On the surjectivity of Galois representations attached to elliptic curves over number fields

by

ÁLVARO LOZANO-ROBLEDO (Waterville, ME)

1. Surjectivity of a Galois representation. Let K be a number field, fix \overline{K} , an algebraic closure of K, and let j be transcendental over K. Let Ebe an elliptic curve defined over the field K(j) such that j(E) = j. Given a prime number $p \ge 7$, the natural action of $\operatorname{Gal}(\overline{K(j)}/\overline{K(j)})$ on the group of p-torsion points of E induces a representation $\widetilde{\pi}_E$: $\operatorname{Gal}(\overline{K(j)}/\overline{K(j)}) \to$ $\operatorname{SL}(2, \mathbb{F}_p)$. The universal deformation of $\widetilde{\pi}_E$, with respect to certain ramification conditions (see [Roh], [Roh04]), is an epimorphism

$$\pi_E \colon \operatorname{Gal}(\overline{K(j)}/\overline{K}(j)) \to \operatorname{SL}(2, \mathbb{Z}_p[[X]]).$$

Let \widetilde{K} be the extension of K generated by all roots of unity of p-power order. In [Roh00a], [Roh00b], D. E. Rohrlich showed that π_E descends to an epimorphism

$$\varrho_E \colon \operatorname{Gal}(\overline{K(j)}/\overline{K(j)}) \to \operatorname{SL}(2, \mathbb{Z}_p[[X]]).$$

Notice that ρ_E encapsulates arithmetic information which was not present in π_E .

Let A be an elliptic curve defined over K with j-invariant $j(A) \notin \{0, 1728\}$ and suppose that A coincides with the fiber of E at j = j(A). Choose a place σ of $\overline{K(j)}$ extending the place j = j(A) of $\widetilde{K}(j)$, and write D and I for the corresponding decomposition and inertia subgroups of $\operatorname{Gal}(\overline{K(j)}/\widetilde{K}(j))$. We "specialize" the representation ϱ_E to j = j(A) by restricting the map to the decomposition group D. By the ramification constraints of the universal deformation (see [Roh00b]), the map ϱ_E is unramified outside $\{0, 1728, \infty\}$, thus $\varrho_E|_D$ factors through $D/I \cong \operatorname{Gal}(\overline{K}/\widetilde{K})$. We obtain a representation

$$\varrho_A \colon \operatorname{Gal}(\overline{K}/\widetilde{K}) \to \operatorname{SL}(2, \mathbb{Z}_p[[X]]).$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 11F80; Secondary 11G05.

Key words and phrases: p-adic Galois representations, deformations, surjectivity, elliptic curves.

Á. Lozano-Robledo

If we write $\overline{\varrho}_A$: $\operatorname{Gal}(\overline{K}/\widetilde{K}) \to \operatorname{SL}(2, \mathbb{Z}_p)$ for the representation determined up to equivalence by the natural action of $\operatorname{Gal}(\overline{K}/\widetilde{K})$ on the Tate module of A, then, by construction, ϱ_A is a deformation of $\overline{\varrho}_A$, and in particular $\varrho_A|_{X=0} = \overline{\varrho}_A$. The image of $\overline{\varrho}_A$, which has been characterized by M. Deuring [Deu53], [Deu58], J.-P. Serre [Ser72], J. Tate [ST68] and others, depends drastically on whether the elliptic curve A has complex multiplication or not.

In light of the results of Deuring, Serre and Tate, one would naturally want to know how large is the image of the representation ρ_A . Let

$$\widetilde{\varrho}_A \colon \operatorname{Gal}(\overline{K}/\overline{K}) \to \operatorname{SL}(2, \mathbb{F}_p)$$

be the representation induced by the Galois action on the points of order p on A. In [Roh04], Rohrlich proved in the case $K = \mathbb{Q}$ that if $\tilde{\varrho}_A$ is surjective and $\nu_p(j(A)) = -1$ then ϱ_A is surjective, where ν_p is the usual p-adic valuation on \mathbb{Q} . In this note we generalize Rohrlich's results to more general number fields.

Fix \wp , a prime of K lying above a prime $p \ge 7$. We write ν_{\wp} for the standard \wp -adic valuation on K, so that, for a uniformizer π of \wp , $\nu_{\wp}(\pi) = 1$ and $\nu_{\wp}(p) = e$, where $e = e(\wp | p)$ is the ramification index.

THEOREM 1.1. If $\tilde{\varrho}_A$ is surjective, e is not divisible by p-1, $\nu_{\wp}(j(A)) = -t$ with $t \in \mathbb{N}$, gcd(p,t) = 1, and

$$t < \frac{ep}{p-1} = e + \frac{e}{p-1},$$

then ρ_A is surjective.

Proof. The strategy of the proof is the same as in [Roh04, proof of Theorem 1] (which shows the case $K = \mathbb{Q}$). We summarize it here and point out where the proof diverges for a number field K as in the statement of Theorem 1.1.

It suffices to verify the surjectivity of the projective representation

$$P\varrho_A: \operatorname{Gal}(\overline{K}/K) \to \operatorname{PSL}(2,\Lambda)$$

because the only subgroup of $SL(2, \Lambda)$ with projective image $PSL(2, \Lambda)$ is the full group $SL(2, \Lambda)$. We similarly define projective maps $P\varrho_E$ and $P\overline{\varrho}_A$. By the definition of ϱ_A , in order to verify the surjectivity of $P\varrho_A$ it suffices to show that the image via $P\varrho_E$ of the decomposition group D is the full group $PSL(2, \Lambda)$.

The kernel of ϱ_E determines a fixed field **L**, in particular $\operatorname{Gal}(\mathbf{L}/\widetilde{K}(j)) \cong$ PSL(2, $\mathbb{Z}_p[[X]]$). For $i \geq 1$, let $\mathbf{L}_i \subseteq \mathbf{L}$ be the fixed field determined by the kernel of the reduction map

$$\operatorname{Gal}(\mathbf{L}/\widetilde{K}(j)) \cong \operatorname{PSL}(2, \mathbb{Z}_p[[X]]) \to \operatorname{PSL}(2, \mathbb{Z}_p[[X]]/(p, X)^i).$$

Recall that we have chosen a place σ of $\overline{K(j)}$ extending j = j(A). Let ℓ_{ν} be the residue class field of $\sigma|_{\mathbf{L}_{\nu}}$, i.e. $\ell_{\nu} = \sigma(\mathbf{L}_{\nu}) \setminus \{\infty\}$.

A criterion of Boston ([Bos86, Prop. 2, p. 262]) reduces the problem to proving that the image of D in $\operatorname{Gal}(\mathbf{L}_2/\widetilde{K}(j))$ maps to all of $\operatorname{PSL}(2, \Lambda/(p, X)^2)$. Equivalently, one needs to show that $[\mathbf{L}_2 : \widetilde{K}(j)] = [\ell_2 : \widetilde{K}]$. Notice that the assumption on the surjectivity of $\widetilde{\varrho}_A$ implies that $\overline{\varrho}_A$ is surjective (see, for example, [Ser68, IV-23, Lemma 3]), and so is $P\overline{\varrho}_A$, the projectivization of $\overline{\varrho}_A$. It follows that $[\mathbf{L}_1 : \widetilde{K}(j)] = [\ell_1 : \widetilde{K}]$, therefore it suffices to prove that

(1)
$$[\mathbf{L}_2 : \mathbf{L}_1] = [\ell_2 : \ell_1].$$

1.1. Siegel functions. We follow the definitions established in [Roh04].

DEFINITION 1.2. Let $p \ge 7$ be a prime and define $R = \mathbb{F}_p^2 \setminus \{(0,0)\}$.

- (1) M is the set of all functions $m: R \to \mathbb{Z}$ with m(r) = m(-r). M is clearly a \mathbb{Z} -module.
- (2) We write N for the Z-submodule of M consisting of all those $m \in M$ that reduce modulo p to a function defined by a homogeneous polynomial of degree two over \mathbb{F}_p .

Let $r \in R$ and let $s = (s_1, s_2) \in \mathbb{Z}^2$ be any lift of r, i.e. $s = (s_1, s_2) \equiv r \mod p$, and put $a = a_s = p^{-1}(s_1, s_2)$. Then the symbol f_r represents any Siegel function g_a^{12} (see [KL81, p. 29]). If $s \in \mathbb{Z}^2$ is replaced by another lift of r then f_r is multiplied by a pth root of unity ([KL81, Remark on p. 30]), so the symbol $f_r(\tau)$ is only well defined up to pth roots of unity. For $m \in M$ we also define the symbolic mth power:

$$f^m = \prod_{r \in R} f_r^{m(r)}.$$

The key ingredient in the proof of Theorem 1.1 is given by the following result of Rohrlich ([Roh04, Theorem 2]).

THEOREM 1.3. The extension $\mathbf{L}_2/\mathbf{L}_1$ is generated by pth roots of Siegel units. More precisely, $\mathbf{L}_2 = \mathbf{L}_1(\{(f^m)^{1/p} : m \in N\}).$

Using the previous theorem, Rohrlich reduces the proof of (1) to the following local statement (see [Roh04, pp. 19, 20]; the argument is valid in our case, by simply replacing \mathbb{Q} by K). Since $\nu_{\wp}(j(A)) = -t < 0$ there is a unique Tate curve B over K_{\wp} with j(B) = j(A). Suppose there is an $m \in N$ such that $\sigma(f^m)^{1/p} \notin K_{\wp}(B[p^{\nu}])$ for all sufficiently large $\nu \in \mathbb{N}$. Then equality (1) follows.

Let \mathcal{O}_{\wp} be the ring on integers in K_{\wp} and let q be the unique element of $\pi \mathcal{O}_{\wp}$ such that j(q) = j(B), where π , as before, is a uniformizer of \wp . Proposition 8 of [Roh04] can be generalized to: Á. Lozano-Robledo

PROPOSITION 1.4. There exists $m \in N$ such that:

$$\sigma(f^m) = q^{\mu}(1 - uq)(1 - vq^2) = q^{\mu}(1 + wq)$$

with $\mu \in \mathbb{Z}$, $u, w \in \mathcal{O}_{\wp}^{\times}$, and $v \in \mathcal{O}_{\wp}$. In particular, $\sigma(f^m) \in K_{\wp}$.

The proof found in [Roh04] is valid without change. Let $f = f^m$ with m as in the previous proposition. Hence, in order to finish the proof of Theorem 1.1, we need to show:

PROPOSITION 1.5. Suppose that $v_{\wp}(j(A)) = -t$ with $t \in \mathbb{N}$, e is not divisible by p - 1, gcd(p, t) = 1, and

$$t < \frac{ep}{p-1} = e + \frac{e}{p-1}.$$

Then $\sigma(f)^{1/p} \notin K_{\wp}(B[p^{\nu}])$ for all sufficiently large $\nu \in \mathbb{N}$.

Proof. It suffices to show that $\sigma(f)^{1/p}$ has degree p over $K_{\wp}(B[p^{\nu}])$ for all sufficiently large ν . Note that $K_{\wp}(B[p^{\nu}]) = K_{\wp}(\zeta, q^{1/p^{\nu}})$ where ζ is a primitive p^{ν} th root of unity (see [Lan87, Chapter 15, Theorem 3]).

Since $v_{\wp}(j(A)) = -t$, we have $v_{\wp}(q) = t$ (and by assumption gcd(p, t) = 1). It follows that $gcd(v_{\wp}(q), p^{\nu}) = 1$ and the order of q in $K_{\wp}^{\times}/K_{\wp}^{\times p^{\nu}}$ is p^{ν} .

Recall that by Proposition 1.4 we can write $\sigma(f)$ as $q^{\mu}(1-uq)(1-vq^2) = q^{\mu}(1+wq)$ with $\mu \in \mathbb{Z}$, $u, w \in \mathcal{O}_{\wp}^{\times}$, and $v \in \mathcal{O}_{\wp}$. We claim that $\alpha := q^{-\mu}\sigma(f)$ has degree p^{ν} in $K_{\wp}^{\times}/K_{\wp}^{\times p^{\nu}}$. For suppose the contrary, i.e. $\alpha^{p^{\nu-1}} = \beta^{p^{\nu}}$ for some $\beta \in K_{\wp}$. Then $\beta^p = \xi \alpha$ with ξ a $p^{\nu-1}$ th root of unity and $\xi = \beta^p \alpha^{-1} \in K_{\wp}$. Since K_{\wp} cannot contain nontrivial *p*th roots of unity (or p-1 would divide *e*), it follows that $\xi = 1$.

Hence $\alpha = \beta^p$. Let $\beta = 1 + b\pi$ for some $b \in \mathcal{O}_{\wp}$, π a uniformizer for \wp . By the binomial theorem,

$$(1+b\pi)^p = \sum_{h=0}^p \binom{p}{h} b^h \pi^h,$$

so the terms in $\beta^p - 1$ have \wp -adic valuations in the list

 $p(\nu_{\wp}(b)+1), \quad i(\nu_{\wp}(b)+1)+e \quad \text{with } 1 \le i \le p-1$

and the minimum nonzero valuation is either $p(\nu_{\wp}(b) + 1)$ or $\nu_{\wp}(b) + 1 + e$ (and both cannot be equal, since that implies that p-1 divides e). This value must equal t since we are assuming $\alpha = 1 + wq = \beta^p$, but t is not divisible by p by hypothesis, so the minimum valuation must be $t = \nu_{\wp}(b) + 1 + e$.

First suppose t < e + 1. This implies that $\nu_{\wp}(b) < 0$, which is contradictory since $b \in \mathcal{O}_{\wp}$. Otherwise $e + 1 \leq t < ep/(p-1)$ and the fact that $\nu_{\wp}(b) + 1 + e < p(\nu_{\wp}(b) + 1)$ implies that

$$p > \frac{\nu_{\wp}(b) + 1 + e}{\nu_{\wp}(b) + 1}$$

Substituting $\nu_{\wp}(b) = t - e - 1$ we obtain p > t/(t - e) and hence t > ep/(p-1) (since t > e), which contradicts our assumption on t. Therefore, we conclude that α is not a pth power.

REMARK 1.6. Using the \wp -adic logarithm and exponential maps one can prove that if $\nu_{\wp}(\gamma) > e + e/(p-1)$ then $(1+\gamma)^{1/p} \in K_{\wp}$. So the bound on t in the theorem is best possible, at least for this method of proof.

Thus we have proved that the order of α in $K_{\wp}^{\times}/K_{\wp}^{\times p^{\nu}}$ is exactly p^{ν} . Therefore, the subgroup of $K_{\wp}^{\times}/K_{\wp}^{\times p^{\nu}}$ generated by the cosets of q and $\sigma(f)$ has order $p^{2\nu}$.

LEMMA 1.7. Let L be a field with char(L) = 0, and let ζ be a primitive p^{ν} th root of unity. Let $M = L(\zeta)$. Then the following natural map is injective:

$$L^{\times}/L^{\times p^{\nu}} \to M^{\times}/M^{\times p^{\nu}}.$$

We claim that Proposition 1.5 follows from the previous lemma (which we will prove below). Indeed, let $\mathbf{F}_{\nu} = K_{\wp}(\zeta)$ where ζ is a primitive p^{ν} th root of unity. The natural map

$$K_{\wp}^{\times}/K_{\wp}^{\times p^{\nu}} \to \mathbf{F}_{\nu}^{\times}/\mathbf{F}_{\nu}^{\times p^{\nu}}$$

is injective by the previous lemma, so the image of the group generated by the cosets of q and $\sigma(f)$ also has order $p^{2\nu}$.

It follows that $[\mathbf{F}_{\nu}(q^{1/p^{\nu}}, \sigma(f)^{1/p^{\nu}}) : \mathbf{F}_{\nu}] = p^{2\nu}$ and we can deduce that

$$[\mathbf{F}_{\nu}(q^{1/p^{\nu}},\sigma(f)^{1/p^{\nu}}):\mathbf{F}_{\nu}(q^{1/p^{\nu}})] = p^{\nu}.$$

Hence $\sigma(f)^{1/p^{\nu}}$ has degree p^{ν} over $\mathbf{F}_{\nu}(q^{1/p^{\nu}}) = K_{\wp}(B[p^{\nu}])$, so $\sigma(f)^{1/p}$ has degree p over $K_{\wp}(B[p^{\nu}])$.

Proof of Lemma 1.7. As a consequence of Hilbert's Theorem 90 we obtain:

$$H^{1}(\operatorname{Gal}(\overline{L}/L), \mu_{p^{\nu}}) = L^{\times}/L^{\times p^{\nu}}, \quad H^{1}(\operatorname{Gal}(\overline{M}/M), \mu_{p^{\nu}}) = M^{\times}/M^{\times p^{\nu}}.$$

Moreover, the natural map $L^{\times}/L^{\times p^{\nu}} \to M^{\times}/M^{\times p^{\nu}}$ corresponds to the restriction map in cohomology, which fits in the exact sequence

 $0 \to H^1(\operatorname{Gal}(M/L), \mu_{p^{\nu}}) \to H^1(\operatorname{Gal}(\overline{L}/L), \mu_{p^{\nu}}) \to H^1(\operatorname{Gal}(\overline{M}/M), \mu_{p^{\nu}}).$

Thus, in order to show that the map is injective, is enough to show that

$$H^1(\operatorname{Gal}(M/L), \mu_{p^\nu}) = 0.$$

Since $M = L(\zeta)$ where ζ is a primitive p^{ν} th root of unity, we can think of $\operatorname{Gal}(M/L)$ as a subgroup of $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ acting on $\mu_{p^{\nu}} \cong \mathbb{Z}/p^{\nu}\mathbb{Z}$ via multiplication, and to finish the proof, we must prove:

LEMMA 1.8. $H^1(G, \mathbb{Z}/p^{\nu}\mathbb{Z}) = 0$ for any $G \leq (\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$.

Statements similar to this one can be found in the literature (see e.g. [Rub99, Lemma 6.1]), but for the convenience of the reader we include a proof of the precise statement needed here.

Proof. For this, let $\psi : G \to \mathbb{Z}/p^{\nu}\mathbb{Z}$ be a cocycle. We wish to prove that ψ is actually a coboundary. Since $G \leq (\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$, G is cyclic, that is, $G = \langle a \rangle$ for some a. Moreover, suppose that the order of G is n_0 . Since ψ is a cocycle $\psi(1) = 0$ and, inductively, one can show that

$$\psi(a^t) = (a^{t-1} + a^{t-2} + \dots + 1)\psi(a) = \left(\frac{a^t - 1}{a - 1}\right)\psi(a).$$

Note that 1/(a-1) might not make sense in $\mathbb{Z}/p^{\nu}\mathbb{Z}$, so we also let a be an integer representative of the congruence class, and we write $((a^t - 1)/(a - 1))$ for the congruence class of $(a^t - 1)/(a - 1) \in \mathbb{Z}$ modulo $p^{\nu}\mathbb{Z}$.

Note that n_0 , the order of G, divides $p^{\nu-1}(p-1)$, the order of $(\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$. First, suppose that $gcd(n_0, p-1) > 1$. Then $a \neq 1 \mod p$, since the elements which are congruent to 1 modulo p generate subgroups with order a power of p. Since $a \neq 1 \mod p$, $a - 1 \in (\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times}$ and it follows that

$$(\clubsuit) \qquad \psi(a^t) = \left(\frac{a^t - 1}{a - 1}\right)\psi(a) = (a^t - 1)\frac{\psi(a)}{a - 1} = a^t\frac{\psi(a)}{a - 1} - \frac{\psi(a)}{a - 1}$$

with $\psi(a)/(a-1) \in \mathbb{Z}/p^{\nu}\mathbb{Z}$. Hence ψ is a coboundary in this case.

Only the case $n_0 = p^{\nu-m}$ remains, where *m* is an integer satisfying $1 \leq m < \nu$. This corresponds to the case $G = \{\alpha \in (\mathbb{Z}/p^{\nu}\mathbb{Z})^{\times} : \alpha \equiv 1 \mod p^m\}$. Thus *a*, the chosen generator of *G*, satisfies $a \equiv 1 + up^m \mod p^{\nu}$, with $u \neq 0 \mod p$. It suffices to show that $\psi(a) \equiv 0 \mod p^m$ since that will imply that $\psi(a)/(a-1) \in \mathbb{Z}/p^{\nu}\mathbb{Z}$ and we can proceed as in (**4**) to prove that ψ is a coboundary. We start with

$$0 \equiv \psi(1) \equiv \psi(a \cdot a^{p^{\nu-m}-1}) \equiv \psi(a) + a \cdot \psi(a^{p^{\nu-m}-1}) \mod p^{\nu}$$

and

$$\psi(a^{p^{\nu-m}-1}) \equiv \left(\frac{a^{p^{\nu-m}-1}-1}{a-1}\right)\psi(a) \mod p^{\nu},$$

thus

$$(\mathbf{F}) \qquad \qquad 0 \equiv \psi(a) + a \left(\frac{a^{p^{\nu-m}-1}-1}{a-1}\right) \psi(a) \bmod p^{\nu}.$$

It is easy to see that $(1+up^{\eta})^{p^{\kappa}} = 1+u'p^{\eta+\kappa}$, with $u \equiv u' \mod p$. Hence

$$a\left(\frac{a^{p^{\nu-m}-1}-1}{a-1}\right) = \frac{a^{p^{\nu-m}}-1}{a-1} - 1 \equiv p^{\nu-m} - 1 \mod p^{\nu+1}$$

and the congruence remains true modulo p^{ν} . Finally, substituting in (\clubsuit) above, we obtain

$$0 \equiv \psi(a) + (p^{\nu-m} - 1)\psi(a) \equiv p^{\nu-m}\psi(a) \mod p^{\nu}.$$

Therefore, $\psi(a) \equiv 0 \mod p^m$, which concludes the proof of the lemma.

We have thus finished the proof of Theorem 1.1. \blacksquare

2. Example. Let $K = \mathbb{Q}(\sqrt{-11})$, p = 11 and set $\tau = (1 + \sqrt{-11})/2$. We write \wp for the unique prime ideal of K lying above 11, thus the ramification index $e = e(\wp | p)$ is 2. Let A/K be the curve

$$A: y^{2} + (2\tau - 1)y = x^{3} + \tau x^{2}, \quad j(A) = \frac{-61440 - 851968\tau}{11 \cdot 4931},$$
$$= -3795 - 352\tau, \quad N_{K/\mathbb{Q}}(\Delta_{A}) = 3^{3} \cdot 11^{2} \cdot 3941, \quad N_{K/\mathbb{Q}}(j(A)) = \frac{2^{24} \cdot 3^{3}}{11^{2} \cdot 3941}$$

In particular, $t = -v_{\wp}(j(A)) = 2$. Note that e = 2 is not divisible by p - 1 = 10; gcd(p, t) = gcd(11, 2) = 1 and ep/(p - 1) = 11/5 > 2 = t.

Hence it remains to check that the representation $\tilde{\varrho}_A$: $\operatorname{Gal}(\overline{K}/\widetilde{K}) \to$ $\operatorname{SL}(2, \mathbb{F}_p)$ is surjective. In [Ser72, Proposition 19], J.-P. Serre gives conditions for a subgroup G of $\operatorname{SL}(2, \mathbb{F}_p)$ to be the full group $\operatorname{SL}(2, \mathbb{F}_p)$. We reproduce the result here for the reader's convenience:

PROPOSITION. Suppose $p \ge 5$ and the following hypotheses are satisfied:

- (1) the subgroup G contains a matrix s_1 such that $\operatorname{Tr}(s_1)^2 4 \det(s_1)$ is a nonzero quadratic residue modulo p, and $\operatorname{Tr}(s_1) \neq 0 \mod p$;
- (2) G contains a matrix s_2 such that $\operatorname{Tr}(s_2)^2 4 \det(s_2)$ is not a quadratic residue modulo p, and $\operatorname{Tr}(s_2) \neq 0 \mod p$;
- (3) G contains a matrix s_3 such that $u = \text{Tr}(s_3)^2/\det(s_3)$ is not 0, 1, 2 or 4 modulo p and $u^2 - 3u + 1 \neq 0 \mod p$.

Then G is the full group $SL(2, \mathbb{F}_p)$.

 Δ_A

Let $G < \mathrm{SL}(2, \mathbb{F}_p)$ be the image of the representation $\tilde{\varrho}_A$. Let S_A denote the set of all prime ideals of K such that A has bad reduction. S_A is the set of prime ideals which divide Δ_A , i.e. $S_A = \{3, 11, 3941\}$. Then, for every $\nu \notin S_A \cup \{\wp\}$, the image via $\tilde{\varrho}_A$ of a Frobenius element $\pi_{\nu} \in \mathrm{Gal}(\overline{K}/\widetilde{K})$ is a matrix that we also denote by π_{ν} such that:

- (1) $\operatorname{Tr}(\pi_{\nu}) \equiv a_{\nu} \mod p$ where a_{ν} is the trace of the Frobenius automorphism of A at the place ν ;
- (2) $det(\pi_{\nu}) \equiv \mathbf{N}(\nu) \mod p.$

In order to conclude that $G = SL(2, \mathbb{F}_p)$ we exhibit three Frobenius elements s_1, s_2, s_3 ($s_3 = s_2$) that satisfy the conditions in the Proposition above. The trace of the Frobenius automorphism was calculated using the computer software PARI [Pari00].

Á. Lozano-Robledo

• The prime number 5 is split in K. Let ν_5 be one of the prime ideals of K lying above 5 (so $\mathbf{N}(\nu_5) = 5$). The trace of the Frobenius automorphism is $a_{\nu_5} = -1$. Let $s_1 = \pi_{\nu_5}$. Then

$$\operatorname{Ir}(s_1)^2 - 4 \det(s_1) \equiv (-1)^2 - 4 \cdot 5 \equiv -19 \equiv 5^2 \mod 11.$$

• The prime number 13 is inert in K. Let ν_{13} be the prime ideal of K lying above 13 (so $\mathbf{N}(\nu_{13}) = 169$). The trace of the Frobenius automorphism is $a_{\nu_{13}} = 10$. Let $s_2 = \pi_{\nu_{13}}$. Then

$$\operatorname{Tr}(s_2)^2 - 4 \det(s_2) \equiv (10)^2 - 4 \cdot 169 \equiv -576 \equiv 7 \mod 11$$

and 7 is not a quadratic residue modulo 11.

• Let $s_3 = s_2$ and let $u = \text{Tr}(s_3)^2/\text{det}(s_3) \equiv \frac{100}{169} \equiv 3 \mod 11$. Then $u^2 - 3u + 1 \equiv 1 \mod 11$.

Therefore $\tilde{\varrho}_A$ is surjective and all conditions of Theorem 1.1 have been verified, thus the map ϱ_A : $\operatorname{Gal}(\overline{K}/\widetilde{K}) \to \operatorname{SL}(2, \mathbb{Z}_{11}[[X]])$ is surjective.

Acknowledgements. I would like to thank David Rohrlich for his dedication as my advisor.

References

- [Deu53] M. Deuring, Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. IIa 1953, 85–94; II, ibid. 1955, 13–42; III, ibid. 1956, 37–76; IV, ibid. 1957, 55–80.
- [Deu58] —, Die Klassenkörper der komplexen Multiplikation, in: Enzyklopädie der mathematischen Wissenschaften: Mit Einschluss ihrer Anwendungen, Band I-2, Heft 10, Teil II, Teubner, Stuttgart, 1958.
- [KL81] D. S. Kubert and S. Lang, *Modular Units*, Grundlehren Math. Wiss. 244, Springer, New York, 1981.
- [Lan87] S. Lang, *Elliptic Functions*, 2nd ed., Springer, New York, 1987.
- [MW86] B. Mazur and A. Wiles, On p-adic analytic families of Galois representations, Compositio Math. 59 (1986), 231–264.
- [Pari00] The PARI Group, PARI/GP, Version 2.1.1, 2000, Bordeaux, available from http://www.parigp-home.de/
- [Roh] D. E. Rohrlich, Universal deformation rings and universal elliptic curves, unpublished note (available at his website).
- [Roh00a] —, False division towers of elliptic curves, J. Algebra 229 (2000), 249–279.
- [Roh00b] —, A deformation of the Tate module, ibid. 229 (2000), 280–313.
- [Roh04] —, Modular units and the surjectivity of a Galois representation, J. Number Theory 107 (2004), 8–24.
- [Rub99] K. Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, in: Arithmetic Theory of Elliptic Curves (Cetraro, 1997), Lecture Notes in Math. 1716, Springer, Berlin, 1999, 167–234.
- [Ser68] J.-P. Serre, Abelian l-adic Representations and Elliptic Curves, W. A. Benjamin, New York, 1968.

- 291
- [Ser72] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259–331.
- [ST68] J.-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492–517.

Department of Mathematics Colby College 8800 Mayflower Hill Waterville, ME 04901, U.S.A. E-mail: alozano@colby.edu

$Received on \ 6.9.2004$	
and in revised form on 18.11.2004	(4844)