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1. Introduction. An outstanding problem in Diophantine approxima-
tion, motivated initially by Mahler’s and Koksma’s classifications of num-
bers, is to provide sharp estimates for the approximation of a real number
by algebraic numbers of bounded degree. Starting with the pioneer work
[Wi] of E. Wirsing in 1961, this problem has been studied by many authors
and extended in several directions. A good account of this can be found in
Chapter 3 of [Bu]. For our purpose, let us simply mention that, in 1969,
H. Davenport and W. M. Schmidt gave estimates for the approximation by
algebraic integers [DS] and that, more recently, D. Roy and M. Waldschmidt
looked at simultaneous approximations by several conjugate algebraic inte-
gers [RW]. While the latter work was limited to at most one quarter of the
conjugates, we consider here the problem of simultaneous approximation of
a real number by all (resp. all but one) conjugates of an algebraic number
(resp. algebraic integer). Upon defining the height H(P ) of a polynomial
P ∈ R[T ] to be the largest absolute value of its coefficients, and the height

H(α) of an algebraic number α ∈ C to be the height of its irreducible poly-
nomial in Z[T ], our main result reads as follows.

Theorem A. Let ξ ∈ R\Q and let n ∈ N∗. There exist positive constants

c1, c2, depending only on ξ and n, with the following properties:

(i) There are infinitely many algebraic numbers α of degree n such that

(1) max
α

|ξ − α| ≤ c1H(α)−2/n

where the maximum is taken over all conjugates α of α.

(ii) There are infinitely many algebraic integers α of degree n + 1 such

that
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(2) max
α6=α

|ξ − α| ≤ c2H(α)−2/n

where the maximum is taken over all conjugates α different from α.

In the case n = 2, this improves the estimates of the Corollary in Sec-
tion 1 of [AR]. In fact, as we will see in the next section, the statement
of part (i) is optimal up to the value of c1 for each ξ ∈ R \ Q, while the
statement of part (ii) is optimal up to the value of c2 at least for quadratic
irrational values of ξ. This seems to be the first instance where an optimal
exponent of approximation is known for all values of the degree n in this type
of problem. The fact that we can control the degree of the approximations
originates from an observation of Y. Bugeaud and O. Teulié in [BT].

An irrational real number ξ is said to be badly approximable if there
exists a constant c > 0 such that |ξ − p/q| ≥ cq−2 for any rational number
p/q. This is equivalent to asking that ξ has bounded partial quotients in
its continued fraction expansion (see Theorem 5F in Chapter 1 of [Sc]). For
these numbers, we can refine Theorem A as follows.

Theorem B. Let ξ ∈ R\Q be badly approximable and let n ∈ N∗. Then

there exist positive constants c1, . . . , c4, depending only on ξ and n, with the

following properties:

(i) For each real number X ≥ 1, there is an algebraic number α of degree

n satisfying (1) and c3X ≤ H(α) ≤ c4X.

(ii) For each real number X ≥ 1, there is an algebraic integer α of degree

n + 1 satisfying (2) and c3X ≤ H(α) ≤ c4X.

The proof of both results follows the method introduced by Davenport and
Schmidt in [DS]. Let R[T ]≤n denote the real vector space of polynomials of
degree ≤ n in R[T ], and let Z[T ]≤n denote the subgroup of polynomials with
integral coefficients in R[T ]≤n. We first provide estimates for the last minimum
of certain convex bodies of R[T ]≤n with respect to Z[T ]≤n and then deduce
the existence of polynomials of Z[T ]≤n with specific inhomogeneous Diophan-
tine properties. This is done in Section 3. In Section 4, we show that these
polynomials have roots which meet the requirements of Theorem A or B.

Throughout this paper, all implied constants in the Vinogradov symbols
≫, ≪ and their conjunction ≍ depend only on ξ and n.

2. Optimality of the exponents of approximation. Let ξ ∈ R \ Q

and let n ∈ N∗. If n ≥ 2, the result in part (i) of Theorem A is optimal up
to the value of the implied constant since, for any algebraic number α of
degree n with conjugates α1, . . . , αn, the discriminant D(α) of α satisfies

|D(α)| ≤ H(α)2(n−1)
∏

1≤i<j≤n

|αi −αj |
2 ≤ H(α)2(n−1)(2 max

1≤i≤n
|ξ −αi|)

n(n−1).
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Since D(α) is a non-zero integer, its absolute value is ≥ 1, and thus we
deduce that

max
1≤i≤n

|ξ − αi| ≥
1
2H(α)−2/n

(compare with §5 of [Wi]). If n = 1, the result is optimal for any badly
approximable ξ. Note that a similar argument also shows that, for any al-
gebraic integer α of degree n + 1 with conjugates α1, . . . , αn+1, we have

max
1≤i≤n

|ξ − αi| ≥
1
2H(α)−2/(n−1).

Similarly, the result in part (ii) of Theorem A is optimal up to the value
of the implied constant when ξ is a quadratic irrational number. To prove
this, suppose that an algebraic integer α of degree n + 1 has conjugates
α1, . . . , αn+1 distinct from ξ with the first n satisfying

max
1≤i≤n

|ξ − αi| ≤ 1.

Let Q(T ) ∈ Z[T ] be the irreducible polynomial of ξ over Z. Since α is an
algebraic integer, the product Q(α1) · · ·Q(αn+1) is a rational integer, and
since it is non-zero (because ξ is not a conjugate of α), we deduce that

1 ≤
n+1
∏

i=1

|Q(αi)|.

For each i = 1, . . . , n, we have |Q(αi)| ≪ |ξ − αi| since ξ is a root of Q
and |ξ − αi| ≤ 1. We also have |Q(αn+1)| ≪ max{1, |αn+1|}

2 since Q has
degree 2. This gives

1 ≪ H(α)2
n

∏

i=1

|ξ − αi|

and consequently max1≤i≤n |ξ − αi| ≫ H(α)−2/n.

Remark 1. It would be interesting to know if there exist as well tran-
scendental numbers ξ for which the exponent 2/n for H(α) in Theorem A
part (ii) is best possible.

Remark 2. The case where ξ ∈ Q is not interesting as it leads to much
weaker estimates. In this case, one finds that, for each algebraic number α of
degree n with α 6= ξ, one has maxα |ξ − α| ≫ H(α)−1/n, and that, for each
algebraic integer α of degree n + 1 with α 6= ξ, one has maxα 6=α |ξ − α| ≫

H(α)−1/n.

3. Construction of polynomials. Throughout this section, we fix an
irrational real number ξ ∈ R \ Q and a positive integer n ≥ 1. For each
integer q ≥ 1, we denote by C(q) the convex body of R[T ]≤n which consists
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of all polynomials P ∈ R[T ]≤n satisfying

|P [k](ξ)| ≤ q2k−n (0 ≤ k ≤ n),

where P [k](ξ) = P (k)(ξ)/k! denotes the kth divided derivative of P at ξ (the
coefficient of (T − ξ)k in the Taylor expansion of P at ξ). We first prove:

Proposition 3.1. Let q be the denominator of a convergent of ξ. Then

the last minimum of C(q) with respect to the lattice Z[T ]≤n is ≤ 2n, and

its first minimum is ≥ (2n2

(n + 1)!)−1. Moreover , the convex body 2nC(q)
contains a basis of Z[T ]≤n over Z.

Proof. Put L1 = qT − p where p/q denotes a convergent of ξ with de-
nominator q. If q > 1, we also define L0 = q0T − p0 where p0/q0 is the
previous convergent of ξ (in reduced form). If q = 1, we simply take L0 = 1.
The theory of continued fractions tells us that these linear forms satisfy

(3) |Li(ξ)| ≤ q−1, |L′
i(ξ)| ≤ q

for i = 0, 1, and moreover that their determinant (or Wronskian) is ±1 (see
§4 in Chapter I of [Sc]). The latter fact means that {L0, L1} spans Z[T ]≤1

over Z. Therefore the products Pj = Lj
0L

n−j
1 (0 ≤ j ≤ n) span Z[T ]≤n over

Z and, since the rank of Z[T ]≤n is n+1, they form in fact a basis of Z[T ]≤n

over Z. Using (3), we also find that

|P
[k]
j (ξ)| ≤

(

n

k

)

q2k−n ≤ 2nq2k−n (0 ≤ j, k ≤ n).

Thus {P0, . . . , Pn} is a basis of Z[T ]≤n contained in 2nC(q). This proves the
last assertion of the proposition as well as the fact that the last minimum
of C(q) is ≤ 2n.

Identify R[T ]≤n with Rn+1 under the map which sends a polynomial
a0 + a1T + · · · + anTn to the point (a0, a1, . . . , an). Then the linear map
θ : R[T ]≤n → Rn+1 given by θ(P ) = (P (ξ), P [1](ξ), . . . , P [n](ξ)) has deter-
minant 1 and so C(q) has volume

∏n
k=0(2q2k−n) = 2n+1. Since the lattice

Z[T ]≤n has co-volume 1 (it is identified with Zn+1), Minkowski’s second
convex body theorem shows that the successive minima λ1, . . . , λn+1 of
C(q) with respect to Z[T ]≤n satisfy ((n + 1)!)−1 ≤ λ1 · · ·λn+1 ≤ 1. Since

λ2 ≤ · · · ≤ λn+1 ≤ 2n, this implies that λ1 ≥ (2n2

(n + 1)!)−1.

The construction of polynomials given by the next proposition uses only
the last assertion of Proposition 3.1.

Proposition 3.2. Let q be the denominator of a convergent of ξ. There

exist an irreducible polynomial P (T ) ∈ Z[T ] of degree n and an irreducible

monic polynomial Q(T ) ∈ Z[T ] of degree n + 1 satisfying
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c5q
2k−n ≤ |P [k](ξ)|, |Q[k](ξ)| ≤ 3c5q

2k−n (0 ≤ k ≤ n)

where c5 = (n + 1)2n+1.

Note that such polynomials have height ≍ qn.

Proof. The last assertion of Proposition 3.1 states the existence of a basis
{P0, . . . , Pn} of Z[T ]≤n satisfying

(4) |P
[k]
j (ξ)| ≤ 2nq2k−n (0 ≤ j, k ≤ n).

Since {P0, . . . , Pn} is a basis of Z[T ]≤n over Z, we can write Tn + 2 =
∑n

j=0 bjPj(T ) for some b0, . . . , bn ∈ Z. Consider the polynomial

R(T ) = 2c5

n
∑

k=0

q2k−n(T − ξ)k

where c5 = (n + 1)2n+1. Since {P0, . . . , Pn} is also a basis of R[T ]≤n over
R, we can also write R(T ) =

∑n
j=0 θjPj(T ) for some θ0, . . . , θn ∈ R. Choose

integers a0, . . . , an such that aj ≡ bj mod4 and |aj−θj | ≤ 2 for j = 0, . . . , n,
and define P (T ) =

∑n
j=0 ajPj(T ).

By construction P (T ) belongs to Z[T ]≤n and is congruent to Tn + 2
modulo 4. Thus it is a polynomial of degree n over Q and it is irreducible
by virtue of Eisenstein’s criterion (for the prime 2). Since P (T ) − R(T ) =
∑n

j=0(aj − θj)Pj(T ), we deduce from (4) that

|P [k](ξ) − R[k](ξ)| ≤
n

∑

j=0

|aj − θj | |P
[k]
j (ξ)| ≤ c5q

2k−n (0 ≤ k ≤ n).

Since R[k](ξ) = 2c5q
2k−n, it follows that c5q

2k−n ≤ |P [k](ξ)| ≤ 3c5q
2k−n for

k = 0, . . . , n, as required.
The construction of Q(T ) is similar. Write

Tn+1 +2 = Tn+1 +
n

∑

j=0

b′jPj(T ), (T −ξ)n+1 +R(T ) = Tn+1 +
n

∑

j=0

θ′jPj(T ),

with b′0, . . . , b
′
n ∈ Z and θ′0, . . . , θ

′
n ∈ R, and choose integers a′0, . . . , a

′
n such

that a′j ≡ b′j mod4 and |a′j − θ′j | ≤ 2 for j = 0, . . . , n. Then the polynomial

Q(T ) = Tn+1 +

n
∑

j=0

a′jPj(T ) ∈ Z[T ]

is irreducible (by virtue of Eisenstein’s criterion for 2), monic of degree n+1,
and also satisfies |Q[k](ξ) − R[k](ξ)| ≤ c5q

2k−n for k = 0, . . . , n.

4. Proof of Theorems A and B. In this section, we prove the main
Theorems A and B of the introduction by combining Proposition 3.2 with
the following result.
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Proposition 4.1. Let ξ ∈ R, let n ∈ N∗, let δ > 0 and let P be a subset

of Z[T ]. Suppose that the elements of P are either polynomials of degree n
or monic polynomials of degree n + 1. Then the following conditions are

equivalent :

(i) There exists a constant c6 > 0 such that |P [k](ξ)| ≤ c6H(P )1−(n−k)δ

for each P ∈ P and each k = 0, 1, . . . , n.

(ii) There exists a constant c7 > 0 such that |ξ − α| ≤ c7H(P )−δ for

each P ∈ P and for n of the roots α of P , counting multiplicity.

Proof. Fix P ∈ P and write it in the form

P (T ) = a0(T − α1) · · · (T − αm),

where m = deg P and α1, . . . , αm are the roots of P ordered so that we have
|ξ − α1| ≤ · · · ≤ |ξ − αm|. We put ε = H(P )−δ and consider the polynomial

R(T ) = P (εT + ξ) = a0ε
m

m
∏

k=1

(T + ε−1(ξ − αk)).

The height of R is

H(R) = max
0≤k≤m

|R[k](0)| = max
0≤k≤m

|P [k](ξ)|εk,

and its Mahler measure is

M(R) = |a0|ε
m

m
∏

k=1

max{1, ε−1|ξ − αk|} = |a0|

m
∏

k=1

max{ε, |ξ − αk|}.

For convenience, we also define

L =

{

|a0| if m = n,

max{ε, |ξ − αm|} if m = n + 1,

so that the formula for M(R) becomes

M(R) = L
n

∏

k=1

max{ε, |ξ − αk|}

(recall that a0 = 1 when m = n + 1). Our argument below is based on the
standard inequalities relating these notions of heights, namely

M(R) ≤ (m + 1)H(R) and H(R) ≤ 2mM(R).

If condition (ii) holds, we find that M(R) ≪ εnL. We also have L ≪
H(P ) since |a0| ≤ H(P ) and since |ξ − α| ≪ max{1, |α|} ≪ H(P ) for any
root α of P . Then, for each k = 0, . . . , n, we obtain

|P [k](ξ)| ≪ ε−kH(R) ≪ ε−kM(R) ≪ εn−kH(P ),

which shows that condition (i) holds.
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Conversely assume that condition (i) holds. In this case we find that
H(R) ≪ εnH(P ). We claim that H(P ) ≪ L. If we take this for granted, we
deduce that

Lεn−1|ξ − αn| ≤ M(R) ≪ H(R) ≪ εnL

which implies that condition (ii) holds.

To prove the claim, we observe that

H(P ) ≍ H(P (T + ξ)) = max
0≤k≤m

|P [k](ξ)|.

By hypothesis, we have |P [k](ξ)| ≤ c6H(P )1−δ for k = 0, . . . , n − 1 and we
also have |P [m](ξ)| = 1 if m = n + 1. Finally, we have |P [n](ξ)| = |a0| if
m = n, and |P [n](ξ)| = |

∑m
k=1(ξ − αk)| ≤ m|ξ − αm| if m = n + 1, showing

that |P [n](ξ)| ≪ L. All this implies that

H(P ) ≪ max{1, L}.

Since L ≥ ε = H(P )−δ, this in turn implies that H(P ) ≪ L.

Proof of the theorems. Let ξ ∈ R \ Q and n ∈ N∗. We simply prove part
(ii) of Theorems A and B since the proof of part (i) is similar and slightly
easier.

For each denominator q of a convergent of ξ, Proposition 3.2 shows the
existence of an irreducible monic polynomial Q ∈ Z[T ] of degree n + 1
satisfying H(Q) ≍ qn and

|Q[k](ξ)| ≤ c6H(Q)(2k−n)/n = c6H(Q)1−(n−k)(2/n) (0 ≤ k ≤ n)

for some constant c6 = c6(ξ, n). The family P of these polynomials satisfies
condition (i) of Proposition 4.1 for the choice δ = 2/n, and so it also satisfies
condition (ii) of the same proposition for the same value of δ and for some
constant c7. For each Q ∈ P, choose a root α of Q for which |ξ − α| is
maximal. Since Q is irreducible, this root α is an algebraic integer of degree
n + 1 and height H(α) = H(Q) whose conjugates α over Q are the n + 1
distinct roots of Q. Therefore, we get maxα6=α |ξ − α| ≤ c7H(α)−2/n. This
proves part (ii) of Theorem A since we find infinitely many such numbers α
by varying Q.

If ξ is badly approximable, the ratios of the denominators of consecutive
convergents of ξ are bounded. Thus, for each X ≥ 1, there exists such a
denominator q with q ≍ X1/n, and so there exists a polynomial Q ∈ P with
H(Q) ≍ X. Consequently, the root α of Q that we chose above satisfies
H(α) ≍ X and this proves part (ii) of Theorem B.
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