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1. Introduction. An outstanding problem in Diophantine approxima-
tion, motivated initially by Mahler’s and Koksma’s classifications of num-
bers, is to provide sharp estimates for the approximation of a real number
by algebraic numbers of bounded degree. Starting with the pioneer work
[Wi] of E. Wirsing in 1961, this problem has been studied by many authors
and extended in several directions. A good account of this can be found in
Chapter 3 of [Bu]. For our purpose, let us simply mention that, in 1969,
H. Davenport and W. M. Schmidt gave estimates for the approximation by
algebraic integers [DS] and that, more recently, D. Roy and M. Waldschmidt
looked at simultaneous approximations by several conjugate algebraic inte-
gers [RW]. While the latter work was limited to at most one quarter of the
conjugates, we consider here the problem of simultaneous approximation of
a real number by all (resp. all but one) conjugates of an algebraic number
(resp. algebraic integer). Upon defining the height H(P) of a polynomial
P € R[T] to be the largest absolute value of its coefficients, and the height
H(«) of an algebraic number o € C to be the height of its irreducible poly-
nomial in Z[T], our main result reads as follows.

THEOREM A. Let & € R\Q and let n € N*. There exist positive constants
c1, co, depending only on & and n, with the following properties:

(i) There are infinitely many algebraic numbers « of degree n such that
(1) max|¢ —a] < e H(a)™/"
(0%

where the mazimum is taken over all conjugates @ of a.
(ii) There are infinitely many algebraic integers a of degree n + 1 such
that
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(2) max|§ —a] < c2H ()"

where the mazximum is taken over all conjugates @ different from «.

In the case n = 2, this improves the estimates of the Corollary in Sec-
tion 1 of [AR]. In fact, as we will see in the next section, the statement
of part (i) is optimal up to the value of ¢; for each £ € R\ Q, while the
statement of part (ii) is optimal up to the value of ¢y at least for quadratic
irrational values of £. This seems to be the first instance where an optimal
exponent of approximation is known for all values of the degree n in this type
of problem. The fact that we can control the degree of the approximations
originates from an observation of Y. Bugeaud and O. Teulié in [BT].

An irrational real number £ is said to be badly approximable if there
exists a constant ¢ > 0 such that |€ — p/q| > cg~2 for any rational number
p/q. This is equivalent to asking that £ has bounded partial quotients in
its continued fraction expansion (see Theorem 5F in Chapter 1 of [Sc]). For
these numbers, we can refine Theorem A as follows.

THEOREM B. Let £ € R\ Q be badly approzimable and let n € N*. Then
there exist positive constants ci,...,cq, depending only on £ and n, with the
following properties:

(i) For each real number X > 1, there is an algebraic number « of degree
n satisfying (1) and c3X < H(a) < ¢y X.

(ii) For each real number X > 1, there is an algebraic integer o of degree
n+ 1 satisfying (2) and c3X < H(a) < caX.

The proof of both results follows the method introduced by Davenport and
Schmidt in [DS]. Let R[T']<,, denote the real vector space of polynomials of
degree < n in R[T], and let Z[T|<,, denote the subgroup of polynomials with
integral coefficients in R[T']|<,,. We first provide estimates for the last minimum
of certain convex bodies of R[T<,, with respect to Z[T]|<, and then deduce
the existence of polynomials of Z[T']| <, with specific inhomogeneous Diophan-
tine properties. This is done in Section 3. In Section 4, we show that these
polynomials have roots which meet the requirements of Theorem A or B.

Throughout this paper, all implied constants in the Vinogradov symbols
>, < and their conjunction =< depend only on & and n.

2. Optimality of the exponents of approximation. Let { € R\ Q
and let n € N*. If n > 2, the result in part (i) of Theorem A is optimal up
to the value of the implied constant since, for any algebraic number « of
degree n with conjugates aq, ..., ap, the discriminant D(«) of « satisfies
ID()] < H(@)*™™ T ai—aj* < H(@)*"D(2 max |¢ - ay))""Y.

- 1<i<n
1<i<j<n
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Since D(«) is a non-zero integer, its absolute value is > 1, and thus we
deduce that

] > 1 -2/n
121%}%’5 a;| > QH(O‘)

(compare with §5 of [Wi]). If n = 1, the result is optimal for any badly
approximable £. Note that a similar argument also shows that, for any al-

gebraic integer « of degree n 4+ 1 with conjugates aq, ..., apt1, we have
ma — ;| > LH(a)"%/ (1),
1§i§1|§ z‘—g ()

Similarly, the result in part (ii) of Theorem A is optimal up to the value
of the implied constant when £ is a quadratic irrational number. To prove
this, suppose that an algebraic integer a of degree n 4+ 1 has conjugates
aq, ..., 0np+1 distinet from & with the first n satisfying

— o4 < 1.
Jax € —a;] <
Let Q(T) € Z[T] be the irreducible polynomial of £ over Z. Since « is an
algebraic integer, the product Q(aq)--- Q(a,+1) is a rational integer, and
since it is non-zero (because ¢ is not a conjugate of «), we deduce that

n+1

1< H Q)]
=1

For each i = 1,...,n, we have |Q(«;)| < [§ — ;| since £ is a root of @
and |€ — a;] < 1. We also have |Q(ap11)] < max{l,|an41|}? since Q has
degree 2. This gives

1< H(a)* T 1€ = o
=1

and consequently max)<j<,, | — a;| > H(a) 2/™.

REMARK 1. It would be interesting to know if there exist as well tran-
scendental numbers £ for which the exponent 2/n for H(«) in Theorem A
part (ii) is best possible.

REMARK 2. The case where £ € Q is not interesting as it leads to much
weaker estimates. In this case, one finds that, for each algebraic number « of
degree n with o # &, one has maxg |€ — @| > H(a)™'/", and that, for each
algebraic integer o of degree n + 1 with a # £, one has maxgzq | — @] >
H ()=,

3. Construction of polynomials. Throughout this section, we fix an
irrational real number £ € R\ Q and a positive integer n > 1. For each
integer ¢ > 1, we denote by C(q) the convex body of R[T]<, which consists



66 G. Alain

of all polynomials P € R[T|<,, satisfying
PH©I <™ (0<k<n),

where P (€) = P(®)(£)/k! denotes the kth divided derivative of P at ¢ (the
coefficient of (T — €)¥ in the Taylor expansion of P at &). We first prove:

PROPOSITION 3.1. Let q be the denominator of a convergent of £&. Then
the last minimum of C(q) with respect to the lattice Z|T <y, is < 2", and
its first minimum is > (2" (n 4+ 1)1)~L. Moreover, the convex body 2"C(q)
contains a basis of Z[T|<,, over Z.

Proof. Put L1 = qT — p where p/q denotes a convergent of £ with de-
nominator ¢. If ¢ > 1, we also define Ly = qoT — po where pg/qo is the
previous convergent of £ (in reduced form). If ¢ = 1, we simply take Ly = 1.
The theory of continued fractions tells us that these linear forms satisfy

(3) L@l <a™", L@ <q

for i = 0,1, and moreover that their determinant (or Wronskian) is £1 (see
§4 in Chapter I of [Sc]). The latter fact means that {Log, L1} spans Z[T]|<;
over Z. Therefore the products P; = L{)L?ffj (0 < j <n) span Z[T]<, over
Z and, since the rank of Z[T'|<,, is n+ 1, they form in fact a basis of Z[T|<,,
over Z. Using (3), we also find that

n -n n 2k—n .
o< (1) sz <k

Thus {Fo, ..., P,} is a basis of Z[T']<,, contained in 2"C(q). This proves the
last assertion of the proposition as well as the fact that the last minimum
of C(q) is < 2™.

Identify R[T)<, with R""! under the map which sends a polynomial
ag + a1T + -+ + a,T™ to the point (ag,ai,...,a,). Then the linear map
0 : R[T)<, — R""! given by 8(P) = (P(¢), PI(¢),..., PPl(€)) has deter-
minant 1 and so C(q) has volume []}_,(2¢**") = 271, Since the lattice
Z[T)<pn has co-volume 1 (it is identified with Z"!), Minkowski’s second
convex body theorem shows that the successive minima Aq,..., Ay of
C(q) with respect to Z[T)<, satisfy ((n + 1)!)~1 < Ay~ Apy1 < 1. Since
Ay < -os < Apgr <27 this implies that Ay > (2”2(71 +1)H7 L -

The construction of polynomials given by the next proposition uses only
the last assertion of Proposition 3.1.

PROPOSITION 3.2. Let q be the denominator of a convergent of &. There
exist an irreducible polynomial P(T) € Z[T| of degree n and an irreducible
monic polynomial Q(T) € Z[T] of degree n + 1 satisfying
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esq™ " < [PP(O]1QM(E)] < 3esg®™ " (0< k<)

where c5 = (n + 1)2"+1L,

Note that such polynomials have height = ¢".

Proof. The last assertion of Proposition 3.1 states the existence of a basis
{Po, ..., P} of Z|T)<y, satisfying
(4) IPHe) <2mg® " (0<jk<n).
Since {Py,..., Py} is a basis of Z[T]<, over Z, we can write T" + 2 =
> j=o bj P5(T) for some by, ..., b, € Z. Consider the polynomial

R(T) =2c5 Y _ ¢ "(T — &)

k=0
where ¢5 = (n + 1)2""L. Since {Py,..., P,} is also a basis of R[T]<, over
R, we can also write R(T") = > "_, 0;P;(T) for some 0y, ...,0, € R. Choose
integers ao, . . ., an such that a; = b; mod4 and |a; —0;| < 2for j =0,...,n,

and define P(T) = >_7_ a; P;(T).

By construction P(T') belongs to Z[T]<y, and is congruent to 7" + 2
modulo 4. Thus it is a polynomial of degree n over Q and it is irreducible
by virtue of Eisenstein’s criterion (for the prime 2). Since P(T') — R(T) =
> j—ola; — 0;)P;(T), we deduce from (4) that

[PH@©) ~ RM© <3 | — 65 [P©)] < s (0<k <),
j=0
Since RIFI(€) = 2¢5¢% ™, it follows that c5q®*~™ < |PF(€)| < 3¢s5¢? " for
k=0,...,n, as required.
The construction of Q(T) is similar. Write

T 42 = T LS PT),  (T—&)" T 4 R(T) = T+ 64 P,(T),
=0 §=0

with b, ..., b, € Z and 6[,...,0], € R, and choose integers aj, ..., a}, such
that a’; = b; mod4 and |a} — 07| <2 for j =0,...,n. Then the polynomial

QT) =T + > d;Py(T) € Z[T)
j=0
is irreducible (by virtue of Eisenstein’s criterion for 2), monic of degree n+1,
and also satisfies |Q¥(¢) — R (€)] < e5¢® " for k=0,...,n. =

4. Proof of Theorems A and B. In this section, we prove the main
Theorems A and B of the introduction by combining Proposition 3.2 with
the following result.
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PROPOSITION 4.1. Let £ € R, let n € N*, let § > 0 and let P be a subset
of Z|T). Suppose that the elements of P are either polynomials of degree n
or monic polynomials of degree n + 1. Then the following conditions are
equivalent:

(i) There exists a constant cg > 0 such that |PH(¢)| < cgH(P) ==k
for each P € P and each k =10,1,...,n.

(ii) There exists a constant c; > 0 such that |¢ — a| < c;H(P)™° for
each P € P and for n of the roots o of P, counting multiplicity.

Proof. Fix P € P and write it in the form
P(T)=ap(T —a1) (T — ap),

where m = deg P and «ay, ..., a,, are the roots of P ordered so that we have
1€ — | <--- < |€ — aup|. We put € = H(P)~% and consider the polynomial

R(T) = P(eT + &) = aoe™ [[(T + & (£ — ).
k=1
The height of R is

H(R) = max |[RM(0)] = max |PF(¢)[e",

0<k<m 0<k<m

and its Mahler measure is
m m
M(R) = |agle™ | [ max{1,e7 "¢ — au|} = |ao| | [ max{e, |¢ — cl}.
k=1 k=1

For convenience, we also define
I lao if m=n,
-\ max{e, |6 —an|} fm=n+1,

so that the formula for M (R) becomes

M(R) =1L H max{e, | — ail}
k=1

(recall that ag = 1 when m = n + 1). Our argument below is based on the
standard inequalities relating these notions of heights, namely

M(R) < (m+1)H(R) and H(R) < 2"M(R).

If condition (ii) holds, we find that M(R) < ¢"L. We also have L <
H(P) since |ag| < H(P) and since |{ — a| < max{l, |a|} < H(P) for any
root o of P. Then, for each k = 0,...,n, we obtain

1PM(¢6)| < e7FH(R) < e *"M(R) < " *H(P),

which shows that condition (i) holds.
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Conversely assume that condition (i) holds. In this case we find that
H(R) < e"H(P). We claim that H(P) < L. If we take this for granted, we
deduce that

Le™ ¢ — a,| < M(R) < H(R) < "L

which implies that condition (ii) holds.
To prove the claim, we observe that

H(P) = H(P(T +©) = max |PH(g)]

By hypothesis, we have |P¥(¢)| < ¢gH(P)'~% for k= 0,...,n — 1 and we
also have [PI™(¢)] = 1 if m = n + 1. Finally, we have |P"(¢)| = |ag| if
m =n, and |PP(&)] = | 7, (€ — ag)| < m|€ — am| if m = n + 1, showing
that | P (€)| < L. All this implies that

H(P) < max{l, L}.
Since L > & = H(P)™°, this in turn implies that H(P) < L. m

Proof of the theorems. Let £ € R\ Q and n € N*. We simply prove part
(ii) of Theorems A and B since the proof of part (i) is similar and slightly
easier.

For each denominator ¢ of a convergent of &, Proposition 3.2 shows the
existence of an irreducible monic polynomial @ € Z[T] of degree n + 1
satisfying H(Q) =< ¢" and

QMI(&)] < e H(Q)HF /M = ¢ H(Q)'~""ME/M (0 <k < n)

for some constant cg = (&, n). The family P of these polynomials satisfies
condition (i) of Proposition 4.1 for the choice § = 2/n, and so it also satisfies
condition (ii) of the same proposition for the same value of ¢ and for some
constant ¢7. For each @ € P, choose a root a of ) for which |{ — «f is
maximal. Since @) is irreducible, this root « is an algebraic integer of degree
n + 1 and height H(a) = H(Q) whose conjugates @ over QQ are the n + 1
distinct roots of Q. Therefore, we get maxgsy |€ — @| < c7H(a)"2/™. This
proves part (ii) of Theorem A since we find infinitely many such numbers «
by varying Q.

If ¢ is badly approximable, the ratios of the denominators of consecutive
convergents of £ are bounded. Thus, for each X > 1, there exists such a
denominator ¢ with ¢ =< X", and so there exists a polynomial Q € P with
H(Q) =< X. Consequently, the root a of @ that we chose above satisfies
H(«a) < X and this proves part (ii) of Theorem B.
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