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1. Introduction. In this note we are dealing with the following prob-
lem. Given a degree two polynomial f(x) = ax2 + bx+ c ∈ Z[x] which is not
a square of a degree one polynomial, how many consecutive integer values
f(i) can be squares in Z? This problem has been considered by D. Allison
in [1] and [2], who found infinitely many examples with eight consecutive
values, and by A. Bremner in [3], who found more examples with seven
consecutive values.

The examples found by Allison are all by polynomials which are symme-
tric with an axis of symmetry midway between two integers. This means
that, after some easy translation, all the examples are of the form f(x) =
a(x2 +x) + c and the values are f(i) for i = −3,−2,−1, 0, 1, 2, 3 and 4. This
result was obtained by translating the problem to computing rational points
on some elliptic curve which has rank one.

On the other hand, Bremner [3] shows that there does not exist any
example which is symmetric about an integral value and with seven values,
by showing that these examples would be described by rational points on
some rank zero elliptic curve, which has 12 points, all corresponding to the
polynomial f(x) being the square of a polynomial.

In the same paper, Bremner asks if there are examples as the ones found
by Allison, but with ten consecutive squares. The problem translates to
finding all the rational points of a genus 5 curve, a fact already noticed by
Allison and by Bremner. He conjectures that there is no such example.

In this note we prove this conjecture, and so, together with the results
of Bremner and Allison, we get the following theorem.

Theorem 1. Let N be a positive integer and BN the set consisting of
non-square quadratic polynomials f(x) = ax2 + bx + c ∈ Z[x] that takes
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square values for N consecutive integer values x = r, r + 1, . . . , r + N − 1,
and f(r) = f(r +N − 1) for some r ∈ Z. Then

#BN =
{
∞ if N ≤ 6 or N = 8,
0 if N = 7 or N ≥ 9.

To show this result we will use similar techniques to the one we use in [13]
to study arithmetic progressions of squares over quadratic fields. In fact, the
problem we study here is in some sense a generalization to higher dimensions
of the old result by Fermat about arithmetic progressions of squares, and
the problems in [13] and in [20] are generalizations to higher degrees (in
the sense of the number field involved). We can say almost nothing about
whether there exists a maximum number of consecutive square values taken
by a non-square quadratic polynomial, or even if this number is 8, as the
known examples suggest. However, it is possible that an argument similar
to the one given by Vojta in [18] could be used to show the existence of this
maximum under the Bombieri–Lang conjecture.

Remark 2. Let f(x) = ax2 + bx + c be a quadratic polynomial. Then
for any x and y we have f(x+y)−2f(x+y+ 1) +f(x+y+ 2) = 2a. Hence,
f(x+ i) for i ∈ Z form a sequence whose second differences are constant and
equal to 2a. In particular, if f(x) ∈ Z[x] and there exists r ∈ Q such that f
takes square values for x = r, r+ 1, . . . , r+N −1 then f(r+ i) is a sequence
of squares of length N whose second differences are constant and equal to 2a.
Conversely, if a2

1, a
2
2, . . . , a

2
n ∈ Z is a sequence of squares whose second dif-

ferences are constant and equal to 2L, then f(x) = L(x2 − x) + (a2
2 − a2

1)x
+ a2

1 takes square values for x = 0, 1, . . . , n− 1. Note that squares of arith-
metic progressions correspond, by the above characterization, to squares of
linear polynomials.

Büchi [14] asked if there exists a positive integer n such that any sequence
of integer squares of length at least n with constant second differences 2
is a sequence of squares of consecutive integers. A positive answer to the
above question is known as Büchi’s conjecture or n-squares conjecture. He
also proved that this conjecture gives a negative answer to Hilbert’s tenth
problem (for systems of second degree equations). Vojta [18] proved that
the n-squares conjecture is a consequence of the Bombieri–Lang conjecture.
For the case of second difference greater than 2, several authors [7, 15, 4]
have treated this problem. Taking into account these results, Browkin and
Brzeziński [4] generalized the n-squares conjecture to: Any sequence of inte-
ger squares of length greater than eight whose second differences are constant
and greater than 2, is equal to a sequence of squares of an arithmetic progres-
sion. In the present paper, we prove the above conjecture in the symmetric
case.
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2. Translation to geometry. Fix a polynomial f(x) = ax2 + bx + c
∈ Z[x] which takes square values for x = r, r+ 1, . . . , r+N − 1, and f(r) =
f(r + N − 1). Suppose that N is even. After translation by −r − N/2, we
can suppose that r = −N/2. Then f(x) has the form f(x) = a(x2 + x) + c,
and we are asking to have f(i) = x2

i for i = 0, . . . , N/2− 1 and xi ∈ Z.
Now, suppose that N = 10. The conditions we get from f(i) = x2

i for
i = 0, . . . , 4 are given by the following equations:

C :


2x2

0 − 3x2
1 + x2

2 = 0,

5x2
0 − 6x2

1 + x2
3 = 0,

9x2
0 − 10x2

1 + x2
4 = 0,

which determine a genus 5 curve C in P4. Any point P := [x0 : x1 : x2 : x3 :
x4] of this curve defined over Q will give us a polynomial f(x) as above, by
setting c = x2

0 and a = (x2
1 − x2

0)/2. Observe that multiplying a pair (a, c)
by a square number will produce the same polynomial but multiplied by a
square number, a case that we consider equivalent.

Now, the solutions given by P = [±1 : ±1 : ±1 : ±1 : ±1] correspond
to a = 0, so the polynomial is in fact constant. There are also the solutions
given by P = [±1 : ±3 : ±5 : ±7 : ±9], which correspond to the case a = 4
and c = 1, so f(x) = (2x+ 1)2. Our aim will be to show that these are the
only rational points.

First of all, observe that the curve C has degree 2 maps Φn to five distinct
genus one curves Fn, for n = 0, 1, 2, 3, 4. They can be described easily as
intersections of two quadrics in P3, by taking the first two of the three
quadrics describing C, which gives three of these curves, and transforming
the equations in order to get more quadratic forms involving only three
variables, which gives the other two. The curve Fn is the one given by
equations not involving the variable xn.

All these genus one curves have rational points over Q, therefore they
are isomorphic to elliptic curves over Q. Denoting by En the Weierstrass
model of the curve Fn and using the labeling of Cremona’s tables [11], one
can check that E0 = 1680G2, E1 = 20160BG2, E2 = 960H2, E3 = 840H2 and
E4 = 360E2.

So, if one of such elliptic curves has a finite number of rational points,
then the problem of computing C(Q) becomes easy. Now, it is a straightfor-
ward computation to check that the torsion subgroup of En(Q) is isomorphic
to Z/2Z ⊕ Z/2Z. On the other hand, the set Φn([±1 : ±1 : ±1 : ±1 : ±1])
has cardinality eight. Therefore the rank of En(Q) is greater than one, that
is, we cannot use this argument to determine C(Q). In fact, we can easily
compute by descent (or, better, using some algebraic computational sys-
tem like Magma [8] or Sage [17], or still better, using Cremona’s tables) that
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rankZEn(Q) = 1 for n 6= 1 and rankZE1(Q) = 2. This result also pre-
cludes the use of Chabauty’s method or Dem’yanenko–Manin’s method to
compute C(Q).

3. Two descent and covering collections. In order to actually com-
pute the rational points on the curve C, we will apply the covering collec-
tions technique, as developed by Coombes and Grant [10], Wetherell [19]
and others, and specifically a modification of what is now called the elliptic
Chabauty method developed by Flynn, Wetherell and Bruin [12, 5, 6].

The method has two steps. Suppose we have a curve C over a number
field K and an unramified map χ : C ′ → C of degree greater than one and
may be defined over a finite extension L of K. We consider all the distinct
unramified coverings χ(s) : C ′(s) → C formed by twists of the given one, and
we get

C(K) =
⋃
s

χ(s)({P ∈ C ′(s)(L) : χ(s)(P ) ∈ C(K)}),

the union being disjoint. Only a finite number of twists have rational points,
and the finite (larger) set of twists having points locally everywhere can be
explicitly described. The first step is to compute this set of twists, and the
second to compute the points P ∈ C ′(s)(L) such that χ(s)(P ) ∈ C(K).
The second step depends on having nice quotients of the curves C ′(s), for
example genus one quotients, where it is possible to do the computations.
In this section we will concentrate on the first step.

The coverings we are going to consider are Galois coverings with Galois
group isomorphic to (Z/2Z)2. Such coverings are in principle easy to con-
struct. One only needs to have an isogeny map from an abelian variety A to
the jacobian Jac(C) of the curve C with kernel isomorphic, as group scheme,
to the group (Z/2Z)2. Since in our case the jacobian Jac(C) is isogenous to
a product of elliptic curves Ei, the coverings can be constructed by choosing
two such elliptic curves and one degree two isogeny in each of them.

Moreover, the elliptic curves Ei have all the 2-torsion points defined
over Q, hence the coverings we are searching for will be defined over Q. On
the other hand, the genus one quotients of such coverings that we will use
in the next section are, in general, not defined over Q, but in a quadratic or
biquadratic extension. The way we will construct the coverings, by using a
factorization of quartic polynomials, will also give us directly the genus one
quotient and the field where it is defined.

In order now to construct the coverings of the curve C, we first rewrite
the equations of the curve in the following form:

C :

{
y2 = q(t) = 36t4 − 72t3 + 72t2 − 60t+ 25,

z2 = p(t) = 36t4 + 96t3 − 236t2 + 80t+ 25,
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by setting t = x3+x1
x3−x0

. This model has two natural maps to the genus one
curves F4 : y2 = q(t) and F2 : z2 = p(t), whose jacobians are E4 and E2

respectively.
First, we concentrate on the unramified degree two coverings of the genus

one curve given by a quartic model. If F is such a genus one curve defined
over a field K, given by the equation y2 = r1(x)r2(x), where r1(x) and r2(x)
are degree two polynomials defined over an extension L of K, we consider
the degree two unramified covering χ : F ′ → F with affine part in A3 given
by the zeros of the polynomials y2

1 = r1(x) and y2
2 = r2(x), the map being

given by χ(x, y1, y2) = (x, y1y2). For any δ ∈ L∗, we consider the curve
F ′(δ) given by the equations δy2

1 = p1(x) and δy2
2 = p2(x), and the map to

F defined by χ(δ)(x, y1, y2) = (x, y1y2/δ
2). Then F ′(δ) are all the quadratic

twists of F ′, and there exists a finite set ∆L(χ) ⊂ L∗ such that

F (K) ⊆
⋃

δ∈∆L(χ)

χ(δ)({(x, y1, y2) ∈ F ′(δ)(L) : x ∈ K or x =∞}).

First, we consider the case of F2, given as y2 = p(t), where

p(t) = 36t4 + 96t3 − 236t2 + 80t+ 25 = (6t2 − 4t− 1)(6t2 + 20t− 25).

Lemma 3. Consider the degree two covering defined over Q given by

F ′2 :

{
z2
1 = p1(t) = 6t2 − 4t− 1,

z2
2 = p2(t) = 6t2 + 20t− 25,

together with the natural map ψ2 : F ′2 → F2 given by ψ2(t, z1, z2) = (t, z1z2).
Then ∆Q(ψ2) = {±1,±6}, hence

F2(Q) ⊆
⋃

δ∈{±1,±6}

ψ
(δ)
2 ({(t, z1, z2) ∈ F ′(δ)2 (Q)}).

Proof. It is easy to show and well-known that ψ2 is an unramified degree
two covering of F2. Since F ′2(Q) 6= ∅, because it contains the point P ′ :=
(1, 1, 1), we can identify F ′2 with an elliptic curve E′2, by sending P ′ to O, and
identify F2 with the elliptic curve E2 by sending P := χ(P ′) = (1, 1) to O.
We then get an unramified degree two covering φ2 : E′2 → E2, which must
be a degree two isogeny. With appropriate choices of the identifications, we
can get this isogeny in the standard form (see, for example, [16, III.4.5] or
[9, §8.2]). After some computations we get the map φ2 : E′2 → E2 defined
by

φ2(x, y) =
(
y2

4x2
,
y(x2 − 2500)

8x2

)
,

where E2 : y2 = x(x+ 4)(x+ 54) and E′2 : y2 = x(x2 − 116x+ 2500).
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Now, the quadratic twists F ′(δ)2 which locally have rational points corre-
spond to the elements of the Selmer group Sel(φ2). After identifying Sel(φ2)
with a subgroup of Q∗/(Q∗)2 in the standard way, the identification sends
δ ∈ Q∗ to its class modulo squares. A standard 2-descent calculation gives
that Sel(φ2) = {±1,±6}. But now, by using the fact that E2(Q) contains
the points (0, 0), (−54, 0) and (36,−360), one can see that all the elements of
the Selmer group Sel(φ2) correspond to elements of E(Q). These are exactly
the δ’s such that F ′(δ)2 (Q) 6= ∅.

Now we consider the curve F4, given as y2 = q(t), where q(t) = 36t4 −
72t3 +72t2−60t+25. Observe that the polynomial q(t) is irreducible over Q,
but it factorizes over some quadratic extensions as product of two degree
two polynomials. Over Q(

√
6) we have

q(t) = (5 + 2
√

6)(6t2 − 2(3 +
√

6)t+ 5) · (5− 2
√

6)(6t2 − 2(3−
√

6)t+ 5).

Lemma 4. Consider the degree two covering defined over Q(
√

6) given
by

F ′4 :

{
y2
1 = q1(t) = (5 + 2

√
6)(6t2 − 2(3 +

√
6)t+ 5),

y2
2 = q2(t) = (5− 2

√
6)(6t2 − 2(3−

√
6)t+ 5),

together with the natural map ψ4 : F ′4 → F4 given by ψ4(t, y1, y2) = (t, y1y2).
Then ∆Q(

√
6)(ψ4) = {1, 2, 5, 10}, hence

F4(Q) ⊆
⋃

δ∈{1,2,5,10}

ψ
(δ)
4 ({(t, y1, y2) ∈ F ′(δ)4 (Q(

√
6)) : t ∈ Q or t =∞}).

Proof. As in the proof of the lemma above, observe that F ′4(Q(
√

6))
contains the point (1, 1, 1) such that ψ4(1, 1, 1) = (1, 1) ∈ F4(Q). Then
the degree two covering ψ4 : F ′4 → F4 defined over Q(

√
6) corresponds,

by taking some isomorphisms to the respective jacobians, to the 2-isogeny
φ4 : E′4 → E4 defined by

φ4(x, y) =
(
y2

4x2
,
y(x2 − 9)

8x2

)
,

where E4 : y2 = x(x − 12)(x − 15) and E′4 : y2 = x(x2 + 54x + 9), which
is the dual isogeny of the 2-isogeny corresponding to the 2-torsion point
P = (0, 0) ∈ E4(Q). Now, a descent computation shows that Sel(φ4) =
{1, 3, 2, 6, 5, 15, 10, 30}. But observe now that two δ and δ′ in Q that are
equivalent modulo squares over Q(

√
6)∗ give isomorphic coverings ψ

(δ)
4 .

Hence we only need to consider the set ∆Q(
√

6)(ψ4) which is Sel(φ4) modulo
(Q(
√

6)∗)2, which gives the result.
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We now take the unramified covering χ : C ′ → C defined by the equa-
tions:

C ′ :


y2
1 = q1(t) = (5 + 2

√
6)(6t2 − 2(3 +

√
6)t+ 5),

y2
2 = q2(t) = (5− 2

√
6)(6t2 − 2(3−

√
6)t+ 5),

z2
1 = p1(t) = 6t2 − 4t− 1,

z2
2 = p2(t) = 6t2 + 20t− 25,

which is a curve of genus 17.
The lemmas above yield the twists that have to be considered.

Corollary 5. The set of relevant twists is equal to

∆ := {(δ2, δ4) ∈ Q(
√

6)∗ : δi ∈ ∆Q(
√

6)(φi), i = 2, 4},

where ∆Q(
√

6)(φ2) = {±1} and ∆Q(
√

6)(φ4) = {1, 2, 5, 10}, which correspond
to a set of representatives in Q(

√
6) of the images of Selmer groups of φi

(i = 2, 4) in Q(
√

6)
∗
/(Q(

√
6)
∗
)2 via the natural maps. Hence,

C(Q) ⊆
⋃
δ∈∆

χ(δ)({(t, y1, y2, z1, z2) ∈ C ′(δ)(Q(
√

6)) : t ∈ Q or t =∞}),

where C ′(δ2,δ4) is the curve defined by

C ′(δ2,δ4) : {δ4y2
1 = q1(t), δ4y2

2 = q2(t), δ2z2
1 = p1(t), δ2z2

2 = p2(t)},
where χ(δ2,δ4)(t, y1, y2, z1, z2) = (x, y1y2/δ4, z1z2/δ2).

Proof. By the lemmas above, we only need to observe that ∆Q(φ2) =
{±1,±6} becomes, after taking the image in Q(

√
6)
∗
/(Q(

√
6)
∗
)2, the set

∆Q(
√

6)(φ2) = {±1}.

One can reduce the set of twists even further by using the natural au-
tomorphisms of C given by interchanging the sign of one of the coordinates
(in the first model of C).

Corollary 6. Let τi be the automorphisms of C given by τi(xi) = −xi,
and τi(xj) = xj if j 6= i, for i = 0, 1, 2, 3, 4, and let Υ be the subgroup they
generate. Let ∆′ = {(1, 1), (−1, 1)}. Then, for any P ∈ C(Q), there exist
τ ∈ Υ and δ ∈ ∆′ such that

τ(P ) ∈ χ(δ)({(t, y1, y2, z1, z2) ∈ C ′(δ)(Q(
√

6)) : t ∈ Q or t =∞}),
where χ(±1,1)(t, y1, y2, z1, z2) = (x,±y1y2, z1z2).

Proof. It is enough to show that for any P ∈ C(Q) and any δ4 ∈
∆Q(

√
6)(φ4), there exist δ2 ∈ ∆Q(

√
6)(φ2) and τ ∈ Υ such that τ(P ) ∈

χ(δ2,δ4)(C ′(δ2,δ4)(Q(
√

6))). Therefore, the problem reduces to showing that
for any δ4 ∈ ∆Q(

√
6)(φ4), there exists τ ∈ Υ such that the image of %2(τ(P ))
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in Sel(φ2) is equal to δ2 modulo (Q(
√

6)∗)2, where %2 : C → F2 is the map
given in Section 2.

Observe that the involutions τi for i = 0, 1, 3, 4 determine involutions
in F4, which in turn determine involutions τ ′i in E4 on fixing an isomorphism
between F4 and E4. These involutions must be of the form τ ′i(Q) = −Q+Qi
for some Qi ∈ E(Q), since they have fixed points. Hence, the involutions
τ ′i are determined once we know the image of a single point Q. Thus, if we
know the result for just one point P ∈ C(Q), we will obtain the result for
all points in C(Q).

Take P := [1 : 1 : 1 : 1 : 1]. Then one shows easily that the image of
%2(τi(P )) in the Selmer group Sel(φ2) for i = 0, 1, 3, together with %2(P ),
covers all the group, which proves the result.

Remark 7. An easy computation shows that the involutions τi take the
following form in the model of C given by y2 = q(t) and z2 = p(t):

τ0(t, y, z) =
(

6t− 5
6(t− 1)

,
y

6(t− 1)2
,

z

6(t− 1)2

)
,

τ1(t, y, z) =
(

5(t− 1)
6t− 5

,
5y

(6t− 5)2
,

5z
(6t− 5)2

)
,

τ3(t, y, z) =
(

5
6t
,

5y
6t2

,
5z
6t2

)
,

τ2(t, y, z) = (t, y,−z) and τ4(t, y, z) = (t,−y, z). These can also be used to
show the last corollary.

Observe that the known points in C(Q), corresponding to the points
[1 : ±1 : ±1 : ±1 : ±1] and [1 : ±3 : ±5 : ±7 : ±9], give rise to the points in
C ′(1,1)(Q(

√
6)) with t = 1 and in C ′(−1,1)(Q(

√
6)) with t = 1/2, respectively.

Now, to compute the points (t, y1, y2, z1, z2) in C ′(±1,1)(Q(
√

6)) such that
t ∈ Q, we consider the natural genus one quotients of C ′(±1,1) defined by

H±i,j : ±w2 = qi(t)pj(t)

for i, j = 1, 2. We have four of them for any sign, corresponding in fact to
the factors of a natural genus four quotient of any of the curves C ′(±1,1),
which is defined over Q.

Hence, we only need to compute the points

{(t, w) ∈ H±(i,j) : t ∈ Q or t =∞}

for some (i, j). But this can be done by using the elliptic Chabauty method.
The following diagram illustrates all the curves and morphisms involved

in our problem:
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C ′(δ2,δ4)

~~

��

!!

&&
C

�� ��

Hδ2δ4
i,j

π

��

F
′(δ2)
2

"b
"b

F
′(δ4)
4

|<
|<

F ′2
��

// F2

��

F4

��

F ′4
oo

��
P1

E′2
// E2 E4 E′4

oo

4. An elliptic Chabauty argument. Our aim in this section is to
compute, for any choice of sign, all the Q(

√
6)-rational points on some of

the curves H±i,j : ±w2 = qi(t)pj(t) such that t ∈ Q. We will be able to do
this once we establish that the jacobians of the curves have rank 0 or 1 over
Q(
√

6), a condition coming from the Chabauty technique.
Since we only need to show this result for just one (i, j), we will do it

for (1, 1) for both signs. This choice is not totally arbitrary, since one can
show that all the cases with j = 2 have rank 2, hence they do not satisfy
the necessary conditions.

We will denote by H± = H±1,1 the genus one curves defined over Q(
√

6)
by the equations

±w2 = q1(t)p1(t) = (5 + 2
√

6)(6t2 − 2(3 +
√

6)t+ 5)(6t2 − 4t− 1).

Lemma 8. Consider the points P+
± := (1,±1) ∈ H+(Q(

√
6)) and P−± :=

(1/2,±(−2
√

6 − 3)/2) ∈ H−(Q(
√

6)). Then the curves H± are isomorphic
over Q(

√
6) to their corresponding jacobians J± := Jac(H±), which are

given by the equations

J+ : y2 + (−2
√

6− 10)xy + (38
√

6 + 22)y

= x3 + (−24
√

6− 34)x2 + (448
√

6 + 1253)x

and

J− : y2 + (42
√

6 + 422)xy + (−291822
√

6− 113902)y

= x3 + (−8076
√

6− 33466)x2 + (67635708
√

6 + 141575953)x,

by isomorphisms µ± : H± → J± sending the points P±+ to the zero point
in J±. Moreover, µ±(P±− ) = −(0, 0).

Finally, a point (t, w) ∈ H±(Q(
√

6)) has t ∈ Q if and only if π±(x, y) ∈
P1(Q), where (x, y) = µ±(t, w) ∈ J±(Q(

√
6)) and

π+(x, y) =
y

2x+ y
, π−(x, y) =

y

300x+ 2y
.
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Proof. The first part is a standard computation (see for example [9,
§7.2.3]). The inverses of the maps µ± are defined by

ν+(x, y) :=
(

y

2x+ y
,
2x3 + (−24

√
6− 34)x2 + (2

√
6 + 10)xy − y2

2x+ y

)
and

ν−(x, y)

:=
( y

300x+150y ,
−2(2

√
6+3)x3+(91160

√
6+197310)x2+(970

√
6+1770)xy+(2

√
6+3)y2

1503(150x+y)

)
.

The map π± is the composition of ν± and the map H± → P1 sending (t, w)
to t.

Remark 9. Note that j(J±) = 140608/245 ∈ Q. Moreover, J± is iso-
morphic to the ±(

√
6 − 3)-twist of the elliptic curve defined over Q given

by the Weierstrass model y2 = x3 + 312x − 3008 (which is 80640CU2 in
Cremona’s tables).

Lemma 10. The elliptic curves J± both have rank 1 over Q(
√

6). We
have

J±(Q(
√

6)) ⊃ S± = 〈T±, (0, 0)〉,
where

T+ := (2
√

6−7,−16
√

6−34), T− := (−462
√

6−2767, 301500
√

6+699000)

are 2-torsion points and (0, 0) is of infinite order. The subgroups S± are of
finite index not divisible by any prime < 14.

Proof. This is shown by a standard 2-descent argument, using either
Magma, Sage or PARI (see for example [9, §8.3]). The non-divisibility property
of the index can be shown easily by proving that in both cases the point
(0, 0) of infinite order is not a p-multiple of another point in J±(Q(

√
6)) for

any prime p < 14.

Now, we are in a position to apply the Chabauty technique. We need
to choose a prime p of good reduction for J±, and also inert in Q(

√
6) (the

technique can also be used for split primes, but in a slightly different form,
see for example [5]). Denote by J±p the reduction modulo p of J±, which is an
elliptic curve over Fp2 := Fp(

√
6), and by redp : J±(Q(

√
6))→ J±p (Fp2) the

reduction map. Then the elliptic Chabauty method will allow us to bound,
for each point R in J±p (Fp2), the number of points Q in J±(Q(

√
6)) such

that redp(Q) = R and π±(Q) ∈ P1(Q). Denote this set of points by

Ω±,p(R) := {Q ∈ J±(Q(
√

6)) : π±(Q) ∈ P1(Q) and redp(Q) = R}.
Clearly, we have
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{Q ∈ J±(Q(
√

6)) : π±(Q) ∈ Q} =
⊔

R∈J±p (Fp2 )

Ω±,p(R),

for any choice of an inert good reduction prime p. So, if we compute these
sets Ω±,p(R) for some p and all R, we will have computed the sets we are
interested in.

We will choose the primes p = 11 and p = 13, depending on the sign of
the case considered.

Proposition 11. Set p+ = 11 and p− = 13. Then Ω±,p±(R̃) 6= ∅ if and
only if R̃ = O or R̃ = −(0, 0).

Proof. First of all, observe that Ω±,p±(O) 6= ∅ and Ω±,p±(−(0, 0)) 6= ∅
since they contain the points O and −(0, 0), respectively.

In order to show that the remaining subsets are empty, we will argue
modulo pm± for various powers of p±. Denote by O the ring of integers of
Q(
√

6), by J the Néron model of J over O and by π±pn
±

: J ±O/pn
±O
→ P1 the

reduction modulo pn± of the map π±, which is a well-defined map of schemes
over O/pn±O. Observe that for good reduction primes p as we have, J ±O/pnO
is an abelian scheme.

First we work modulo p±. We find that (0, 0) has order 8 in J+
11(F112)

and order 12 in J−13(F132). Since the point (0, 0) is not divisible by 2 and 3
in J±(Q(

√
6)) as shown in Lemma 10, in both cases we get redp±(S±) =

redp±(J±(Q(
√

6))), so we can work with the subgroup S±.
One easily computes that the only points R in redp±(S±) such that

π±p±(R) ∈ O/p±O = Fp2± are

O,−(0, 0), T+ + 2(0, 0), T+ − 3(0, 0) ∈ redp+(S+)

and
O,−(0, 0), 4(0, 0),−5(0, 0) ∈ redp−(S−).

Since Ω±,p±(R) is obviously empty if π±p±(R) is not in Fp2± , we only need
to show that Ω+,p+(R) = ∅ if R = T+ + 2(0, 0) or T+ − 3(0, 0), and that
Ω−,p−(R) = ∅ if R = 4(0, 0) or −5(0, 0).

We start with the + case. In this case one computes all the points in
J +
O/112O which are equal to R = T+ + 2(0, 0) or to T+ − 3(0, 0) modulo 11

(there are 22 of them), and then we compute their images under π+
112 . But

for any of these 22 points, the image is not in Z/112Z ↪→ O/112O, hence
Ω+,p+(R) = ∅ for both points.

The − case is done similarly, but one needs to work modulo 133, since
all the lifts to 132 have image in Z/132Z with respect to the map π+

132 .
Modulo 133, the total number of points considered is 2 · 132.
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Proposition 12. The sets Ω±,p±(O) and Ω±,p±(−(0, 0)) contain, for
any sign, only one point.

Proof. We use the Chabauty argument. First of all, recall that the order
of (0, 0) modulo p± is m+ := 8 in the + case and m− := 12 in the − case.
Hence, any point in Ω±,p±(R) must be of the form R+n(m±(0, 0)) for some
n ∈ Z. Since in both cases, R = O and R = −(0, 0), the point R is in
Ω±,p±(R), we want to show that the only solution is n = 0 in all cases. We
will work modulo p2

±.
We define the z-coordinate of the point (x, y) (with respect to the given

equation of J±) to be z := −x/y (as a point in P1).
Denote by z±,p the z-coordinate of the point m±(0, 0) modulo p2

±. We
get z+,11 = 11−55

√
6 ∈ O/112O and z−,13 = 26−39

√
6 ∈ O/132O. Because

we are working modulo p2
±, we have

z-coord(n(m±(0, 0))) = nz±,p± (mod p2
±O)

(a fact that can be proved using the formal logarithm and exponential of
the elliptic curves J±).

Now, we can express the function π±(P ) at any point P as a power series
in the z-coordinate of P . We get, for the + case,

π+(z) = 1 + 2z + 4z2 + 8z3 +O(z4),

and for the − case,

π−(z) = 1/2 + 75z + 11250z2 + 1687500z3 +O(z4).

First we treat the point O. We find that π±(n(m±(0, 0))) can be ex-
pressed as a power series Θ(n) in n with coefficients in Q(

√
6). We express

this power series as Θ(n) = Θ0(n)+
√

6Θ1(n), with Θi(n) now being a power
series with coefficients in Q. Then π±(n(m±(0, 0))) ∈ Q for some n ∈ Z if
and only if Θ1(n) = 0 for that n. Observe also that since π±(O) ∈ Q, we
get Θ1(0) = 0, so Θ1(n) = j1n+ j2n

2 + j3n
3 + · · · . To conclude, we use the

Strassmann Theorem: if the p±-adic valuation of j1 is strictly smaller than
the p±-adic valuation of ji for any i > 1, then this power series has only one
zero in the p-adic ring Zp± , and this zero is n = 0. In fact, one can easily
show that this power series is such that the p±-adic valuation of ji is always
greater than or equal to i, so if we show that j1 6≡ 0 (mod p2

±) we are done.
Since the z-coordinate of m±(0, 0) is congruent to 0 modulo p±, to com-

pute π±(z-coord(n(m±(0, 0)))) modulo p2
± we only need the power series up

to degree 1. We get

π+(z-coord(n(m+(0, 0)))) = (22− 44
√

6)n+ 1 (mod 112)

and

π−(z-coord(n(m−(0, 0)))) = (−78− 52
√

6)n− 84 (mod 132).
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Hence, for the + case, Θ1(n) = −44n modulo 112, thus the valuation of j1
is 1, and we are done. Similarly, for the − case, Θ1(n) = −52n modulo 132,
and again we are done.

In order to consider the other point −(0, 0) one can either compute
directly π±(z-coord(−(0, 0)+n(m±(0, 0)))) as a power series in n and apply
the same type of argument, or observe that there is an involution in J± (as
a genus one curve) that interchanges the points O and −(0, 0) and preserves
the function π±; it corresponds to the hyperelliptic involution on H± sending
(t, w) to (t,−w).

Hence, by using the results just proved, we finally obtain the following.

Corollary 13. The only points (t±, w) ∈ H±(Q(
√

6)) with t± ∈ Q are
the points with t+ = 1 and with t− = 1/2.

5. Proof of Theorem 1. By using the results proved in the last two
sections, we finally obtain all the rational points on the curve C.

Theorem 14. C(Q) = {[±1 : ±1 : ±1 : ±1 : ±1], [±1 : ±3 : ±5 : ±7 :
±9]}.

Proof. We review briefly the steps we followed. By using Corollary 6,
we deduce that, for any P ∈ C(Q), there exists a sign ± and an involution
τ ∈ Υ of C such that

τ(P ) ∈ χ((±1,1))({(t, y1, y2, z1, z2) ∈ C ′((±1,1))(Q(
√

6)) : t ∈ Q}).
Moreover, the points [±1 : ±1 : ±1 : ±1 : ±1] and [±1 : ±3 : ±5 : ±7 : ±9]
come, respectively, from the points in C ′((1,1)) with t = 1 and the points in
C ′((−1,1)) with t = 1/2.

Next, we consider the genus one quotients H± of the curves C ′((±1,1))

with quotient maps defined by (t, y1, y2, z1, z2) 7→ (t, y1z1). We find that the
points (t, y1, y2, z1, z2) ∈ C ′((±1,1))(Q(

√
6)) go to points (t, w) ∈ H±(Q(

√
6)).

Finally, by Corollary 13, the only points in H+ with t ∈ Q are the ones with
t = 1, and the only points in H− with t ∈ Q are the ones with t = 1/2. This
proves the result.

Proof of Theorem 1. If N is odd, then translating by −r− (N − 1)/2 we
can suppose r = (N−1)/2. Thus, b = 0 and f(x) = ax2+c is symmetric with
respect to x = 0. In the even case, we can apply translation by −r −N/2,
and suppose that r = −N/2. Thus, b = a and f(x) = a(x2 + x) + c is
symmetric with respect to x = −1/2. Now, the existence of f(x) is equivalent
to the existence of xk ∈ Z such that f(k) = x2

k, k = 0, 1, . . . , sN , where
sN = (N − 1)/2 or sN = N/2− 1 depending on whether N is odd or even,
respectively. Note that for N ≤ 4 it is trivial to prove that there are infinitely
many non-square quadratic polynomials satisfying the hypothesis. If N = 5
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(resp. N = 6), then they satisfy 3x2
0+x2

2 = 4x2
1 (resp. 2x2

0+x2
2 = 3x2

1), which
is a conic in P2 with infinitely many rational points. If N = 7 (resp. N = 8),
then they satisfy 3x2

0+x2
2 = 4x2

1 and 8x2
0+x2

3 = 9x2
1 (resp. 2x2

0+x2
2 = 3x2

1 and
5x2

0+x2
3 = 6x2

1), which is isomorphic to the elliptic curve y2 = x(x−5)(x+27)
(resp. y2 = x(x − 12)(x − 15)) and it is denoted by 30A2 (resp. 360E2) in
Cremona’s table with Mordell–Weil group isomorphic to Z/2Z⊕Z/6Z (resp.
Z/2Z ⊕ Z/2Z ⊕ Z). Therefore if N ≥ 7 is odd the proof of the theorem is
finished. If N = 8, since the rank of the underlying elliptic curve is non-zero,
there are infinitely many non-square quadratic polynomials satisfying the
hypothesis. The remaining case is when N ≥ 10 even. The characterization
given in Section 2 shows that if N = 10 then any quadratic polynomial
f(x) ∈ Z[x] satisfying the hypothesis of the theorem corresponds to a point
P ∈ C(Q). In Theorem 14 we have proved that the unique points of C(Q)
are [±1 : ±1 : ±1 : ±1 : ±1], [±1 : ±3 : ±5 : ±7 : ±9], which correspond to
the constant polynomials and to f(x) = (2x+ 1)2 respectively.

Data. All the Magma sources are available from the first author’s web-
page.
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