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1. Introduction. The irrationality exponent µ(ξ) of an irrational num-
ber ξ is the supremum of the real numbers µ such that the inequality∣∣∣∣ξ − p

q

∣∣∣∣ < 1
qµ

has infinitely many solutions in rational numbers p/q. It follows from the
theory of continued fractions that µ(ξ) ≥ 2 for all irrational numbers ξ, and
from the Borel–Cantelli lemma that µ(ξ) = 2 for almost all real numbers
(with respect to Lebesgue measure). However, to determine µ(ξ) for a given
real number ξ is often a difficult problem. Näıvely, we could hope to be able
to read it off from the expansion of ξ in some integer base b, but this is
almost never the case (see [8] for a thorough discussion).

Let b ≥ 2 be an integer. Recently, Bugeaud [10] constructed a class C of
real numbers whose irrationality exponent can be read off from their base-b
expansion. The class C consists of the numbers

ξn =
∑
j≥1

b−nj

for a strictly increasing sequence n = (nj)j≥1 of positive integers satisfying
nj+1/nj ≥ 2 for every large integer j. To obtain good rational approxima-
tions to ξn, we simply truncate the above sum. Thus, we set

ξn,J =
J∑
j=1

b−nj =
pJ
bnJ

, J ≥ 1.
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It then follows from∣∣∣∣ξn − pJ
bnJ

∣∣∣∣ < 2
(bnJ )nJ+1/nJ

, J ≥ 1,

that
µ(ξn) ≥ lim sup

j→∞

nj+1

nj
.

Shallit [19] proved that the continued fraction expansions of some rational
translate of any such ξn can be given explicitly, and Bugeaud [10] proved
that its irrationality exponent is given by

(1) µ(ξn) = lim sup
j→∞

nj+1

nj
,

and hence can be read off from its base-b expansion; see Section 5 of the
present paper for a brief explanation. This means that the denominators of
the best rational approximations to ξn are, with finitely many exceptions,
powers of b. In this paper, among other results, we use this method to study
the irrationality exponents of automatic and morphic numbers.

Let Σ be a finite alphabet, and let ε denote the empty word. As usual,
let Σ∗ denote the set of finite words on Σ and write Σ+ for Σ∗ without
the empty word. Let h : Σ∗ → Σ∗ be a morphism. If there exists a letter
a ∈ Σ such that h(a) = ax for some x ∈ Σ+, and furthermore, hn(x) 6= ε
for all n ≥ 0 (this means that h is prolongable on a), then the sequence
a, h(a), h2(a), . . . converges as n tends to infinity to the infinite word hω(a) =
axh(x)h2(x) · · · , which is a fixed point of the morphism h. Such infinite fixed
points are called pure morphic words. An infinite word is morphic if it is the
image under a coding (that is, a letter-to-letter morphism) of a pure morphic
word; it is automatic if it is morphic and the underlying pure morphic word
can be generated by a uniform morphism, that is, one that maps all letters
to words of equal length. (Note: the standard definition of automatic words,
or sequences, uses finite automata. See, e.g., [7, Chapter 5].) A real number
is automatic (resp., morphic) if its expansion in some integer base b ≥ 2 is
an automatic (resp., morphic) word over the alphabet Σb = {0, 1, . . . , b−1}.

Recall that a Liouville number is a real number ξ satisfying µ(ξ) = ∞,
and that any real number greater than or equal to 2 is the irrationality
exponent of some real number. Adamczewski and Cassaigne [3] established
in 2006 that the irrationality exponent of an automatic number is always
finite, that is, automatic numbers are not Liouville numbers. In [10], our
equation (1) was used to show that any rational number µ ≥ 2 is the irra-
tionality exponent of some automatic number. These two results motivate
the following question, also formulated in [4]:

Problem 1. Determine the set of irrationality exponents of automatic
numbers. In particular, is the irrationality exponent of an automatic number
always rational?
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Unfortunately, we are unable to settle this problem. However, Theorem 1
below implies that for any automatic number ξ in the class C, the quantity
µ(ξ) is rational. Consequently, to give a negative answer to Problem 1 we
would need to use a radically different method to construct automatic num-
bers than in [10]. Recently, Adamczewski and Rivoal [4] also formulated
Problem 1 and they gave upper bounds for the irrationality exponent of
some classical automatic numbers.

As automatic numbers form a subclass of the morphic numbers, Prob-
lem 1 can be naturally extended as follows:

Problem 2. Determine the set of irrationality exponents of morphic
numbers.

Theorem 1 implies that the irrationality exponent of every morphic num-
ber in the class C is always an algebraic number. Moreover, using the same
method as in [10], we are able to show that every Perron number µ ≥ 2
is the irrationality exponent of some morphic number (recall that a Perron
number is a positive real algebraic integer that is greater in absolute value
than all of its conjugates). However, Problem 2 remains unsolved.

Theorem 1 is proved through a combinatorial study of maximal ∆-blocks
in automatic and morphic words, where ∆ ⊆ Σ is a subalphabet. We find
the combinatorial results interesting in their own right.

Our paper is organized as follows. In Section 2 we give some definitions
and state the main theorems and some open problems. In Section 3 we
analyze the structure of ∆-blocks in pure morphic words. In Section 4 we
apply the results of Section 3 to morphic words in general. In Section 5 we
construct, for a given Perron number µ ≥ 2, a morphic number ξ in C such
that µ(ξ) = µ.

2. Exponents of Diophantine approximation and maximal
blocks. To carefully investigate the question whether one can read off the
irrationality exponent of a real number from its expansion in some integer
base, Amou and Bugeaud [8] introduced new exponents of Diophantine ap-
proximation. Throughout the present paper, ‖·‖ denotes the distance to the
nearest integer and b·c denotes the greatest integer function.

Definition 1. Let ξ be an irrational real number, and let b ≥ 2 be an
integer. We let vb(ξ) denote the supremum of the real numbers v for which
the inequality ‖bnξ‖ < (bn)−v

has infinitely many solutions in positive integers n. We let v′b(ξ) denote the
supremum of the real numbers v for which the inequality

‖br(bs − 1)ξ‖ < (br+s)−v

has infinitely many solutions in positive integers r and s.
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The exponent vb measures the accuracy with which a real number is
approximable by rationals obtained by truncating its base-b expansion (thus,
whose denominator is a power of b), while v′b measures the accuracy with
which a real number is approximable by rationals obtained by truncating its
base-b expansion and completing by periodicity. Furthermore, v′b(ξ) is the
Diophantine exponent of the sequence of base-b digits of ξ, as defined in [2].

The exponents vb, v′b satisfy

v′b(ξ) ≥ vb(ξ) ≥ 0

and
µ(ξ) ≥ 1 + max{v′b(ξ), 1} ≥ 1 + max{vb(ξ), 1}

for all irrational numbers ξ and integers b ≥ 2. Furthermore, any real number
ξn =

∑
j≥1 b

−nj belonging to the class C satisfies

(2) µ(ξ) = 1 + vb(ξ) = 1 + v′b(ξ) = lim sup
j→∞

nj+1

nj
.

To understand the shift by 1, just observe that µ(ξ)− 1 is the supremum of
the real numbers µ such that ‖qξ‖ < q−µ has infinitely many solutions in
positive integers q.

Let b ≥ 2 be an integer. Recall that vb(ξ) = v′b(ξ) = 0 for almost all
real numbers ξ. Since vb(

∑
j≥1 b

−bvjc) = v − 1 for every real number v > 1,
the set of values taken by the function vb evaluated at real numbers is the
interval [0,∞].

The main result of the present paper is the following:

Theorem 1. Let ξ be an irrational real number, and suppose the ex-
pansion of ξ in some integer base b ≥ 2 is an automatic (resp., morphic)
word over the alphabet {0, 1, . . . , b− 1}. Then the number vb(ξ) is finite and
rational (resp., algebraic).

Conversely, we do not know whether for every positive algebraic number
v there exist b ≥ 2 and a morphic number ξ such that vb(ξ) = v. The next
theorem provides a partial result towards the resolution of this problem (see
also Corollary 3).

Theorem 2. For every rational number v ≥ 1 (resp., Perron number
v > 1) and every integer b ≥ 2 there exists a real number ξ such that
the base-b expansion of ξ is an automatic (resp., morphic) word over the
alphabet {0, 1, . . . , b− 1} and vb(ξ) = v − 1.

Theorem 2 asserts that the set of values taken by the exponent vb at
automatic irrational real numbers is precisely the set of nonnegative rational
numbers. The real numbers ξ constructed in the proof of Theorem 2 satisfy
µ(ξ) = 1 + vb(ξ) when vb(ξ) ≥ 1, but we do not know their irrationality
exponent if vb(ξ) is less than 1.
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We use the same method as in [10] to show the following:

Corollary 3. For every Perron number µ ≥ 2 there exists a morphic
number ξ such that µ(ξ) = µ.

We do not know whether every real algebraic number greater than 2 is
the irrationality exponent of some morphic number, but there exist morphic
numbers whose irrationality exponent is algebraic but not a Perron num-
ber, as we discuss now (see also Remark 2 at the end of Section 5). In 1927
Böhmer [9] found a class of real numbers with the property that both their
b-ary expansion and their continued fraction expansion are explicitly deter-
mined (this was rediscovered nearly fifty years later by Danilov [13] and,
independently, by Adams and Davison [5], extending a result of Davison
[14]). For a positive real number α = [0; a1, a2, . . .] in (0, 1) and an integer
b ≥ 2, set

Sb(α) = (b− 1)
∞∑
j=1

1
bbj/αc

.

For n ≥ 1, let pn/qn denote the nth convergent to α and set

tn :=
bqn − bqn−2

bqn−1 − 1
.

Then, as proved in [13, 5], we have

Sb(α) = [0; t1, t2, t3, . . .]

and the irrationality exponent µ(Sb(α)) is given by

µ(Sb(α)) = 1 + lim sup
n→∞

[an; an−1, . . . , a0],

the latter computation being done in [1].
Following Section 2.3.6 of [18], a Sturm number is a real number whose

continued fraction expansion is either of the form

[0; 1, a0, a1, . . . , ak] with ak ≥ a0,

or
[0; 1 + a0, a1, . . . , ak] with ak ≥ a0 ≥ 1.

As usual, the notation a1, . . . , ak is an abbreviation for the periodic sequence
with period a1, . . . , ak. It was proved by Allauzen [6] that the sequence of
base-b digits of Sb(α) is a fixed point of some nontrivial morphism if and
only if α is a Sturm number. Putting everything together, we see that, for
every finite sequence a1, . . . , ak of positive integers, the quadratic number

1 + max
1≤j≤k

[aj ; aj+1, . . . , aj+k−1, aj ]

is the irrationality exponent of some morphic number, with the convention
that ak+h = ah for h = 1, . . . , k. In particular, [4; 2, 3, 2, 3, 2, 3, 2, . . . ] =
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(5 +
√

15)/2 is the irrationality exponent of a morphic number but this
number is not an algebraic integer, in particular not a Perron number.

Recently, Adamczewski and Rivoal [4] gave upper bounds for the irra-
tionality exponent of some classical automatic numbers. Furthermore, it is
proved in [11] that, for b ≥ 2, the irrationality exponent of the real num-
ber whose sequence of base-b digits is the Thue–Morse sequence on {0, 1} is
equal to 2.

Theorem 1 and Corollary 3 can be phrased in combinatorial terms. Let
w = w0w1w2 · · · be an infinite word over Σb = {0, 1, . . . , b − 1}, and let
0 ≤ i ≤ j. We say that wi · · ·wj is a maximal zero block in w if wi = wi+1 =
· · · = wj = 0, wj+1 6= 0, and either i = 0 or wi−1 6= 0. Theorem 1 and
Corollary 3 can be phrased in terms of maximal zero blocks in the base-b
expansion of ξ:

Theorem 4. Let w = w0w1w2 · · · be an automatic (resp., morphic)
word over {0, 1, . . . , b − 1} that does not have a suffix of the form 0ω. For
k ≥ 0, let (ik, jk) denote the starting and ending positions, respectively,
of the kth maximal zero block in w. Then lim supk→∞ jk/ik is finite and
rational (resp., algebraic).

Strictly speaking, Theorem 1 is not a restatement of Theorem 4. Indeed,
the exponent vb measures not only the occurrences of zero blocks, but also
the occurrences of blocks composed only of the digit b−1, since its definition
involves the distance to the nearest integer.

Theorem 5. For every Perron number µ ≥ 2 there exists a binary mor-
phic word w = w0w1w2 · · · such that the sequence {nj}j≥0 = {n : wn = 1}
satisfies nj+1/nj ≥ 2 for every large integer j, and lim supj→∞ nj+1/nj = µ.

Maximal zero blocks are a special case of maximal x-blocks, where x∈Σ+

is an arbitrary word. We say that y = wi · · ·wj is an x-block in w if there
exist some proper suffix x′ and proper prefix x′′ of x such that y = x′xnx′′

for some integer n ≥ 1; if x′′wj+1 is not a prefix of x, and either i = 0 or
wi−1x

′ is not a suffix of x, then the x-block is maximal. Theorem 4 can be
generalized as follows:

Theorem 6. Let w = w0w1w2 · · · be an automatic (resp., morphic)
word over {0, 1, . . . , b−1}, and let x ∈ Σ+

b . Assume w does not have a suffix
of the form xω. For k ≥ 0, let (ik, jk) denote the starting and ending posi-
tions, respectively, of the kth maximal x-block in w. Then lim supk→∞ jk/ik
is finite and rational (resp., algebraic).

Theorems 4 and 6 are proved in Section 4. Theorems 5 and 2 and Corol-
lary 3 are proved in Section 5.

In light of Theorem 6, it seems plausible that the method used in the
proof would allow us to say something about the exponent v′b. This is not
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the case, however, since we then have to consider possible repetitions of
every finite word x in Σ+

b , and hence, to take the supremum of an infinite
set of rational (resp., algebraic) numbers that may not be all distinct. We
cannot guarantee that this supremum is rational (resp., algebraic), nor even
that it is finite. Thus, we are unfortunately unable to establish the following
statement:

Unproven Assertion (i). Let ξ be an irrational real number, and sup-
pose the expansion of ξ in some integer base b ≥ 2 is an automatic (resp.,
morphic) word over the alphabet Σb = {0, 1, . . . , b − 1}. Then the number
v′b(ξ) is finite and rational (resp., algebraic).

If we could prove that for every irrational real number ξ such that the
expansion of ξ in some integer base b ≥ 2 is morphic and has sublinear
complexity, the number v′b(ξ) is finite, then we could extend Theorem 2.1 of
Adamczewski and Cassaigne [3], asserting that the irrationality exponent of
an automatic number is always finite, as follows:

Unproven Assertion (ii). A morphic number of sublinear complexity
cannot be a Liouville number.

Lemma 5.1 of [3] states that v′b(ξ) is finite for every irrational automatic
number, and is a key step in the proof of Theorem 2.1 of [3]. Here, the
assumption that ξ is automatic is crucial. The other steps of the proof do
not require such a strong condition on ξ and can be easily adapted to the
case where ξ is morphic with sublinear complexity.

However, for numbers in the class C, Theorem 1 and (2) imply the fol-
lowing corollary:

Corollary 7. Let ξ be an automatic (resp., morphic) number in the
class C. Then µ(ξ) is finite and rational (resp., algebraic).

3. ∆-blocks in pure morphic words

Definition 2. Let w = w0w1w2 · · · ∈ Σω. Let Sub(w) denote the set of
finite subwords of w. An occurrence of w is a triple (u, i, j), where ε 6= u ∈
Sub(w) and 0 ≤ i ≤ j, such that wi · · ·wj = u. The set of all occurrences
of w is denoted by Occ(w). An occurrence (u, i, j) ∈ Occ(w) contains an
occurrence (u′, i′, j′) ∈ Occ(w), denoted u′ ≺ u, if i ≤ i′ and j ≥ j′.

Throughout this paper, we abuse the notation and identify an occurrence
(u, i, j) with the word u. Thus, for example, if w = w0w1w2 · · · = hω(w0)
for some morphism h, and (u, i, j) is an occurrence, we write simply u =
wi · · ·wj . Similarly, we write h(u) to denote the occurrence (v, k,m), where
v = h(u), and when applying h to the subword occurring at positions i, . . . , j
in w we get a subword occurring at positions k, . . . ,m.
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Definition 3. Let w = w0w1w2 · · · ∈ Σω. Let ∆ ⊆ Σ, and let ∆ =
Σ \∆. An occurrence (u, i, j) ∈ Occ(w) is a ∆-block if u ∈ ∆+. A ∆-block
(u, i, j) ∈ Occ(w) is maximal if wj+1 ∈ ∆, and either i = 0 or wi−1 ∈ ∆.

Our goal in this section is to prove the following theorem:

Theorem 8. Let h : Σ∗ → Σ∗ be a nonerasing morphism, and let
w = w0w1w2 · · · = hω(w0). Let ∆ ( Σ be a nonempty subalphabet, such
that w contains infinitely many letters of ∆ and ∆-blocks of unbounded
length. For k = 0, 1, 2, . . . , let (ik, jk) denote the starting and ending posi-
tions, respectively, of the kth maximal ∆-block in w. Then lim supk→∞ jk/ik
is an algebraic number of degree at most |Σ|. If h is also uniform, then
lim supk→∞ jk/ik is rational.

We require w to contain∆-blocks of unbounded length because otherwise
lim supk→∞ jk/ik is trivially rational. This condition implies in particular
that w is not ultimately periodic, that is, w is not of the form w = xyω for
some x ∈ Σ∗ and y ∈ Σ+.

The technique we use to prove Theorem 8 is very similar to the technique
used to prove the algebraicity of critical exponents in pure morphic words
[15, 16]. The idea is as follows:

1. The sequence of maximal ∆-blocks can be partitioned into subse-
quences, where for each subsequence, every element is an image un-
der h of the previous element, up to a small change at the edges.

2. There are only finitely many different such subsequences in w. Since
we are interested in lim sup, it is enough to consider only the first of
each of the different subsequences.

3. The lim sup of a subsequence can be computed using the incidence
matrix of h (see Definition 4). In particular, the lim sup is a rational
expression of the eigenvalues of the said matrix, which are algebraic
numbers of degree at most |Σ|. When h is uniform, the expression
turns out to be rational.

Definition 4. Let Σ = Σn = {0, 1, . . . , n − 1}, let h : Σ∗n → Σ∗n,
and let u ∈ Σ∗n. The Parikh vector of u, denoted by [u], is a vector
of size n that counts how many times different letters occur in u: [u] =
(|u|0, |u|1, . . . , |u|n−1)T . The incidence matrix associated with h, denoted by
A(h), is the n× n matrix whose jth column is the Parikh vector of h(j):

A(h) = (ai,j)0≤i,j<n, ai,j = |h(j)|i.
It is an easy induction to show that [h(u)] = A[u] for all u ∈ Σ∗, and

that A(hn) = An for all n ∈ N. See, e.g., [7, Section 8.2].

Notation. For a word w (finite or not), alph(w) denotes the set of
letters occurring in w.
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Lemma 9. Let h : Σ∗ → Σ∗. Then there exists some power g of h such
that for all a ∈ Σ and n ≥ 1, alph(gn(a)) = alph(g(a)).

Proof. Let A = A(h) = (ai,j), and define An = A(hn) = (a(n)
i,j ). Then

for all letters a, b ∈ Σ and for all n ≥ 1, b ∈ alph(hn(a)) if and only if
|hn(a)|b > 0, that is, if and only if a(n)

b,a > 0. Since we care only about the
zero pattern of An and not about the value of the nonzero entries, it is
enough to consider A as a boolean matrix. Let B be a |Σ| × |Σ| boolean
matrix such that bi,j = 0 if and only if ai,j = 0. Then it is enough to prove
the following: there exists some power B′ of B such that B′n = B′ for all
n ≥ 1.

Since there are only finitely many boolean matrices of a given size,
there exist some integers t ≥ 0 and c ≥ 1 such that Bt = Bt+c, and so
Bt+k = Bt+k+nc for all k ∈ {0, 1, . . . , c − 1} and for all n ≥ 0. Choose a
k ∈ {0, 1, . . . , c − 1} such that c divides t + k, and let B′ = Bt+k. Then
t+ k = mc for some integer m, and for all n ≥ 1,

B′n = Bn(t+k) = Bt+k+(n−1)mc = Bt+k = B′.

By setting g = ht+k we get the desired morphism.

Let w = hω(a) be a pure morphic word over Σ. Then w = (ht)ω(a) for
all t ≥ 1, and so we can replace h by some convenient power. Therefore, by
Lemma 9, we can assume the following:

Assumption 1. For all a ∈ Σ and n ≥ 1, alph(hn(a)) = alph(h(a)).

Notation. For the rest of this section, h : Σ∗ → Σ∗ is a noneras-
ing morphism satisfying Assumption 1; M = max{|h(a)| : a ∈ Σ}; w =
w0w1w2 · · · = hω(w0) is a non-ultimately periodic pure morphic word overΣ;
and ∆ ( Σ is a nonempty subalphabet such that w contains infinitely many
letters of ∆ and ∆-blocks of unbounded length.

Definition 5. The inverse image under h of an occurrence u ∈ Occ(w),
denoted h−1(u), is the shortest occurrence v ∈ Occ(w) such that h(v) con-
tains u.

In the next two lemmas, we want to establish the following idea: if w
contains ∆-blocks of unbounded length and infinitely many letters of ∆,
then sufficiently long ∆-blocks are images under h of other ∆-blocks, except
perhaps for edges of bounded length.

Lemma 10. Let u = wr · · ·ws ∈ Occ(w) be a maximal ∆-block, with
|u| > M2 and r > M , and let h−1(u) = wi · · ·wj. Then

• wi+M · · ·wj−M is a (not necessarily maximal) ∆-block;
• both wi−M+1 · · ·wi+M−1 and wj−M+1 · · ·wj+M−1 contain a letter of ∆.
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Proof. Suppose there is a letter a occurring in u such that b := h−1(a)∈∆.
Let c = h−1(b) (since a occurs at a position k > M ≥ |h(w0)|, h−1(b)
is well-defined). Then by Assumption 1, h2(c) contains b, and so h2(c) =
h2(h−2(a)) is not contained in u. This implies that b (which is contained in
h(c)) occurs at a distance of at most M from the edges of h−1(u). Therefore,
wi+M · · ·wj−M is a ∆-block.

Now consider wi−M+1 · · ·wi+M−1. Since u is maximal, d := wr−1 ∈ ∆.
Let e = h−2(d) (again, h−2(d) is well-defined, since r − 1 ≥ M). Then h(e)
contains d by Assumption 1. But h(e) is contained in wi−M+1 · · ·wi+M−1,
so wi−M+1 · · ·wi+M−1 contains a letter of ∆. Similarly, wj−M+1 · · ·wj+M−1

contains a letter of ∆.

Lemma 11. Let u = wi · · ·wj ∈ Occ(w) be a maximal ∆-block, with
|u| > M2 and i > M . Then

• h(wi+M · · ·wj−M ) is a (not necessarily maximal) ∆-block;
• both h(wi−M+1 · · ·wi+M−1) and h(wj−M+1 · · ·wj+M−1) contain a let-

ter of ∆.

Proof. Suppose h(u) contains a letter b ∈ ∆. Then there exists a letter
a ∈ ∆ such that h(a) contains b. By the same argument as in the proof of
Lemma 10, h(h−1(a)) contains b, and cannot be contained in u. We deduce
that a occurs at a distance of at most M from the edges of u, and so
h(wi+M · · ·wj−M ) is a ∆-block. The rest is proved similarly.

Corollary 12. The set of maximal ∆-blocks u = wi · · ·wj that satisfy
i > M and |u| > M2 can be partitioned into (infinitely many) sequences,
each of which has the form u(0), u(1), u(2), . . . , where for all k ≥ 0, if u(k) =
wi · · ·wj, then

h(wi+M · · ·wj−M ) ≺ u(k+1) ≺ h(wi−M+1 · · ·wj+M−1).

Definition 6. Let w = w0w1w2 · · · = hω(w0) be an aperiodic pure
morphic word over an alphabet Σ, let M = max{|h(a)| : a ∈ Σ}, and let
∆ ( Σ. A ∆-sequence in w is a sequence u(k) = wik · · ·wjk of maximal
∆-blocks, where for all k ≥ 0:

• ik > M ;
• |u(k)| > M2;
• h(wik+M · · ·wjk−M ) ≺ u(k+1) ≺ h(wik−M+1 · · ·wjk+M−1).

Definition 7. Let w = w0w1w2 · · · = hω(w0) and let {u(k)}k≥0 be a ∆-
sequence. For k≥0, let h(wik) =wrk+1

· · ·wsk+1
and h(wjk) =wmk+1

· · ·wnk+1
.

Then

• u(k+1) is growing on the left if ik+1 < rk+1;
• u(k+1) is shrinking on the left if ik+1 > rk+1;
• u(k+1) is stationary on the left if ik+1 = rk+1.
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Similarly, u(k+1) is growing on the right if jk+1 > nk+1, shrinking on the right
if jk+1 < nk+1, and stationary on the right if jk+1 = nk+1. The left stretch
of u(k+1), denoted by σ(k+1), is the word that occurs between the left edge
of u(k+1) and the left edge of h(u(k)). That is, if u(k+1) is shrinking on the
left, then σ(k+1) := wrk+1

· · ·wik+1−1 (in this case we say that the left stretch
is negative); if u(k+1) is growing on the left, then σ(k+1) := wik+1

· · ·wrk+1−1

(in this case we say that the left stretch is positive). Note that if σ(k+1) is
positive then it is contained in u(k+1), and if it is negative then it borders
u(k+1) on the left. If rk+1 = ik+1 then σ(k+1) := ε. The right stretch, denoted
by ρ(k), is defined similarly.

The kth left pivot, denoted by p
(k)
L , is the rightmost letter in the word

wik−M+1 · · ·wik+M−1 such that h(p(k)
L ) contains a letter of ∆; that is, p(k)

L :=
h−1(wik+1−1). The right pivot, denoted by p(k)

R , is defined similarly.

Figure 1 illustrates Definition 7.

Fig. 1. Maximal ∆-blocks. u(k+1) is growing on the left and shrinking on the right. The
kth right pivot is exactly wjk . The black circles are the ∆ letters that terminate u(k+1).

Lemma 13. Let {u(k)}k≥0 be a ∆-sequence in w. Then the sequences
{σ(k)}k≥1 and {ρ(k)}k≥1 are ultimately periodic.

Proof. We prove the lemma for the left stretch. The proof for the right
stretch is similar.

For k ≥ 0, let p(k)
L = wpk

. Then h(wp0+1 · · ·wi0+M−1) ∈ ∆+, and so
hn(wp0+1 · · ·wi0+M−1) ∈ ∆+ for all n > 0 (recall Assumption 1). In par-
ticular, h2(wp0+1 · · ·wi0+M−1) ∈ ∆+, and therefore p

(1)
L cannot occur in

h(wp0+1 · · ·wi0+M−1). On the other hand, alph(h2(wp0)) = alph(h(wp0)),
and so h(wp0) contains a letter a such that h(a) contains a letter of ∆. In
particular, p(1)

L ≺ h(p(0)
L ). More generally, for all k > 0, p(k)

L is the rightmost
letter a in h(p(k−1)

L ) such that h(a) contains a letter of ∆. This implies that
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the sequence of left pivots, {p(k)
L }k≥0, is ultimately periodic: since Σ is finite,

there exist some k 6= m such that p(k)
L = p

(m)
L , and so p(k+n)

L = p
(m+n)
L for

all n ≥ 1.
Now consider the left stretch. Let h(p(0)

L ) = wx1 · · ·wy1 . By definition,
either i1 = y1 + 1 (if the rightmost ∆ letter is the last letter of h(p(0)

L )),
or x1 < i1 ≤ y1. In the former case, wi1 ≺ h(wp0+1), and so h(wi1) ∈ ∆+,
and u(2) is either growing or stationary. Since h(p(0)

L ) contains p(1)
L (that is,

h2(p(0)
L ) contains a letter of ∆), we see that σ(2) is a suffix of h2(p(0)

L ).
If x1 < i1 ≤ y1, then u(2) can also be shrinking. However, in this case both

h(wi1) and wi2 are contained in h2(p(0)
L ), and so σ(2) ≺ h2(p(0)

L ). Similarly,
σ(k) ≺ h(p(k−2)

L ) for all k ≥ 2. This implies that {σ(k)}k≥1 is ultimately
periodic.

Let {u(k)}k≥0 be a ∆-sequence. Then the sequence {(σ(k), ρ(k))}k≥1 is
ultimately periodic. By ignoring the first few elements we can assume it is
purely periodic; by replacing h by hp, where p is the period, we can partition
{(σ(k), ρ(k))}k≥1 into p subsequences, where each subsequence has period 1.
We now compute ik and jk for a sequence of maximal ∆-blocks, assuming
that σ(k) and ρ(k) are fixed.

Lemma 14. Let {u(k)}k≥0 be a ∆-sequence, and assume that σ(k) = σ
and ρ(k) = ρ for all k ≥ 0. Let A be the incidence matrix of h, and let
1 be the all ones vector of size 1 × |Σ|. Then there exist integral vectors
U, V,X, Y of size |Σ|×1, where U and V are nonnegative and nonzero, and
a constant c, such that for all k ≥ 0, jk/ik < c, and

• ik = 1(AkV + (
∑k−1

n=0A
n)X);

• jk = ik + 1(AkU + (
∑k−1

n=0A
n)Y )− 1.

Proof. Let v(k) = w0 · · ·wik−1. Then ik = |v(k)| = 1[v(k)] and jk =
ik + |u(k)| − 1 = ik + 1[u(k)]− 1. To compute ik and jk we need to compute
[u(k)] and [v(k)].

Let U = [u(0)] and V = [v(0)]. Since i0 > M , v(0) is a nonempty word,
and so both U and V are nonnegative, nonzero vectors. Assume that ρ = ε.
Then there are two possible situations:

1. h(u(k)) = σu(k+1) (σ is negative);
2. σh(u(k)) = u(k+1) (σ is positive).

Suppose that σ is negative. Then h(u(0)) = σu(1), h2(u(0)) = h(σu(1)) =
h(σ)h(u(1)) = h(σ)σu(2), and by induction, hk(u(0)) = hk−1(σ)hk−2(σ) · · ·
· · ·h(σ)σu(k). Then for all k ≥ 0,
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[u(k)] = [hk(u(0))]− [hk−1(σ)]− [hk−2(σ)]− · · · − [σ] = AkU −
( k−1∑
l=0

Al
)

[σ].

Now suppose that σ is positive. Then u(1) = σh(u(0)), u(2) = σh(u(1)) =
σh(σ)h2(u(0)), and by induction, u(k) = σh(σ) · · ·hk−1(σ)hk(u(0)). Hence
for all k ≥ 0,

[u(k)] = [hk(u(0))] + [hk−1(σ)] + [hk−2(σ)] + · · ·+ [σ] = AkU +
( k−1∑
l=0

Al
)

[σ].

If ρ 6= ε, then, depending on its sign, we get

[u(k)] = AkU ±
( k−1∑
l=0

Al
)

[σ]±
( k−1∑
l=0

Al
)

[ρ].

Similarly, [v(k)] = AkV + (
∑k−1

l=0 A
l)[σ] if σ is negative, and [v(k)] = AkV −

(
∑k−1

l=0 A
l)[σ] if σ is positive (here the roles are inverted: if σ is negative

then it is positive with respect to v(k), and vice versa). Let Y = ±[σ]± [ρ],
X = ∓[σ]. Then for all k ≥ 0,

[u(k)] = AkU +
( k−1∑
l=0

Al
)
Y, [v(k)] = AkV +

( k−1∑
l=0

Al
)
X.

It remains to show that the sequence jk/ik is bounded by a constant. Let
w(k) = wjk+1 · · ·wik+1−1. Since maximal ∆-blocks are disjoint and separated
by at least one letter from ∆, |w(k)| ≥ 1 for all k ≥ 0. Now, for all k ≥ 1,

|u(k)| = |h(u(k−1))| ± |σ| ± |ρ| < M |u(k−1)|+ 2M,

|v(k)| = |v(k−1)u(k−1)w(k−1)| > |u(k−1)|,
and so

jk
ik

= 1 +
|u(k)| − 1
|v(k)|

< 1 +M +
2M
|u(0)|

.

This completes the proof of the lemma.

The following theorem was proved in [15, 16]:

Theorem 15. Let A be an n×n nonnegative integral matrix with no zero
columns, and let U, V,W be nonnegative integral column vectors of size n,
with W 6= 0. Let

F(k) =
1(AkU + (

∑k−1
i=0 A

i)V )
1(AkW )

, k ≥ 0.

Then {F(k)}k≥0 has finitely many accumulation points. Moreover, any fi-
nite accumulation point is a rational expression in the eigenvalues of A. In
particular, it is algebraic of degree at most n.
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The proof of Theorem 15 can be adapted, with slight changes, to the
case of the sequence {jk/ik}k≥0. Here we have a sequence of the form

jk
ik

= 1 +
|u(k)| − 1
|v(k)|

= 1 +
1(AkU + (

∑k−1
l=0 A

l)Y )− 1
1(AkV + (

∑m−1
l=0 Al)X)

, k ≥ 0,

where A is a |Σ| × |Σ| nonnegative integral matrix with no zero columns
(recall that h is nonerasing), U and V are nonnegative integral vectors,
both nonzero, and X and Y are integral vectors, with possibly negative
entries. However, since both |u(k)| and |v(k)| are tending to infinity as k
tends to infinity, both the numerator and denominator are always positive.
In particular, the fact that X and Y may contain negative entries does not
alter the result. Also, Lemma 14 implies that all accumulation points are
finite.

Corollary 16. Under the conditions of Lemma 14, lim supk→∞ jk/ik
is an algebraic number of degree at most |Σ|.

Lemma 17. Under the conditions of Lemma 14, if h is uniform then
limk→∞ jk/ik exists and is rational.

Proof. If h is an m-uniform morphism, then |h(w)| = m|w| for all w ∈
Σ∗. Let u = |u(0)|, v = |v(0)|, y = ±|σ| ± |ρ|, and x = ∓|σ|. Then the
expressions for |u(k)| and |v(k)| are reduced to

|u(k)| = mk|u|+
( k−1∑
l=0

ml
)
y = mk|u|+ y

mk − 1
m− 1

,

|v(k)| = mk|v|+
( k−1∑
l=0

ml
)
x = mk|v|+ x

mk − 1
m− 1

.

Therefore,

jk
ik

= 1 +
|u(k)| − 1
|v(k)|

= 1 +
mk|u|+ ym

k−1
m−1 − 1

mk|v|+ xm
k−1
m−1

−→
k→∞ 1 +

(m− 1)|u|+ y

(m− 1)|v|+ x
.

Proof of Theorem 8. Since we are interested in lim sup jk/ik, it is enough
to consider only ∆-blocks of size larger than M2 that occur at an index
i > M . By Corollary 12, these ∆-blocks can be partitioned into sequences,
where for each sequence, an element is the image under h of the previous
element, save perhaps for edges of a bounded length. Let u = wi · · ·wj be
the first element of such a sequence. Then |u| > M2 and i > M , and so by
Lemma 10, v := h−1(u) is a maximal ∆-block (up to the edges); however,
|v| ≤M2, or it would be part of the sequence itself. Taking into account the
occurrences of size M on both sides of v, we deduce that each sequence is
uniquely determined by a subword of w of length at most M2 + 2M . Since
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there are only finitely many such subwords, there are only finitely many
different such sequences. To compute the lim sup, it is enough to consider
only the first of each of the different sequences, where ik is the smallest.
Therefore, we need to consider only finitely many sequences. Each sequence
can be further partitioned into finitely many subsequences, where for each
of those, lim sup jk/ik is algebraic of degree at most |Σ| (Lemma 14). For
uniform morphisms, lim sup jk/ik is rational (Lemma 17).

4. ∆-blocks and x-blocks in morphic words. In this section we
extend Theorem 8 to morphic words in general, as described at the beginning
of Section 3. First, the next theorem shows that we lose no generality by
restricting ourselves to nonerasing morphisms:

Theorem 18 ([7, Theorem 7.5.1]). Every pure morphic word is the image
under a coding of a pure morphic word generated by a nonerasing morphism.

Theorem 19. Let w be a morphic word over a finite alphabet Σ. Let
∆ ⊂ Σ be a nonempty proper subalphabet such that w contains infinitely
many letters of ∆ and ∆-blocks of unbounded length. For k = 0, 1, 2, . . . , let
u(k) = wik · · ·wjk be the kth maximal ∆-block in w. Then lim supk→∞ jk/ik
is algebraic. If w is also automatic then lim supk→∞ jk/ik is rational.

Proof. Since w is morphic, there exists some alphabet Σ′, a morphism
h : Σ′∗ → Σ′∗, and a coding τ : Σ′∗ → Σ∗, such that w = τ(hω(a)) for
some a ∈ Σ′. By Theorem 18, we can assume that h is nonerasing. Let
∆′ = τ−1(∆). Then every maximal ∆-block in w is the image under τ of a
maximal ∆′-block in hω(a), and every maximal ∆′-block in hω(a) is mapped
by τ to a maximal ∆-block in w. The result follows from Theorem 8.

Proof of Theorem 4. Set ∆ = {0} and apply Theorem 19.

Proof of Theorem 6. Let |x| = d, and let X = {(u(k), ik, jk) ∈ Occ(w) :
k ≥ 0}. First, we partition X into d subsequences, X0, . . . , Xd−1, where

Xm = {(u, r, s) ∈ X : u = x′xnx′′, x′ is a proper suffix of x,
and r + |x′| ≡ m (mod d)}.

That is, Xm is the sequence of maximal x-blocks for which x itself begins
at an index equivalent to m (mod d). For m = 0, 1, . . . , d − 1 and for k =
0, 1, 2, . . . , let (ik,m, jk,m) denote the starting and ending positions of the
kth element of Xm. Then

(3) lim sup
k→∞

jk
ik

= max
{

lim sup
k→∞

jk,m
ik,m

: 0 ≤ m < d

}
.

Let Σ′ = {〈a0 · · · ad−1〉 : a0 · · · ad−1 ∈ Sub(w)}, and define d infinite words
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over Σ′ by

wi = 〈wi · · ·wi+d−1〉〈wi+d · · ·wi+2d−1〉 · · · , i = 0, 1, . . . , d− 1.

By [7, Theorem 7.9.1], if w is morphic then wm is morphic for all m; by
[12], if w is automatic then wm is automatic for all m. Let Γ = Σ ∪ {α},
where α /∈ Σ, and define a d-uniform morphism τ : Σ′∗ → Γ ∗ by

τ(〈a0 · · · ad−1〉) =

{
αd if a0 · · · ad−1 = x,

a0 · · · ad−1 if a0 · · · ad−1 6= x.

Let vm = τ(wm), m = 0, . . . , d − 1. By [7, Corollaries 7.7.5 and 6.8.3], if
wm is morphic (resp., automatic), then so is vm. Let ∆ = {α}, and let
(rk,m, sk,m) denote the starting and ending positions of the kth maximal
∆-block in vm. Then for all k ≥ 0, |rk,m − ik,m| < d and |sk,m − jk,m|<d,
and so lim supk→∞ sk,m/rk,m = lim supk→∞ jk,m/ik,m. By Theorem 19,
lim supk→∞ sk,m/rk,m is algebraic (resp., rational) if vm is morphic (resp.,
automatic), and so lim supk→∞ jk,m/ik,m is algebraic (resp., rational) if w
is morphic (resp., automatic). By (3), the result follows.

5. Perron numbers as irrationality exponents of morphic
numbers

Proof of Theorem 5. Let µ > 1 be a Perron number. Then there exists a
primitive integral square matrix A, of size k× k for some positive integer k,
such that r(A) = µ, where r(A) is the Perron–Frobenius eigenvalue of A
[17, Theorem 11.1.4]. We may assume that k ≥ 2: if µ is not integral then
necessarily k ≥ 2, and if µ is integral we let A be the 2×2 matrix

(
µ−1 µ−1

1 1

)
.

Let Σ = Σk = {0, 1, . . . , k − 1}, and let h : Σ∗ → Σ∗ be a morphism such
that A(h) = A. Then

|hn(0)|
|hn−1(0)|

=
1An[0]

1An−1[0]
, n ≥ 0.

Since µ is a Perron number, the Jordan decomposition of A has one block
of size 1 associated with µ, and it is easy to check that

lim
n→∞

|hn(0)|
|hn−1(0)|

= µ.

For µ > 2, this equation implies that |hn(0)|/|hn−1(0)| > 2 for n sufficiently
large; for µ = 2, we let A =

(
1 1
1 1

)
, and deduce that |hn(0)|/|hn−1(0)| = 2

for all n. Note that we do not require h to be prolongable on 0; we consider
only the finite words {hn(0)}n≥0.

Let Γ = {α, β} ∪ Σ. Define a morphism g : Γ ∗ → Γ ∗ by g(α) = αβ0,
g(β) = β, and g(i) = h(i) for i ∈ Σ. Let u = gω(α). It is an easy induction
to show that

u = α · β · 0 · β · h(0) · β · h2(0) · β · · · .
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Now let τ : Γ ∗ → {0, 1}∗ be the coding that maps β to 1 and all other letters
to 0, and let w = τ(u). Then

w = 0 · 1 · 0x0 · 1 · 0x1 · 1 · 0x2 · 1 · · · ,
where xn = |hn(0)|. Thus, w is a morphic sequence that satisfies the condi-
tions of Theorem 5. This completes the proof of the theorem.

Proof of Theorem 2 and of Corollary 3. For morphic numbers, let µ> 1
be a Perron number, let w be as in the proof of Theorem 5, and let {nj}j≥1 =
{n : wn = 1}. Set

ξw =
∑
j≥0

b−nj ,

where b ≥ 2 is an integer. As lim supj→∞ nj+1/nj = µ, we get vb(ξw) = µ−1.
Also, if µ > 2 then ξw belongs to the class C, and so µ(ξw) = µ. This follows
from the fact that nj+1 ≥ 2nj for j sufficiently large, which enables us to
use the Folding Lemma as in [19, 10] to construct the continued fraction
expansion of a rational translate of −ξw. For completeness, we give the key
argument.

The Folding Lemma asserts that, for a positive integer t and a rational
number r/s = [0; 1, 1, a3, . . . , ah−1, ah] with h ≥ 5 odd and ah ≥ 2, we have
r

s
− 1
ts2

=
rst− 1
ts2

= [0; 1, 1, a3, . . . , ah−1, ah, t− 1, 1, ah − 1, ah−1, . . . , a3, 2]

for t ≥ 2, and
r

s
− 1
s2

=
rs− 1
s2

= [0; 1, 1, a3, . . . , ah−1, ah + 1, ah − 1, ah−1, . . . , a3, 2].

Let J be sufficiently large in order that nj+1 ≥ 2nj for j ≥ J and there exists
a positive integer p such that the continued fraction expansion of p/bnJ has
the form [0; 1, 1, a3, . . . , ah−1, ah] with h ≥ 5 odd and ah ≥ 2. The Folding
Lemma applied first with t = bnJ+1−2nJ , then with t = bnJ+2−2nJ+1 , and so
on, gives us the continued fraction expansion of ξ′w := p/bnJ − 1/bnJ+1 −
1/bnJ+2 − · · · . This allows us to locate the largest partial quotients of ξ′w,
and thus to find its best rational approximations. In turn, this yields the
exact value of the irrationality exponent of ξw. The fact that nj+1 is at least
2nj for every large j is crucial in this argument.

Now consider automatic numbers. For v = 1, we can choose any morphic
binary word that does not contain unbounded 0-blocks or 1-blocks (e.g., the
Thue–Morse word) to be the base-b expansion of ξ, where b ≥ 2 is any
integer, and get vb(ξ) = 0 = v− 1. Suppose v = p/q > 1. We define a binary
infinite word u = u0u1u2 · · · by letting un = 1 if and only if n belongs to
the set ⋃

h≥0

{(p)ph, (p+ 1)ph, . . . , (qp)ph}.
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Then u is p-automatic, as its p-kernel contains only two sequences, namely,
0ω and 0p1qp−p+10ω [7, Theorem 6.6.2]. Let {nj}j≥0 = {n : un = 1}. Since
(p+ 1)/p < p/q, we have

lim sup
j→∞

nj+1

nj
= lim

h→∞

p · ph+1

qp · ph
=
p

q
.

Consequently, the real number

ξu =
∑
j≥1

b−nj

satisfies
vb(ξu) =

p

q
− 1.

Remark 1. We stress that, with the above construction for automatic
numbers, we do not know the value of µ(ξu), because the condition nj+1/nj
≥ 2 for all j sufficiently large is not satisfied. This is not the case with the
slightly more complicated construction given in [10], which works under the
assumption that p/q exceeds 2.

Remark 2. For morphic numbers, we can go a bit further. Keep the no-
tation of the proof of Theorem 5. Let Γ = {α, β}∪Σ. Let k, a1, . . . , ak be pos-
itive integers. Define a morphism g : Γ ∗→ Γ ∗ by g(α) =αβ0a1β0a2β · · ·β0ak ,
g(β) = β, and g(i) = h(i) for i ∈ Σ. Let u = gω(α). It is an easy induction
to show that

u = α · β · 0a1 · β · 0a2 · β · · ·
· β · 0ak · (h(0))a1 · β · (h(0))a2 · β · · ·β · (h(0))ak · β · (h2(0))a1 · β · · · .

Now let τ : Γ ∗ → {0, 1}∗ be the coding that maps β to 1 and all other letters
to 0, and let w = τ(u). For suitable choices for a1, . . . , ak, the value of the
exponent vb at the corresponding morphic number is neither rational, nor a
Perron number minus 1. However, we do not know whether every positive
algebraic number can be so attained.
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