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Solving diophantine equations x4 + y4 = qzp

by

Luis V. Dieulefait (Barcelona)

1. Introduction. When considering the non-existence of primitive so-
lutions in integers for the equation

x4 + y4 = qzp(1.1)

for a fixed prime q and p running over all sufficiently large prime exponents,
there are two sets of values of q where the answer is immediate. On the one
hand, for primes q that can be written as the sum of two biquadrates, like
17 = 1 + 16, one already has a trivial solution for the equation above for
an arbitrary value of p just taking z = 1. On the other hand, a necessary
condition for the existence of primitive solutions in integers is the existence
of solutions modulo q, and it is easy to see that this is equivalent to the ex-
istence of solutions of u4 ≡ −1 (mod q), and since the multiplicative group
of the finite field of q elements is cyclic we know that this congruence has
solutions if and only if q ≡ 1 (mod 8). Thus, for any odd prime q not sat-
isfying this condition, (1.1) cannot have primitive solutions, for any value
of p.

From now on we will restrict to primes q ≡ 1 (mod 8) such that q 6= a4+b4

and we will give an algorithm that, using the modularity of the Q-curve
constructed by Darmon–Ellenberg attached to a hypothetical solution of
(1.1) and imitating the Frey–Ribet approach, ends up for some values of q
in an “impossible congruence”, thus proving the non-existence of primitive
solutions.
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2. From non-existence of trivial solutions to non-existence of
solutions. Fix a value of q as above (an “interesting” value) and assume
that for some p > 13 there exists a primitive solution (A,B,C) of (1.1). We
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are assuming in particular that q is odd (because 2 = 14 + 14), and it is
easy to see that C must be odd, and prime to 3. By assumption, C 6= 1.
The numbers A and B have different parity, thus we can assume that A is
even. Following the construction of Darmon and Ellenberg (cf. [Da], [E]) we
can attach, as we did in [Di] for the equation x4 + y4 = zp, two Q-curves to
the triple (A,B,C). For simplicity we will just consider one of them (see,
however, the remark at the end of this section concerning the case q = 41),
namely the curve

E(A,B) : y2 = x3 + 2(1 + i)Ax2 + (−B2 + iA2)x.

It follows from the results in [E] that E(A,B) is a degree 2 Q-curve defined
over Q(i) semistable outside 2. Odd primes of bad reduction are precisely the
primes dividing qC. Thus, the curve has good reduction at 3, and therefore
it is known to be modular (cf. [ES]). Modularity can be interpreted in “Ga-
lois language” as follows: consider the compatible family of two-dimensional
Galois representations %λ of the full Galois group of Q attached to (the Weil
restriction of) E(A,B). There exists a weight 2 cuspidal modular form f such
that the representations %λ are attached to it, i.e., the trace at of the image of
Frob t agrees with the tth Hecke eigenvalue of f , for every prime t - 2qC. We
know that the representations %λ have coefficients in Q(

√
2), and moreover

that their restrictions to the Galois group of Q(i) have rational coefficients.
Thus, f has an inner twist, i.e., fσ = f⊗φ, where fσ is the Galois conjugate
of f , and φ is the quadratic character corresponding to Q(i).

We list some properties of the representations %λ that are proved in [E]:
The 2-part of the conductor of this family is 32 (recall that A is even), the
residual representations %λ, for every l > 13, λ | l, are irreducible, and their
(projective) images cannot fall in the normalizer of a split Cartan subgroup
of PGL2(Fl) (these two properties generalize similar results proved by Mazur
and Momose for elliptic curves over Q).

The close relation between the discriminant of E(A,B) and qCp is a key
point, allowing us to apply Frey’s trick: Every odd prime q′ 6= q of bad
reduction of the curve disappears when we consider the (irreducible) resid-
ual representation %P , P | p; this residual representation has conductor 32q.
Then, applying Ribet’s level-lowering result, we conclude that there exists a
weight 2 newform f2 of level 32q such that, if {bt} is the set of Hecke eigen-
values of f2 and {at} the one of the modular form f associated to E(A,B),
we have the congruence

at ≡ bt (modP )(2.1)

for every prime t - 2qC.
As (A,B,C) is a primitive solution of (1.1), every prime dividing C is

of the form 8n+ 1; in particular, the level of f does not contain any prime
t ≡ 3 (mod 4).
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Now, we want to derive a contradiction from the above mod P congru-
ences by just looking at a few primes t ≡ 3 (mod 4). On the one hand, we
can control the values of the eigenvalues at of the modular form f (whose
level we do not know) for such values of t because f has an inner twist given
by the mod 4 character, hence these numbers must satisfy at = c

√
2, for a

rational integer c that we can easily bound using |at| ≤ 2
√
t. For example,

we know that a3 must be one of the following: 0,±
√

2,±2
√

2. On the other
hand, f2 is new of level 32q, so by looking at the tables in [S] (or by applying
the Hecke software developed by W. Stein in Magma) we can compute for
this finite set of eigenforms the first eigenvalues bt.

The desired contradiction will be obtained as long as in the space of
modular forms of level 32q no newform has its eigenvalues bt for the first
values of t ≡ 3 (mod 4) of the form c

√
2. If this happens to be the case,

then congruences (2.1) will only have solutions for a few primes p, and by
computing several bt one can shrink this set of primes.

Before computing some examples, we must stress that for certain val-
ues of q we know a priori that the method proposed will not be successful.
In fact, for a prime q that can be written as a sum of two biquadrates
q = A4 + B4, the method is useless because there will be a newform f2 of
level 32q whose eigenvalues bt behave precisely as above, namely the new-
form attached to the Q-curve corresponding to the trivial solution (A,B, 1).
In fact, this newform will have field of coefficients Q(

√
2) and an inner

twist by the character corresponding to Q(i). Thus, a non-trivial solution
(A′, B′, C) of (1.1) for such values of q, that would correspond to a newform
f of higher level, may not exist, but we cannot answer this question with
our method.

For a similar reason, our method does not work for primes q that can
be written as (2A)4 + B2 (for example, 41 = 24 + 52), because even in
this case a Q-curve can be attached (cf. [E]) to the triple (2A,B, 1) and
the corresponding newform again will have level 32q and the same field of
coefficients and inner twist as above. However, there is still an opportunity
to rescue some of these primes: one can consider the second Q-curve attached
to a hypothetical solution (A′, B′, C ′) of x4 + y4 = qzp, the curve E(B′,A′)
defined in [Di] (we are assuming that B ′ is odd). The same method as above
can now be applied, this time the congruences relate the eigenvalues of the
newform attached to this Q-curve with those of a newform of level 256q,
and one can hope that in level 256q there is no newform with coefficients in
Q(
√

2) and an inner twist by the mod 4 character (the equation A4+(2B)2 =
q has no solutions, thus there is no obvious way to construct a Q-curve such
that the corresponding newform has level 256q). This alternative method
has not been tested by us in any example because it involves computations
with too large levels: 256q ≥ 256 · 41 > 10000.
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3. Three successful examples. Let us consider the first three exam-
ples of “interesting” primes that cannot be written as (2A)4 +B2:

q = 73, 89, 113.

We have applied the algorithm described in the previous section to solve
the diophantine equations (1.1) for these values of q and p > 13. To do this,
we extracted from the tables in [S] the eigenvalues b3, b7, b11 and b19 for all
newforms of level 32q for these values of q. For all the considered newforms at
least one of these eigenvalues is not of the form c

√
2, c an integer. Moreover,

solving the congruences at ≡ bt (modP ) where at = c
√

2, for every integer
c such that |at| = |c|

√
2 ≤ 2

√
t and t = 3, 7, 11 and 19, we obtain only

one case where these congruences have a solution: q = 73, p = 17 and the
newform of level 73 · 32 named as 2336L in [S] (to solve the congruences, we
just compute the primes in the resultant between the minimal polynomials
of at and bt).

Thus, except for the case q = 73 and p = 17, we obtain a contradiction,
which proves the following:

Theorem 3.1. The diophantine equations x4 + y4 = qzp do not have
primitive solutions for q = 73, 89 and 113 and p > 13.

Remark. The method proposed in this article can be used to compute
more examples. One can even ask the following question: Is there an in-
teresting prime q (not a sum of two biquadrates) such that the equation
x4 + y4 = qzp has a primitive solution for some p > 13? What if we restrict
to primes q not of the form A4 +B2?

It remains to prove the theorem for q = 73 and p = 17. We will see that
the non-existence of solutions in this case follows from the results in [E].

What happens to the mod 17 representation attached to the newform
2336L is that it has image contained in the normalizer of a Cartan subgroup
(in fact, for this modular form, congruences (2.1) hold modulo 17 precisely
when we take at = 0 for t ≡ 3 (mod 4)). Moreover, this is due to a congru-
ence between 2336L and the newform of level 32. The congruence between
these two cusp forms can be proved by direct computation, checking that
it holds for sufficiently many eigenvalues and applying Sturm’s bound. The
image is dihedral because of this congruence, since the newform of level 32
has complex multiplication: the Galois representations attached to it are
reducible when restricted to the Galois group of Q(i). As 17 ≡ 1 (mod 4),
we see that the mod 17 representation attached to the newform of level 32
has its image contained in the normalizer of a split Cartan subgroup. Now
consider the newform f corresponding to a solution of (1.1) with q = 73
and p = 17. If we suppose that we have a congruence mod 17 between f
and the newform 2336L, then we also obtain a congruence between f and
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the newform of level 32, and in particular we conclude that the image of
the mod 17 representation attached to f is contained in the normalizer of
a split Cartan subgroup; but this contradicts Ellenberg’s generalization to
Q-curves of results of Momose (see Section 2).

Another way of obtaining a contradiction without applying the results
of Ellenberg–Momose is the following: the mod 17 representation attached
to the Q-curve cannot have conductor 32, its conductor must be 32 · 73,
because it has semistable reduction at primes above 73 and the formula for
the discriminant of this Q-curve shows that the prime 17 does not divide
the number of connected components of the reduction of the curve modulo
a prime of Q(i) dividing 73 (the exact power of such a prime dividing the
discriminant is not a multiple of 17).
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