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1. Introduction. In a recent article [3], we investigated Thue’s Funda-
mentaltheorem [2], showing when it can be used and how to use it in these
cases. Using the notation of Theorems 2.1 and 2.4 of [3], we also showed
that the case when [K(β1) : K] = 1 is equivalent to the “usual” hypergeo-
metric method (see Corollary 2.6 of [3]), where, here and in what follows, K
is either Q or an imaginary quadratic field.

We also considered the case of [K(β1) : K] = 2 in [3]. The approximants
Pr(x) and Qr(x) that we defined in Lemma 3.3 of [3] have a particularly
nice form: an algebraic number plus or minus its algebraic conjugate. This
raises the intriguing question of why.

We address that question here and show that the form of Pr(x) and
Qr(x) arises from the fact that Thue’s Fundamentaltheorem is a special
case of the application to hypergeometric polynomials of a new observation
regarding diophantine approximations.

We present this observation here along with a generalisation and exten-
sion of Thue’s Fundamentaltheorem. In the notation of [3], we are now able
to consider more general expressions in place of W (x) (see also Remark 3.3
below) as well as more general expressions for the denominator of A(x).
There are also further improvements such as the consideration of powers
m/n rather than just 1/n, simplification of the numerator of A(x), . . .

The cost of these improvements is merely in the constant c that appears
in our results below. The irrationality measure, κ, itself remains unchanged.

2. Notation. For positive integers m and n with 0 < m < n, (m,n) = 1
and for a non-negative integer r, we put
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Xm,n,r(x) = 2F1(−r,−r −m/n; 1−m/n;x),

where 2F1 denotes the classical hypergeometric function.
We use X∗m,n,r to denote the homogeneous polynomials derived from

these polynomials, so that

X∗m,n,r(x, y) = yrXm,n,r(x/y).

We let Dm,n,r denote the smallest positive integer such that the polyno-
mial Dm,n,rXm,n,r(x) has rational integer coefficients.

For a positive integer d, we define Nd,n,r to be the greatest common
divisor of the numerators of the coefficients of Xm,n,r(1− dx).

We will use vp(x) to denote the largest power of a prime p which divides
into the rational number x. With this notation, for positive integers d and n,
we put

(2.1) Nd,n =
∏
p|n

pmin(vp(d),vp(n)+1/(p−1)).

For any complex number w, we can write w = |w|eiϕ, where |w| ≥ 0
and −π < ϕ ≤ π (with ϕ = 0 if w = 0). With such a representation, unless
otherwise stated, wm/n will signify (|w|1/n)meimϕ/n for positive integers m
and n, where |w|1/n is the unique non-negative nth root of |w|.

Lastly, following the function name in PARI, we define core(n) to be the
unique squarefree divisor, n1, of n such that n/n1 is a perfect square.

3. Results

Proposition 3.1. Let K be either Q or an imaginary quadratic field.
Let s ≥ 2 be a positive integer and L be a number field with [L : K] = s.

Let θ1 = 1, θ2, . . . , θs ∈ C be linearly independent over K and let σ1 =
id, σ2, . . . , σs be the s embeddings of L into C that fix K.

Suppose that there exist real numbers k0, l0 > 0 and E,Q > 1 such
that for all non-negative integers r, there are algebraic integers pr ∈ L with
max1≤i≤s |σi(pr)| < k0Q

r.
Let β and γ be algebraic integers in L.

(i) Assume that
∑

1≤i,j≤s {σi(β)σj(γ)− σj(β)σi(γ)}σi(pr)σj(pr+1) 6= 0
and max2≤i≤s |prθi − σi(pr)| < l0E

−r. Put

α =
∑s

i=1 σi(β)θi∑s
i=1 σi(γ)θi

.

For any algebraic integers p and q in K with q 6= 0, we have∣∣∣∣α− p

q

∣∣∣∣ > 1
c|q|κ+1

,
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where

c = 2
( s∑
i=1

|σi(γ)|
)
k0Qmax

{
E, 2

( s∑
i=2

|σi(β)− ασi(γ)|
)
l0E
}κ
,

κ =
logQ
logE

.

(ii) For s = 2, assume that β/γ, pr/pr+1 6∈ K, and either |prθ2 − σ2(pr)|
< l0E

−r or |−prθ2 − σ2(pr)| < l0E
−r. Put

α =
σ2(β)θ2 ± β
σ2(γ)θ2 ± γ

,

where the operation in the numerator matches the operation in the
denominator. If K = Q, then let τ = 1, else let τ be an algebraic
integer in K such that L = K(

√
τ). For any algebraic integers p and

q in K with q 6= 0, we have∣∣∣∣α− p

q

∣∣∣∣ > 1
c|q|κ+1

,

where

c = 2|
√
τ |(|γ|+ |σ2(γ)|)k0Qmax{E, 2|

√
τ | |σ2(β)− ασ2(γ)|l0E}κ,

κ =
logQ
logE

.

We will use part (ii) of this proposition to prove the following theorems.

Theorem 3.2. (1) Let K be either Q or an imaginary quadratic field.
Let L be a number field with [L : K] = 2 and let σ be the non-trivial element
of Gal(L/K). If K = Q, then let τ = 1, else let τ be an algebraic integer in
K such that L = K(

√
τ). Let β, γ, η be algebraic integers in L.

Let g be an algebraic number such that η/g and σ(η)/g are algebraic
integers (not necessarily in L). For each non-negative integer r, let hr be
a non-zero algebraic integer with hr/g

r ∈ K and |hr| ≤ h for some fixed
positive real number h. Let d be the largest positive rational integer such
that (σ(η) − η)/(dg) is an algebraic integer and let Cn and Dn be positive
real numbers such that

(3.1) max
(

1,
Γ (1−m/n)r!
Γ (r + 1−m/n)

,
nΓ (r + 1 +m/n)
mΓ (m/n)r!

)
Dm,n,r

Nd,n,r
< Cn

(
Dn
Nd,n

)r
for all non-negative integers r.

(1) Note that our theorems and corollary here correct a small error in Theorems 2.1,
2.4 and Corollary 2.7 of [3], where “max(1, . . .” in the expressions for c should read
“max(E, . . .”.
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Put

α =
β(η/σ(η))m/n ± σ(β)
γ(η/σ(η))m/n ± σ(γ)

,

E =
{
Dn
|g|Nd,n

min(|√η −
√
σ(η)|2, |√η +

√
σ(η)|2)

}−1

,

Q =
Dn
|g|Nd,n

max(|√η −
√
σ(η)|2, |√η +

√
σ(η)|2),

κ =
logQ
logE

,

c = 4h|
√
τ |(|γ|+ |σ(γ)|)CnQ

×max{E, 5h|
√
τ | |1− (η/σ(η))m/n| |β − αγ|CnE}κ,

where the operation in the numerator of the definition of α matches the
operation in its denominator.

If E > 1 and either 0 < η/σ(η) < 1 or |η/σ(η)| = 1 with η/σ(η) 6= −1,
then

(3.2) |α− p/q| > 1
c|q|κ+1

for all algebraic integers p and q in K with q 6= 0.

Remark 3.3. Observe that in our definition of α, we take the nth root
of η/σ(η). However, this is more general than it may first appear. It can
be applied to any quantity µη/σ(η) where µ ∈ L and µ = ν/σ(ν) for some
ν ∈ L.

For example, although in Thue’s Fundamentaltheorem we take the nth
root of −η/σ(η), it, and its generalisations, still follows from our results.
Suppose L = K(

√
τ) and put η′ =

√
τη; then −η/σ(η) = η′/σ(η′), so we

can express −η/σ(η) in the form here (i.e., take µ = −1 and ν =
√
τ in the

above notation). There appears to be an extra factor of
√
τ that will arise

in our expressions for E and Q, but these are in fact cancelled out since g
also increases by a factor of

√
τ , so κ is unaffected.

Similarly, if K 6= Q(i) and L = K(i), then iη/σ(η) = η′/σ(η′), where
η′ = (1 + i)η.

Also, if K 6= Q(
√
−3) and L = K(

√
−3), then ζ3η/σ(η) = η′/σ(η′), where

η′ = (1−
√
−3)η/2. And ζ6η/σ(η) = η′/σ(η′), where η′ = (3 +

√
−3)η.

As for the other roots of unity of degree at most 4 over Q, it can be
shown, via algebraic manipulation, that this is not possible for ζ8 and ζ12.
And since Q(ζ5) contains no subfields besides Q and Q(

√
5), we cannot

consider ζ5η/σ(η).

Remark 3.4. From Lemma 7.4 of [3], the inequality (3.1) holds for Cn
and Dn as in [3] and hence it does not impose any constraint.
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Theorem 3.5. Let K be an imaginary quadratic field and α, β, γ, η, σ,
τ , d, g, h, n, Cn, Dn, Nd,n be as in Theorem 3.2. Put

E =
4|g|Nd,n
Dn

(|η| − |σ(η)− η|)
|σ(η)− η|2

,

Q =
2Dn
|g|Nd,n

(|η|+ |σ(η)|),

κ =
logQ
logE

,

c = 4h|
√
τ |(|γ|+ |σ(γ)|)CnQ

×max{E, 2h|
√
τ | |1− (η/σ(η))m/n| |β − αγ|CnE}κ.

If E > 1 and max(|1− η/σ(η)|, |1− σ(η)/η|) < 1, then

(3.3) |α− p/q| > 1
c|q|κ+1

for all algebraic integers p and q in K with q 6= 0.

Remark 3.6. The condition that K be an imaginary quadratic field is
no restriction since the case of K = Q is completely covered by Theorem 3.2.

We now present a corollary of Theorem 3.2 when K = Q.

Corollary 3.7. Let K = Q and α, β, γ, η, σ, n, Cn, Dn,Nd,n be as in
Theorem 3.2. Suppose that η = (u1 +u2

√
t)/2 where t, u1, u2 ∈ Z and t 6= 0.

Put

g1 = gcd(u1, u2),
g2 = gcd(u1/g1, t),

g3 =


1 if t ≡ 1 mod 4 and (u1 − u2) /g1 ≡ 0 mod 2,
2 if t ≡ 3 mod 4 and (u1 − u2) /g1 ≡ 0 mod 2,
4 otherwise,

g4 = gcd
(

core(tg2g3),
n

gcd((u2/g1)
√
tg3/(g2core(tg2g3)), n)

)
,

g5 =

{
2 if 2 |n and v2(u2

2tg3/(g
2
1g2)) = v2(2n2),

1 otherwise,

g =
g1
√
g2√

g3g4g5
,

E =
|g|Nd,n

Dn min(|u1 ±
√
u2

1 − u2
2t|)

,

Q =
Dn max(|u1 ±

√
u2

1 − u2
2t|)

|g|Nd,n
,
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κ =
logQ
logE

,

c = 4
√
|2t|(|γ|+ |σ(γ)|)CnQ

×(max(E, 5
√
|2t| |1− (η/σ(η))m/n| |β − αγ|CnE))κ,

where d is the largest positive rational integer such that u2

√
t/(dg) is an

algebraic integer. If E > 1 and either 0 < η/σ(η) < 1 or |η/σ(η)| = 1 with
η/σ(η) 6= −1, then

(3.4) |α− p/q| > 1
c|q|κ+1

for all rational integers p and q with q 6= 0.

Remark 3.8. The factors gi used to construct g each arise in natural
and distinct ways. Namely, g1 through g3 provide ways to remove common
factors from η and σ(η). In turn, g4 and g5 arise from the interplay of d
and g: under some circumstances (captured by g4 and g5), decreasing g can
increase d and hence Nd,n by more to provide a net benefit.

Remark 3.9. Using the same argument as in the proof of Corollary 3.7,
we can also improve Corollary 2.7 of [3], replacing g4 there by

gcd
(

core(g2g3),
n

gcd((u1/g1)
√
g3/(g2core(g2g3)), n)

)
and adding an appropriate version of the g5 above by setting g5 = 2 if
2 |n and v2(u2

1g3/(g
2
1g2)) = v2(2n2) and setting g5 = 1 otherwise, since the

definition of d in Corollary 2.7 of [3] uses u1/(dg) rather than u2

√
t/(dg) as

here.
This improved version of Corollary 2.7 of [3] will yield the same results

as in Corollary 3.7 together with Remark 3.3.

4. Preliminary lemmas. The next lemma contains the relationship
that allows the hypergeometic method to provide good sequences of rational
approximations.

Lemma 4.1. For any positive integers m and n with (m,n) = 1, any
non-negative integer r and any complex number z that is not a negative
number and not zero,

(4.1) zm/nzrXm,n,r(z−1)−Xm,n,r(z) = (z − 1)2r+1Rm,n,r(z),

where

(z − 1)2r+1Rm,n,r(z) =
Γ (r + 1 +m/n)

r!Γ (m/n)

z�

1

(1− t)r(t− z)rtm/n−r−1 dt.
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Remark 4.2. Note that the expression (z − 1)2r+1Rm,n,r(z) here is the
same as the Rm,n,r(z) defined in Lemma 7.1 of [3].

Proof of Lemma 4.1. This is shown in the case of m = 1 in the proof of
Lemma 2.3 of [1]. The proof for arbitrary m is identical.

Lemma 4.3. Let θ ∈ C and let K be either Q or an imaginary quadratic
field. Suppose that there exist real numbers k0, l0 > 0 and E,Q > 1 such that
for all non-negative integers r, there are algebraic integers pr and qr in K
with |qr| < k0Q

r and |qrθ − pr| ≤ l0E
−r satisfying prqr+1 6= pr+1qr. Then

for any algebraic integers p and q in K with q 6= 0, we have∣∣∣∣θ − p

q

∣∣∣∣ > 1
c|q|κ+1

, where c = 2k0Q(max(1, 2l0)E)κ, κ =
logQ
logE

.

Moreover, if p/q 6= pi/qi for any non-negative integer i, then we can put
c = 2k0(max(1, 2l0)E)κ.

Proof. This follows from Lemma 6.1 of [3]. There we proved a similar
result for |q| ≥ 1/(2l0) and c = 2k0Q(2l0E)κ. Here we merely observe that
if we replace l0 with max(0.5, l0), then all the hypotheses of the present
lemma still hold. Moreover, 1/(2 max(0.5, l0)) ≤ 1, so the result holds for all
non-zero algebraic integers q ∈ K.

The last statement in the lemma follows since the Q which appears in
the expression for c in the statement of Lemma 6.1 of [3] arises only from
consideration of the case p/q = pi/qi for some positive integer i.

5. Proof of Proposition 3.1. Assume that we have a sequence of pr’s
satisfying the hypotheses of Proposition 3.1.

(i) Suppose we have prθi − σi(pr) = δi,r for each i = 1, . . . , s. Then we
can write

α =
∑s

i=1 σi(β)(δi,r + σi(pr))∑s
i=1 σi(γ)(δi,r + σi(pr))

and hence

α

s∑
i=1

σi(γpr)−
s∑
i=1

σi(βpr) =
s∑
i=2

(σi(β)− ασi(γ))δi,r,

since δ1,r = 0.
Put p′r =

∑s
i=1 σi(βpr) and q′r =

∑s
i=1 σi(γpr). Note that both p′r and q′r

are algebraic integers in K.
Observe that

|αq′r − p′r| < l0

( s∑
i=2

|σi(β)− ασi(γ)|
)
E−r
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and

|q′r| ≤ k0

( s∑
i=1

|σi(γ)|
)
Qr.

Since

p′rq
′
r+1 − p′r+1q

′
r =

∑
1≤i,j≤s

{σi(β)σj(γ)− σj(β)σi(γ)}σi(pr)σj(pr+1) 6= 0

by our assumption in the statement of the proposition, we can apply Lem-
ma 4.3 with p′r and q′r instead of pr and qr, respectively, to complete the
proof in this case.

(ii) Suppose we have ζ2prθ2 − σ2(pr) = δ2,r for some square root ζ2 of 1,
fixed for a given value of r. As above, we can write

α{σ2(γpr)± ζ2γpr} − {σ2(βpr)± ζ2βpr} = δ2,r(σ2(β)− ασ2(γ)).

We break the proof into two cases depending on the value of ζ2.

Case 1: ±ζ2 = 1. This case is identical to part (i) with s = 2.
Note that in this case (s = 2), the condition in part (i) reduces to

(σ2(β)γ − βσ2(γ))(σ2(pr)pr+1 − prσ2(pr+1)) 6= 0.

This is true under the conditions we have stipulated here, namely β/γ 6∈ K
and pr/pr+1 6∈ K (since the fixed field of σ2 is K).

Also since |τ | ≥ 1, our definition of c is valid.

Case 2: ±ζ2 = −1. We break this case into two subcases.

Case 2(i): ±ζ2 = −1 and K = Q. If K = Q, then we can write
βpr = (a + b

√
t)/2 for some choice of rational integers a, b and t with

t 6= 0. Hence βpr − σ2(βpr) = b
√
t and (βpr − σ2(βpr))/

√
t ∈ Z. Similarly,

(γpr − σ2(γpr))/
√
t ∈ Z.

In this case, we put q′r = (γpr−σ2(γpr))/
√
t and p′r = (βpr−σ2(βpr))/

√
t

and observe that

|αq′r − p′r| <
l0|σ2(β)− ασ2(γ)|

|
√
t|

E−r ≤ l0|
√
τ | |σ2(β)− ασ2(γ)|E−r,

|q′r| ≤
k0(|γ|+ |σ2(γ)|)

|
√
t|

Qr ≤ k0|
√
τ |(|γ|+ |σ2(γ)|)Qr,

since |t| ≥ 1.

Case 2(ii): ±ζ2 = −1 and K is an imaginary quadratic field. If K is
an imaginary quadratic field, then βpr = a + b

√
τ for some a, b ∈ K and

with τ as in the statement of the proposition. Hence βpr − σ2(βpr) = 2b
√
τ

is an algebraic integer and (βpr − σ2(βpr))
√
τ is an algebraic integer in K.

Similarly, (γpr − σ2(γpr))
√
τ is an algebraic integer in K.
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In this case, we put q′r = (γpr−σ2(γpr))
√
τ and p′r = (βpr−σ2(βpr))

√
τ

and observe that

|αq′r − p′r| < l0|
√
τ | |σ2(β)− ασ2(γ)|E−r, |q′r| ≤ k0|

√
τ |(|γ|+ |σ2(γ)|)Qr.

Note that in both these subcases, we obtain the same upper bound for
|αq′r − p′r| and for |q′r|.

Here

p′rq
′
r+1 − p′r+1q

′
r = τ(βσ2(γ)− σ2(β)γ)(σ2(pr)pr+1 − prσ2(pr+1)),

which we saw in Case 1 can only be zero if β/γ ∈ K or pr/pr+1 ∈ K.
Therefore, we can apply Lemma 4.3 to find that κ = (logQ)/(logE) and

c = 2k0|
√
τ |(|γ|+ |σ2(γ)|)Qmax{E, 2l0|

√
τ | |σ2(β)− ασ2(γ)|E}κ,

concluding the proof of Case 2 and of the proposition.

6. Proof of Theorem 3.2

6.1. Construction of approximations. We construct the approxima-
tions under more general conditions. The point is not to generalise for its
own sake, but to illustrate the requirements and limitations of our method
of proof.

Let ζk be a kth root of unity for some k. We apply Lemma 4.1 with
z = ζkη/σ(η). Multiplying both sides of (4.1) by σ(η)r, we obtain

(ζkη/σ(η))m/n(ζkη)rXm,n,r(σ(η)/(ζkη))− σ(η)rXm,n,r(ζkη/σ(η))
= σ(η)r(ζkη/σ(η)− 1)2r+1Rm,n,r(ζkη/σ(η)),

which we can rewrite as

(ζkη/σ(η))m/nX∗m,n,r(σ(η), ζkη)−X∗m,n,r(ζkη, σ(η))

= σ(η)r(ζkη/σ(η)− 1)2r+1Rm,n,r(ζkη/σ(η)).

Observe that

X∗m,n,r(ζkη, σ(η)) = grX∗m,n,r

(
ζkη

g
,
σ(η)
g

)
=
(
g
σ(η)
g

)r
Xm,n,r

(
1− dk

(σ(η)− ζkη)/g
dkσ(η)/g

)
,

where dk is the largest positive rational integer such that (σ(η)− ζkη)/(gdk)
is an algebraic integer.

From Lemma 7.4(a) of [3],

Dm,n,r

Ndk,n,r
Xm,n,r

(
1− dk

(σ(η)− ζkη)/g
dkσ(η)/g

)
∈ Z

[
(σ(η)− ζkη)/g
dkσ(η)/g

]
,
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and, as a consequence,(
σ(η)
g

)rDm,n,r

Ndk,n,r
Xm,n,r

(
1− dk

(σ(η)− ζkη)/g
dkσ(η)/g

)
is an algebraic integer by our definition of dk. Hence

pr =
hrDm,n,r

grNdk,n,r
X∗m,n,r(ζkη, σ(η))

is an algebraic integer in L.
Similarly,

qr =
hrDm,n,r

grNdk,n,r
X∗m,n,r(σ(η), ζkη)

is an algebraic integer in L.
Now we want pr and qr, or at least numbers obtained from them, to be

algebraic conjugates. For this purpose, we must suppose that 1/ζk = σ(ζk)
(note that this implies that ζk ∈ L).

With this condition, and since σ2(·) is the identity map, we have

(ζk)rσ(X∗m,n,r(ζkη, σ(η))) = (ζk)rσ(σ(η)rXm,n,r(ζkη/σ(η)))
= (ζkη)rXm,n,r(σ(ζkη/σ(η)))
= (ζkη)rXm,n,r(σ(η)/(ζkη))
= X∗m,n,r(σ(η), ζkη).

Hence, qr = ζrkσ(pr) and so qr and σ(ζk)rpr are algebraic conjugates over K.
Letting k1 = k/(2, k), we see that pk1r and ±qk1r are algebraic conjugates
for k = 1, 2, 3, 4 and 6, so we could put p′r = pk1r and q′r = qk1r.

However here we restrict our attention to k = 1 and observe that in
this case pr and qr are algebraic conjugates (noting that d1 equals d in the
statement of our theorem).

6.2. Estimates. From Lemmas 7.3(a) and 7.4(c) of [3], we have

|qr| ≤
2h
|g|r

Dm,n,r

Nd,n,r

Γ (1−m/n)r!
Γ (r + 1−m/n)

max(|√η +
√
σ(η)|, |√η −

√
σ(η)|)2r

≤ 2hCn
(
Dn
|g|Nd,n

)r
max(|√η +

√
σ(η)|, |√η −

√
σ(η)|)2r.

From Lemma 7.2(a) of [3],

|(σ(η))r(η/σ(η)− 1)2r+1Rm,n,r(η/σ(η))|

≤ 2.38|1− (η/σ(η))m/n| nΓ (r + 1 +m/n)
mΓ (m/n)r!

×min(|√η +
√
σ(η)|, |√η −

√
σ(η)|)2r.
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Hence

|qr(η/σ(η))m/n − pr| ≤ 2.38h
Dm,n,r

|g|rNd,n,r
|1− (η/σ(η))m/n|nΓ (r + 1 +m/n)

mΓ (m/n)r!

×min(|√η +
√
σ(η)|, |√η −

√
σ(η)|)2r

≤ 2.38h
|g|r

|1− (η/σ(η))m/n|Cn
(
Dn
Nd,n

)r
×min(|√η +

√
σ(η)|, |√η −

√
σ(η)|)2r.

Therefore, in the notation of Proposition 3.1, we have

k0 = 2hCn,
l0 = 2.38h|1− (η/σ(η))m/n|Cn,

E =
{
Dn
|g|Nd,n

min(|√η −
√
σ(η)|2, |√η +

√
σ(η)|2)

}−1

,

Q =
Dn
|g|Nd,n

max(|√η −
√
σ(η)|2, |√η +

√
σ(η)|2).

From Proposition 3.1, the expression for κ in the theorem follows immedi-
ately, while, upon noting that our β, γ, σ(β) and σ(γ) here are σ2(β), σ2(γ),
β and γ respectively in the notation of that proposition,

c = 2|
√
τ |(|γ|+ |σ(γ)|)k0Qmax{E, 2|

√
τ |(|β − αγ|)l0E}κ

< 4h|
√
τ |(|γ|+ |σ(γ)|)CnQ

×max{E, 5h|
√
τ | |1− (η/σ(η))m/n| |β − αγ|CnE}κ.

7. Proof of Theorem 3.5. This proof is the same as that of Theo-
rem 3.2, except that we use the upper bounds from parts (b) of Lemmas 7.2
and 7.3 of [3], rather than parts (a). Thus, we find that

k0 = 2hCn,
l0 = h|1− (η/σ(η))m/n|Cn,

E =
4|g|Nd,n
Dn

(|η| − |σ(η)− η|)
|σ(η)− η|2

,

Q =
2Dn
|g|Nd,n

(|η|+ |σ(η)|).

So, from Proposition 3.1, κ is as in the statement of the theorem and, again
noting the change of notation mentioned at the end of the proof of Theo-
rem 3.2,

c = 2|
√
τ |(|γ|+ |σ(γ)|)k0Qmax{E, 2|

√
τ | |β − αγ|l0E}κ

= 4h|
√
τ |(|γ|+ |σ(γ)|)CnQ

×max{E, 2h|
√
τ | |1− (η/σ(η))m/n| |β − αγ|CnE}κ.
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8. Proof of Corollary 3.7. This corollary follows from a direct appli-
cation of Theorem 3.2.

We can write

(8.1) (
√
η ±

√
σ(η))2 = η + σ(η)± 2

√
ησ(η).

The right-hand side of (8.1) is u1±
√
u2

1 − u2
2t and σ(η)−η = −u2

√
t. Hence

d is as defined in the corollary.
The analysis of g1, g2 and g3 is identical to that in Section 11 of [3].
As stated in Remark 3.8, g4 and g5 arise from the interplay of d and g.

Suppose that d1 is the largest positive rational integer such that the quo-
tient u2

√
t/(d1g1

√
g2/g3) is an algebraic integer. If there are multiplicative

factors of the form
√
d2 in u2

√
t/(d1g1

√
g2/g3), then by multiplying η, and

hence u2

√
t, by

√
d2, we can increase d1 by a factor of d2. Under some circum-

stances, this increases Nd,n by a factor of d2 while increasing u1±
√
u2

1 − u2
2t

only by a factor of
√
d2 for a net reduction in the size of κ. We demonstrate

here how g4 and g5 capture these circumstances.
Consider the integer u2

2tg3/(g
2
1g2) and let d2

1 be its largest square divisor.
Suppose that p is a prime divisor of their quotient. That is, p is a prime
divisor of core(u2

2tg3/(g
2
1g2)) = core(tg3/g2) = core(tg2g3). Note that

d1 =
√
u2

2tg3/(g
2
1g2 core(tg2g3)) = (u2/g1)

√
tg3/(g2 core(tg2g3)).

First, if p - n, then Npd1,n = Nd1,n from the definition of Nd,n in (2.1)
and there is no benefit.

Second, if p |n and p - (n/gcd(d1, n)), thenNpd1,n is at mostNd1,np1/(p−1)

(again, from (2.1)). That is, we gain at most a factor of p1/(p−1), while
increasing the size of u1 ±

√
u2

1 − u2
2t by a factor of

√
p, and hence obtain

no benefit for p > 2.
Third, if p |n and p | (n/gcd(d1, n)), then we gain a factor of p, while we

increase the size of u1 ±
√
u2

1 − u2
2t by a factor of

√
p. The product of all

such p equals

gcd
(

core(tg2g3),
n

gcd((u2/g1)
√
tg3/(g2 core(tg2g3)), n)

)
,

which is our g4.
This covers all possible cases except 2 |n and 2 - (n/gcd(d1, n)). If the

power of 2 dividing d equals the power of 2 dividing n, both are positive and
2 | core(tg2g3), then we increase Nd1,n by a factor of 2, while we increase the
size of u1±

√
u2

1 − u2
2t by a factor of

√
2. Since u2

2tg3/(g
2
1g2) = d2

1core(tg2g3),
this condition is equivalent to our condition in the definition of g5.

Lastly, we must consider hr and h.
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Since g2 ∈ Q, we can take hr = 1 for r even. As (g3g4g5/g2)core(g2g3g4g5)
is a perfect square, we can take hr =

√
core(g2g3g4g5) for r odd. Observe

that g4g5 | (2tg3/g2), g2 | t and g3 | 4. Hence hr ≤
√
|2t| for r odd.
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