisor n of NM is uniquely written as n = cd, where ¢| N
and d| M. Hence, to get the Euler product expression (2.1) of Z}/(s) it
suffices to consider the case where N is a power of prime p. In this case, one

proves that
m = (Hk)s

(2.4) zi(s) =11 -

—-p
k=1
by induction on m as follows: It is clear for m = 1. Suppose (2.4) is true for
m — 1. Then

—sk

l

Z;}(s) — Z p—(j1+~~+jm)8 — Z Zgjml( s)p~Ims

0<j1< < jim <l Gm=0

I m-1_, —(d+k)s l

_an P pds:Z[m ;+d} 7Sp7ds.
d=0 k=1 d=0 p

Therefore the assertion follows immediately from (2.2). This proves (2.4),

whence the Euler product for Z}}(s) follows.

Using (2.1), we observe that the meromorphic function Z3}(s) may have
zeros at each s = 2min/(ord, N + k)logp for k=1,...,m, p| N and n € Z.
Note, however, that since

ordy N +m
(25) o= [ ("0 2o
p:prime

s = 0 is not a zero of Z}}(s). Suppose now that

2min _ 2mim
(ord, N + k)logp  (ordy N +1)loggq

for some 1 < k,I < m, p,q|N and n,j € Z \ {0}. Then plordp N+k)j - —
q(ordq N+Dn - This immediately shows that p = ¢ and (ord, N + k)j
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(ord, N + [)n. Hence the order of zero at s = 2mwin/(ord, N + k)logp is
given by Mult™(n, p, k). Obviously, Mult!(n,p,1) = 1.

The last claim about the special value of Z}(s) is clear from the defini-
tion. m

REMARK 2.1. Note that Z;’f(s) = Zln(s) from (2.4). =

We next consider a Dirichlet series defined via the multiple finite Rie-
mann zeta functions. Put

= i ZM(s)n™"
n=1

Then, from (2.3), ("(s,t) has the Euler product

(2.6) sty =[] (Z Zm (s *“) = T ¢(sk +0).
k=0

p:prime [=0

We give a few examples:

ExaMPLE 2.1. It is well known that

::E:UdnﬁftZC@KUH—m for Ret > k + 1.

Also, by (2.5), ¢™(0,t) = ¢(t)™+! for Ret > 1. m

EXAMPLE 2.2. Let [ be a positive integer. For Ret > 1 — [, we have
m+1

(Lt +1) II<t+Jk
As m — oo, we have

lim ¢™(I,t+1) = HCt—Hk

m—00

which is the higher Riemann zeta functlon Cloo(s) studied in [KMW] (see
also [KW]). Note that (;o(s) satisfies a functional equation. m

3. Multivariable version. We study a generalization of Z}/(s). For
v=M1--,Ym) € ZLy and N € Z~q, define

(3.1) Z4(ty, . otm) = Y my Mg mie,
g |n N

This is multiplicative with respect to N. Notice that Z¥(s) = Z}(s,...,s)

m

—
when v = (1) = (1,...,1). We can prove the following lemma in a similar
way to Theorem 2.1.
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LEMMA 3.1. Forl > 0, define

(32) G?(q1, ey qm) = Z qi\l .. q’?\nm?
>M 2 2>Am >0
Y512

where the sum is taken over all partitions A = (A1, Ae,...) of length < m
such that \y < I and vj|\; for 1 < j < m. Then the Euler product of
Z}(t1, ..., tm) is given as

Z]ﬂ\/](tlvvtm) = H G;/rde(p—tl’”.’p—tm). u
p:prime

REMARK 3.1. Let f(ni,...,ny,) be a multiplicative function with re-
spect to each n;. We define a multiple zeta function by

ZN(H = > flna,...nm)
ng - lnjt [N

Then one can show that ZX[( f) is multiplicative, whence has the Euler

product Z}(f) = Hp:prime Z;orde<f>' u

We first look at the simplest case v = (1"). We abbreviate respectively
ZG (), G @1 ) 10 ZR (s t)s GG, ).
THEOREM 3.2. Let

— (51 %
hj(xi,...,om) = E K Ceexym
ik6220

be the jth complete symmetric polynomial. Then

l
(3.3) GP (s qm) = D hi(qu, @1z, - 102+~ ).
7=0
In particular,

m
GZ(qr,- - qm) == 1lim G"(q1, .- qm) = [J( —q1q2 - qi) ™
l—o0

k=1
Proof. Since
i tigbotim=j
A1 A m
= > QB

J=A12A22> 2> >0

(3.3) is clear from the definition (3.2). The second formula follows from (3.3)
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together with the fact that

(o] m
Zhj(a;l, T2 = H(l —232)" 1 (see [M]). =
j=0 k=1
As a corollary, we obtain the Euler product of ZJ(t1,...,tm).
COROLLARY 3.3. Let m and N be positive integers. Then
ord, N
Zettn )= 1 ( Z Ay p ),
p:prime
Further, for Ret; >1 (1 <j g m),
m
Z0(t, . tm) = Y ong et = Tt 4+ 1) m
N |+ |n1 k=1
Since
Gl gm)= >, " > B g
0<n<l/m MN2A2> >N >0
vilA; (2<i<m)
LL/1]
Z "GV (g2, ),
the recurrence equation among G/ /(q1,...,qm)’s can be obtained as follows.

LEMMA 3.4. For vy = (7y1,...,Ym) € ZZ,, we have

[1/7]
Glqr, - qm) = Z Q"G (g2, am).

Here | x| is the largest integer not exceeding x. w

The following lemma shows that to study G} (qi,. .., ¢m) it is enough to
study the case where 71, ..., v, are relatively prime. The proof is straight-
forward.

LEMMA 3.5. For v = (decy,...,dcy,), we have
Glqi,. .., qm) = G(ﬁ};”’ )(qf,...,qgl). "
Let us calculate several G7(qi, ..., ¢n) with special parameters .

EXAMPLE 3.1. Let v = (¢, 1). Putting d = |I/c], we see by Lemma 3.4
that

34) Vg, )

=N~ (@142)9) — @2(1 — g1 — (q1g2) D)
(1—q2)(1 —¢)(1 = (q142)°) '
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Therefore

ZED (1, 13) = C(t)C(ct)C (et +12) [ (1—pt2+pehita — pretictz)
p:prime

for Ret; > 1 (j = 1,2). Thus, we may have various Euler products of the

form [, pyime H(p™%,p7"), where H(S,T) € 14-5-C[S, T|+T-C[S, T] arises

from Zc(xc;l)(tl,tg). .

ExaMPLE 3.2. We calculate G(()Zd’ql)(q,q, q). Set ¢1 = q2 = ¢ in (3.4).

Then
(1 _ qc(d-i-l))(l —q+ qc _ ch+c+l)

(e,1) _
G aa) = 00— )

It follows from Lemma 3.4 that

Geded) (g q.q) = 1 L-g+q ¢(l+q) "
oo ) (1_q)(1_q20) 1_ch 1_q20d ]__q3cd .

In particular, putting d = 1, we obtain
2e0(s)= 3 (ningns)

ng|ng|ng

= ((s)¢(2¢cs)((3es) H (1—p S +p — p—(c+1)s +p—2c5)_ .

p:prime

4. Multiple zeta functions and powerful numbers. In this sec-
tion, we study Z3(s) for v = (k,k,...,k,1) in connection with a certain
generalized notion of powerful numbers.

Let us first recall the definition of powerful numbers. A positive num-
ber n is called k-powerful if ord,n > k for any prime number p unless
ord,n = 0 (see, e.g., [IS], [I]). Extending this, we arrive at a new no-
tion: a positive integer n is said to be an [-step k-powerful number if either
ordyn =0,k,2k,...,(I—1)k or ord, n > Ik for any prime number p. Clearly,
if n is an [-step k-powerful number, then n is a j-step k-powerful number
for each j (1 < j <1). In particular, 1-step k-powerful numbers are nothing
but the usual k-powerful numbers. Note also that every natural number is
an [-step 1-powerful number for any [; this agrees with the claim for £k = 1
in Theorem 4.8 below.

As an example of I-step k-powerful numbers, we list the first few 2-step
2-powerful numbers: 1, 4, 9, 16, 25, 32, 36, 49, 64, 81, 100, 121, 128, 144,

169, 196, 225, 243, .... Note that in general an [-step k-powerful number
n has the canonical representation: n = a’fa%k . ~al(l71)km, where aq,...,q
are square-free, m is (lk)-powerful and ged(aq, ..., a;, m) = 1. Note also that

a k-powerful number m is uniquely expressed as m = b’lfbé;'H . -bik_l if we
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stipulate that bo, ..., b are all square-free. Put
1 if nis an [-step k-powerful number,
Jra(n) = { 0 otherwise,
for a positive integer n. Define also Fy;(s) := > " fri(n)n~%. The arith-
metic function fi;(n) is multiplicative with respect to n. Note that Fy ;(s) =

((s) for any I. We show that ZJ,(s) is represented by the product of the Rie-

mann zeta functions times Fy, ;(s).
!

——
THEOREM 4.1. Let k,l be positive integers, and put v = (k,k, ..., k,1).
Then
(4.1) Zie = S kb
nl+1|nf|'“|n'f
+1

= Fi(s HC jks) (Res>1).

In particular, Z7(s) = H;nzl C(JS)~

To prove the theorem, we need the following two lemmas.
!

———
LEMMA 4.2. Let v = (k,k,...,k,1). Then

! 41 Ik+1 _ k(I+1)
() = QY (o) = I 1-qg+q¢" —q
GOO(Q)_GOO(Q7Q7---aQ)_1_[11_qjk 1—(]
J:
Proof. By definition, we have
o0
G(()’é,...,k,l)(q) — Z PN Z ¢ Z P
A1 2N > A1 20 n=0 A >->\2>n
klA; (1<5<1) kA (1<5<1)
oo k
— Z g +quak+b Z PN
A1>->0>0 a=0 b=1 A > >N >ak—+b
k|x; (1<5<I) kN (1<5<1)
o k
= Z gt 4 Z Z P Z gF )
p12--2p 20 a=0 b=1 122 2a+l
o0
=GL (") + Z g™ Z ¢ ettt @rtat )}

vy > >0

k

— Gl () + ¢ (i qk(lJrl)a) (Z qb)< Z qk(u1+...+uz)>_
a=0 =1

vi2-2r 20
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Since G%_(q) = Hé’:1(1 —¢%)7t, we have

l ki k
1 q q(1—q")
00 l l _ _jk _ k(+1 _
ol 1—gt+h) 1—¢

I+1
1 — g + ¢F+L — gk(HD)

_Hl_q]k

This proves the assertion. m

1—g¢q

The following lemma is easily obtained.

LEMMA 4.3. We have

1 — g+ gik+1 — gh(+1) - ©
q ql_q q :(1_qk)(1+qk+q2k+”.+q(l l)k_}_qlkzq])..
5=0

Proof of Theorem 4.1. 1t follows from Lemmas 4.2 and 4.3 that
Z(k;,...,k (s H G s l) (%)

p:prime

- 1 (ﬁl_%m)

p:prime “j=2

« H (1 + p—ks +p—2ks 4o p—(l—l)ks +p—lks + p—(lk—i-l)s 4. )

p:prime

I+1

= [ ¢Gks) - Fru(s). n

Jj=2

Now we determine when the Dirichlet series F},;(s) can be meromorphi-
cally extended to C. We recall the following result of Estermann’s [E] (see
[K] for a generalization). A polynomial f(T) € 1+ T - C[T] is said to be
unitary if there is a unitary matrix M such that f(7") = det(1 — MT).

LEMMA 4.4. For f(T) € 1+ T - C[T], put L(s, f) = I, prime F(P°)-
Then:

(i) f(T) is unitary if and only if L(s, f) can be extended as a mero-
morphic function on C.

(ii) f(T) is not unitary if and only if L(s, f) can be extended as a
meromorphic function in Res > 0 with the natural boundary Re s
= 0; each point on Res = 0 is a limit point of poles of L(s, f) in
Res > 0. n
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Since
Fru(s) = H <1 +p ks pp ks g g (U Dks | gy=lks Zp—js)
p:prime =
= ((s)¢(ks) H (1= p=* 4 p=(h+Ds _h(i+1)s)
p:prime

by Lemma 4.3, we only have to see whether the polynomial Gy, ;(T') := 1-T+
Tk+1 — TR(+1) s unitary or not. The polynomial Gy, ;(T) can be expressed
as Gp(T) = (1 — T*)Hy (T) with Hy(T) := 1+ (T% - T) Y\ Z( 7.
PROPOSITION 4.5. The polynomial Gy, (T) is unitary if and only if k =
1,2.
In order to prove this proposition, we need the following two lemmas.

LEMMA 4.6. Let k > 3. Then the unitary root o (i.e. |a| = 1) of the
polynomial G (T) must satisfy of =1 or o*=2 = 1.

Proof. Let a = e* £ 1 (9 € R) be a unitary root of Gy (T'). Since
Gra(T)/(1=T) =1+ T (1 =T 1) /(1 - T),
we have 1 4+ o'**1(1 — o*~1) /(1 — @) = 0 so that
(1= /(1 =a) = la” "D = 1.
Hence Re a1 = Rea, that is,
cos2m(k — 1)0 — cos2m0 = —2sinwkfsinw(k — 2)0 = 0.

Thus we conclude that either k6 € Z or (k — 2)0 € Z. This proves the
lemma. =

LEMMA 4.7. Let k > 3. Suppose that a complex number a satisfies o2

= 1. Then GY () # 0.
Proof. Since
G (T) = (U + 1)IET D271 (gl 4 k) (Kl + k — 1) TR D D2
if we assume that « satisfies G (o) = 0 and a¥=2 =1, we have
pi(a) = (lk+ D)k ™" — (kI + k)(kl + k — 1)a® = 0.
This shows that a=1(lk+1)/(1+1)(kl+k — 1), which contradicts a*~2=1.
Hence the assertion follows. m

Proof of Proposition 4.5. Let [ be a positive integer. Since the unitarity
of Gy (T') and of Hy(T') are equivalent, it suffices to check the latter. It is
clear that Hj,;(T') is a unitary polynomial when &k = 1,2. Actually we have
Hy(T) =1 and Hoy(T) = 1 — T + T2+ — T2+2 = (1 — T)(1 + T?+1),
which are indeed unitary.
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Suppose k > 3. If G ;(T) is unitary, then every root of Hy (T') satisfies
a® =1 or a2 = 1 by Lemma 4.6. However, if ¥ = 1 we immediately
see that Hj (o) = 1+ (1 — a)l. Thus, Hy(a) cannot be 0 because of
the unitarity of a. Thus any root of Hy;(T) must satisfy o2 = 1 and
af # 1. By Lemma 4.7, the multiplicity of these roots of Hy,(T) is at
most 2. Since Hy;(T) is assumed to be unitary and Hy (1) # 0, it follows
that 2(k—3) > deg Hy ;(T) = k. This is possible only when [ = 1. Therefore
it is enough to prove that Hy, ;(T) is not unitary for k > 3. We put Hy(T) =
Hy1(T) =1—T +T* for simplicity. If k is odd, then Hy(T') has a real root
in the interval (—2, —1) since Hy(—1) = 1 > 0 and Hy(-2) =3 —2F < 0.
This implies Hy(7") is not unitary.

Thus, it remains to consider the case where k is even and k > 4. Suppose
that Hy(T) is unitary and let ¢ (—7 < 6 < ) be its unitary root. Then
cos k6 = cos @ —1 and sin k6 = sin §. Since 1 = sin? kf+ cos® k = 2—2 cos ¥,
we have § = +n/3. Further, since 1 = cos?6 + sin?0 = (coskf + 1)% +
sin? kf = 2 cos kf 4 2, we have cos(kn/3) = —1/2. Hence either k = 2 or 4
(mod 6). On the other hand, since 1 = (cos# — cos k#)? + (sin — sin kf)? =
2 —2cos(k—1)6, we have cos((k—1)7/3) = 1/2. It follows that either k =0
or 2 (mod6). Thus k =2 (mod6).

Now we show that every unitary root of Hy(T) is simple. If we assume
that (3 is a multiple root of Hy(T), it follows that ¥ — 34+ 1 = 0 and
k3F=1 —1=0. Then |8] = k~/*~1) and g = kB* by the second equation.
On the other hand, by the first equation, 1 = 8 — g% = (k — 1)3* so that
13| = (k—1)"Y*k. Therefore k¥ = |3|7%*+=1 = (k — 1)k~ which contradicts
the unitarity of Hy (7). This completes the proof of the proposition. m

Finally, we obtain the following generalization of the result in [IS] con-
cerning powerful numbers. The proof follows immediately from Lemma 4.4
and Proposition 4.5.

THEOREM 4.8. Let k and l be positive integers. When k = 1,2 we have
¢(2s)¢((20 + 1)s)
1,l(8) C(S), 2,l(8) C(2(2l I 1)8)
When k > 3, Fj,i(s) is meromorphic in Res > 0 and has a natural boundary
Res=0.m

COROLLARY 4.9. Let Zgg""’k’l)(s) be as in Theorem 4.1. Then for k =
1,2 we have

[+1 1+1
(17'“71»1) — y (2,...,2,1) _ C 2l + ]-
Z{ b (s) jchcys), ZE2(s5) = CTESID] r:[

For k > 3, Zgé"”’k’l)(s) can be meromorphically extended to Res > 0 with a
natural boundary Res = 0. =
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5. Closing remarks. We give two remarks.

e The isomorphism classes of abelian groups A of order n are indexed by
the map A from the set of all prime numbers to that of partitions such that

£(A(p))
H pP®I 4 @ ég Z/p )7,

p:prime p:prime j=1

where |A(p)| and £(A(p)) are the size and length of the partition A(p) =
(Aj(p))j>1 respectively. The multiple finite Riemann zeta function is ex-
pressed also as Z[(s) = >_,, xm gx (n)n". Here gii(n) is the number of the
isomorphism classes of abelian groups of order n, parametrized by A such
that Ai(p) < m and ¢(A(p)) < ord, N for all p. It is clear that g}}(n) is
multiplicative with respect to n and N. Put ¢ (n) := limy_.c g3/(n). Then
g2 (n) is the number of isomorphism classes of abelian groups A of order n
which are direct sums of p-groups A, such that p™A, = 0 for p|n.

We now study the asymptotic average for g72(n) and Z,' (o) (¢ € R) with
respect to n. Thus we need the Tauberian theorem below (see, e.g., [MM]).

LEMMA 5.1. Let F(t) = >.°° ayn~" be a Dirichlet series with non-
negative real coefficients which converges absolutely for Ret > (. Suppose
that F'(t) has a meromorphic continuation to the region Ret > [ with a pole

of order o +1 att = 3 for some a > 0. Put
o 1 : a+1
c:= ath_r%(t—ﬁ) F(t).
Then
Z an = (c+o0(1)z’(logz)® asz — co. m

n<x

Using this lemma, we easily obtain the following results. Let m be a
positive integer.

1. We have > _ g% (n) = (C(2)¢(3)---¢(m) + o(1))x as * — oo. In
other words, the asymptotic average of g™ (n) with respect to n is the

product ¢(2)¢(3)---{(m).

2. For a fixed ¢ > 0, when & — oo,

> Z7Mo) = ((lo + 1)¢(20 + 1) - {(mo + 1) + o(1))z,
sz (C(o+1)¢(20 +1)---(mo + 1) + o(1))z ™,

Szro =Y ] <0rd ”+m> _ <%+0(1)>x(loga¢)m

n<lx n<x p:prime
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Actually, since ((s) has a single pole at s = 1 and Ress—1 ((s) = 1, the
first assertion follows from (2.6) and Lemma 5.1. Next, fix 0 € R. By (2.6),

we have
m

— ZZZ‘(U)n_t = H C(t—}— k‘O').
n=1

k=0

This shows that the abscissa of absolute convergence of the Dirichlet se-
ries (" (o,t) is t = max{1l,1 — mo}. Hence the remaining formulas follow
similarly.

REMARK 5.1. For g(n) := limy,—.0 g2 (n), it is well known (see [A]) that

> g(n) (HC )w+0 V).

n<x

Since Z}(0) = d(n) = > 1, we have >°, . d(n) ~ zlogz. It is also
well known (see [Z]) that there exists a constant C' such that > _ d(n) =
zlogx + Cx 4+ O(y/) in an elementary way. m

e We define a multiple Eisenstein series with parameter s of type m by

oo
=> Z"(1—s)q"
n=1

We sometimes write E7(7) instead of E™(q) when ¢ = €?™7 with 7 € C,
Im7 > 0. It is obvious that E}(q) is (essentially) the usual holomorphic
Eisenstein series of weight k. In this remark we make an experimental study
of E™(q) when m = 2. First, the following is easily obtained:

LEMMA 5.2. We have E? 1(q) = Y121 > N1 0s(N)N%¢N!. u

Recall now the Fourier expansion of Ej1(7) of weight k+1 with k being
odd:

1 (2m)k+1 R
RCE
1 (271'2)’“+1

(Z b C(k:+1) A Eli—i—l(T))-

Take the kth derivative of Ejy.1(7). Then, if k is odd, by Lemma 5.2 we
immediately get

n

Ep(7) =1+ o1(n)g

n=1

k
Eia(r) = % <dd kEk+1> (I7).
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There is also an expression of 2 +1(7’) similar to Eyy1(7), when k is odd:

2 2k—1 —2k—1
Ejp(1) = 2m 2k+1 Z Z DT (er +d) :
1=1 (¢, d)=1
c>0
References
[A] G. E. Andrews, Number Theory, Dover, 1994.

[AAR] G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia Math.
Appl. 71, Cambridge Univ. Press, Cambridge, 1999.

[BCKV] D. Bump, K.-K. Choi, P. Kurlberg and J. Vaaler, A local Riemann hypothesis,
Math. Z. 233 (2000), 1-19.

[E] T. Estermann, On certain functions represented by Dirichlet series, Proc. Lon-
don Math. Soc. 27 (1928), 435-448.

[ A. Ivi¢, The Riemann Zeta-Functions. The Theory of the Riemann Zeta-Func-
tion with Applications, Wiley, 1985.

[IS] A. Ivi¢ and P. Shiu, The distribution of powerful integers, Illinois J. Math. 26
(1982), 576-590.

K] N. Kurokawa, On the meromorphy of Euler products (I), (II), Proc. London

Math. Soc. 53 (1986), 1-47, 209-236.
[KMW] N. Kurokawa, S. Matsuda and M. Wakayama, Gamma factors and functional
equations of higher Riemann zeta functions, preprint (2003).

[KW] N. Kurokawa and M. Wakayama, Higher Selberg zeta functions, Comm. Math.
Phys. 247 (2004), 447-466.
[M] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford
Univ. Press, 1995.
[MM] M. R. Murty and V. K. Murty, Non-vanishing of L-functions and Applications,
Progr. Math. 157, Birkhauser, 1997.
[Z] D. Zagier, Zetafunktionen und quadratische Kérper, Springer, Berlin, 1981.
Department of Mathematical Science Graduate School of Mathematics
University of the Ryukyus Kyushu University
Nishihara, Okinawa Hakozaki Higashi-ku, Fukuoka
903-0213 Japan 812-8581 Japan
E-mail: kimoto@math.u-ryukyu.ac.jp E-mail: ma203029@math.kyushu-u.ac.jp
Department of Mathematics Faculty of Mathematics
Tokyo Institute of Technology Kyushu University
Oh-okayama Meguro-ku, Tokyo Hakozaki Higashi-ku, Fukuoka
152-0033 Japan 812-8581 Japan
E-mail: kurokawa@math.titech.ac.jp E-mail: wakayama@math.kyushu-u.ac.jp

Received on 185.4.200/
and in revised form on 18.5.200/ (4750)



