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On the surjectivity of Galois representations
attached to elliptic curves over number fields
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Álvaro Lozano-Robledo (Waterville, ME)

1. Surjectivity of a Galois representation. Let K be a number field,
fix K, an algebraic closure of K, and let j be transcendental over K. Let E
be an elliptic curve defined over the field K(j) such that j(E) = j. Given

a prime number p ≥ 7, the natural action of Gal(K(j)/K(j)) on the group

of p-torsion points of E induces a representation π̃E : Gal(K(j)/K(j)) →
SL(2,Fp). The universal deformation of π̃E , with respect to certain ramifi-
cation conditions (see [Roh], [Roh04]), is an epimorphism

πE : Gal(K(j)/K(j))→ SL(2,Zp[[X]]).

Let K̃ be the extension of K generated by all roots of unity of p-power
order. In [Roh00a], [Roh00b], D. E. Rohrlich showed that πE descends to an
epimorphism

%E : Gal(K(j)/K̃(j))→ SL(2,Zp[[X]]).

Notice that %E encapsulates arithmetic information which was not present
in πE .

LetA be an elliptic curve defined overK with j-invariant j(A) 6∈{0, 1728}
and suppose that A coincides with the fiber of E at j = j(A). Choose a place

σ of K(j) extending the place j = j(A) of K̃(j), and write D and I for the

corresponding decomposition and inertia subgroups of Gal(K(j)/K̃(j)). We
“specialize” the representation %E to j = j(A) by restricting the map to
the decomposition group D. By the ramification constraints of the universal
deformation (see [Roh00b]), the map %E is unramified outside {0, 1728,∞},
thus %E |D factors through D/I ∼= Gal(K/K̃). We obtain a representation

%A : Gal(K/K̃)→ SL(2,Zp[[X]]).
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If we write %A : Gal(K/K̃) → SL(2,Zp) for the representation determined

up to equivalence by the natural action of Gal(K/K̃) on the Tate module
of A, then, by construction, %A is a deformation of %A, and in particular
%A|X=0 = %A. The image of %A, which has been characterized by M. Deuring
[Deu53], [Deu58], J.-P. Serre [Ser72], J. Tate [ST68] and others, depends
drastically on whether the elliptic curve A has complex multiplication or
not.

In light of the results of Deuring, Serre and Tate, one would naturally
want to know how large is the image of the representation %A. Let

%̃A : Gal(K/K̃)→ SL(2,Fp)

be the representation induced by the Galois action on the points of order p
on A. In [Roh04], Rohrlich proved in the case K = Q that if %̃A is surjective
and νp(j(A)) = −1 then %A is surjective, where νp is the usual p-adic val-
uation on Q. In this note we generalize Rohrlich’s results to more general
number fields.

Fix ℘, a prime of K lying above a prime p ≥ 7. We write ν℘ for the
standard ℘-adic valuation on K, so that, for a uniformizer π of ℘, ν℘(π) = 1
and ν℘(p) = e, where e = e(℘ | p) is the ramification index.

Theorem 1.1. If %̃A is surjective, e is not divisible by p − 1, ν℘(j(A))
= −t with t ∈ N, gcd(p, t) = 1, and

t <
ep

p− 1
= e+

e

p− 1
,

then %A is surjective.

Proof. The strategy of the proof is the same as in [Roh04, proof of The-
orem 1] (which shows the case K = Q). We summarize it here and point
out where the proof diverges for a number field K as in the statement of
Theorem 1.1.

It suffices to verify the surjectivity of the projective representation

P%A : Gal(K/K̃)→ PSL(2, Λ)

because the only subgroup of SL(2, Λ) with projective image PSL(2, Λ) is
the full group SL(2, Λ). We similarly define projective maps P%E and P%A.
By the definition of %A, in order to verify the surjectivity of P%A it suffices
to show that the image via P%E of the decomposition group D is the full
group PSL(2, Λ).

The kernel of %E determines a fixed field L, in particular Gal(L/K̃(j)) ∼=
PSL(2,Zp[[X]]). For i ≥ 1, let Li ⊆ L be the fixed field determined by the
kernel of the reduction map

Gal(L/K̃(j)) ∼= PSL(2,Zp[[X]])→ PSL(2,Zp[[X]]/(p,X)i).
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Recall that we have chosen a place σ of K(j) extending j = j(A). Let `ν be
the residue class field of σ|Lν , i.e. `ν = σ(Lν) \ {∞}.

A criterion of Boston ([Bos86, Prop. 2, p. 262]) reduces the problem to

proving that the image ofD in Gal(L2/K̃(j)) maps to all of PSL(2, Λ/(p,X)2).

Equivalently, one needs to show that [L2 : K̃(j)] = [`2 : K̃]. Notice that the
assumption on the surjectivity of %̃A implies that %A is surjective (see, for
example, [Ser68, IV-23, Lemma 3]), and so is P%A, the projectivization of %A.

It follows that [L1 : K̃(j)] = [`1 : K̃], therefore it suffices to prove that

[L2 : L1] = [`2 : `1].(1)

1.1. Siegel functions. We follow the definitions established in [Roh04].

Definition 1.2. Let p ≥ 7 be a prime and define R = F2
p \ {(0, 0)}.

(1) M is the set of all functions m : R → Z with m(r) = m(−r). M is
clearly a Z-module.

(2) We write N for the Z-submodule of M consisting of all those
m ∈ M that reduce modulo p to a function defined by a homo-
geneous polynomial of degree two over Fp.

Let r ∈ R and let s = (s1, s2) ∈ Z2 be any lift of r, i.e. s = (s1, s2) ≡
r mod p, and put a = as = p−1(s1, s2). Then the symbol fr represents any
Siegel function g12

a (see [KL81, p. 29]). If s ∈ Z2 is replaced by another lift
of r then fr is multiplied by a pth root of unity ([KL81, Remark on p. 30]),
so the symbol fr(τ) is only well defined up to pth roots of unity. For m ∈M
we also define the symbolic mth power:

fm =
∏

r∈R
fm(r)
r .

The key ingredient in the proof of Theorem 1.1 is given by the following
result of Rohrlich ([Roh04, Theorem 2]).

Theorem 1.3. The extension L2/L1 is generated by pth roots of Siegel

units. More precisely , L2 = L1({(fm)1/p : m ∈ N}).

Using the previous theorem, Rohrlich reduces the proof of (1) to the
following local statement (see [Roh04, pp. 19, 20]; the argument is valid in
our case, by simply replacing Q by K). Since ν℘(j(A)) = −t < 0 there
is a unique Tate curve B over K℘ with j(B) = j(A). Suppose there is an

m ∈ N such that σ(fm)1/p /∈ K℘(B[pν ]) for all sufficiently large ν ∈ N.
Then equality (1) follows.

Let O℘ be the ring on integers in K℘ and let q be the unique element
of πO℘ such that j(q) = j(B), where π, as before, is a uniformizer of ℘.
Proposition 8 of [Roh04] can be generalized to:
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Proposition 1.4. There exists m ∈ N such that :

σ(fm) = qµ(1− uq)(1− vq2) = qµ(1 + wq)

with µ ∈ Z, u,w ∈ O×℘ , and v ∈ O℘. In particular , σ(fm) ∈ K℘.

The proof found in [Roh04] is valid without change. Let f = fm with
m as in the previous proposition. Hence, in order to finish the proof of
Theorem 1.1, we need to show:

Proposition 1.5. Suppose that v℘(j(A)) = −t with t ∈ N, e is not
divisible by p− 1, gcd(p, t) = 1, and

t <
ep

p− 1
= e+

e

p− 1
.

Then σ(f)1/p /∈ K℘(B[pν ]) for all sufficiently large ν ∈ N.

Proof. It suffices to show that σ(f)1/p has degree p over K℘(B[pν ]) for

all sufficiently large ν. Note that K℘(B[pν ]) = K℘(ζ, q1/pν ) where ζ is a
primitive pνth root of unity (see [Lan87, Chapter 15, Theorem 3]).

Since v℘(j(A)) = −t, we have v℘(q) = t (and by assumption gcd(p, t)

= 1). It follows that gcd(v℘(q), pν) = 1 and the order of q in K×℘ /K
×pν
℘ is pν .

Recall that by Proposition 1.4 we can write σ(f) as qµ(1−uq)(1−vq2) =
qµ(1+wq) with µ ∈ Z, u,w ∈ O×℘ , and v ∈ O℘. We claim that α := q−µσ(f)

has degree pν in K×℘ /K
×pν
℘ . For suppose the contrary, i.e. αp

ν−1
= βp

ν
for

some β ∈ K℘. Then βp = ξα with ξ a pν−1th root of unity and ξ = βpα−1

∈ K℘. Since K℘ cannot contain nontrivial pth roots of unity (or p−1 would
divide e), it follows that ξ = 1.

Hence α = βp. Let β = 1 + bπ for some b ∈ O℘, π a uniformizer for ℘.
By the binomial theorem,

(1 + bπ)p =

p∑

h=0

(
p

h

)
bhπh,

so the terms in βp − 1 have ℘-adic valuations in the list

p(ν℘(b) + 1), i(ν℘(b) + 1) + e with 1 ≤ i ≤ p− 1

and the minimum nonzero valuation is either p(ν℘(b) + 1) or ν℘(b) + 1 + e
(and both cannot be equal, since that implies that p−1 divides e). This value
must equal t since we are assuming α = 1 + wq = βp, but t is not divisible
by p by hypothesis, so the minimum valuation must be t = ν℘(b) + 1 + e.

First suppose t < e + 1. This implies that ν℘(b) < 0, which is contra-
dictory since b ∈ O℘. Otherwise e + 1 ≤ t < ep/(p− 1) and the fact that
ν℘(b) + 1 + e < p(ν℘(b) + 1) implies that

p >
ν℘(b) + 1 + e

ν℘(b) + 1
.
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Substituting ν℘(b) = t − e − 1 we obtain p > t/(t− e) and hence t >
ep/(p− 1) (since t > e), which contradicts our assumption on t. Therefore,
we conclude that α is not a pth power.

Remark 1.6. Using the ℘-adic logarithm and exponential maps one can
prove that if ν℘(γ) > e+ e/(p− 1) then (1 + γ)1/p ∈ K℘. So the bound on
t in the theorem is best possible, at least for this method of proof.

Thus we have proved that the order of α in K×℘ /K
×pν
℘ is exactly pν .

Therefore, the subgroup of K×℘ /K
×pν
℘ generated by the cosets of q and σ(f)

has order p2ν .

Lemma 1.7. Let L be a field with char(L) = 0, and let ζ be a primi-
tive pν th root of unity. Let M = L(ζ). Then the following natural map is
injective:

L×/L×p
ν →M×/M×p

ν
.

We claim that Proposition 1.5 follows from the previous lemma (which
we will prove below). Indeed, let Fν = K℘(ζ) where ζ is a primitive pνth
root of unity. The natural map

K×℘ /K
×pν
℘ → F×ν /F

×pν
ν

is injective by the previous lemma, so the image of the group generated by
the cosets of q and σ(f) also has order p2ν .

It follows that [Fν(q
1/pν , σ(f)1/pν ) : Fν ] = p2ν and we can deduce that

[Fν(q
1/pν , σ(f)1/pν ) : Fν(q

1/pν)] = pν .

Hence σ(f)1/pν has degree pν over Fν(q
1/pν ) = K℘(B[pν ]), so σ(f)1/p has

degree p over K℘(B[pν ]).

Proof of Lemma 1.7. As a consequence of Hilbert’s Theorem 90 we ob-
tain:

H1(Gal(L/L), µpν ) = L×/L×p
ν
, H1(Gal(M/M), µpν ) = M×/M×p

ν
.

Moreover, the natural map L×/L×p
ν → M×/M×p

ν
corresponds to the re-

striction map in cohomology, which fits in the exact sequence

0→ H1(Gal(M/L), µpν )→ H1(Gal(L/L), µpν )→ H1(Gal(M/M), µpν ).

Thus, in order to show that the map is injective, is enough to show that

H1(Gal(M/L), µpν ) = 0.

Since M = L(ζ) where ζ is a primitive pνth root of unity, we can think
of Gal(M/L) as a subgroup of (Z/pνZ)× acting on µpν ∼= Z/pνZ via multi-
plication, and to finish the proof, we must prove:

Lemma 1.8. H1(G,Z/pνZ) = 0 for any G ≤ (Z/pνZ)×.
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Statements similar to this one can be found in the literature (see e.g.
[Rub99, Lemma 6.1]), but for the convenience of the reader we include a
proof of the precise statement needed here.

Proof. For this, let ψ : G → Z/pνZ be a cocycle. We wish to prove
that ψ is actually a coboundary. Since G ≤ (Z/pνZ)×, G is cyclic, that is,
G = 〈a〉 for some a. Moreover, suppose that the order of G is n0. Since ψ is
a cocycle ψ(1) = 0 and, inductively, one can show that

ψ(at) = (at−1 + at−2 + · · ·+ 1)ψ(a) =

(
at − 1

a− 1

)
ψ(a).

Note that 1/(a− 1) might not make sense in Z/pνZ, so we also let a be an in-
teger representative of the congruence class, and we write ((at − 1)/(a− 1))
for the congruence class of (at − 1)/(a− 1) ∈ Z modulo pνZ.

Note that n0, the order of G, divides pν−1(p−1), the order of (Z/pνZ)×.
First, suppose that gcd(n0, p−1) > 1. Then a 6= 1 mod p, since the elements
which are congruent to 1 modulo p generate subgroups with order a power
of p. Since a 6= 1 mod p, a− 1 ∈ (Z/pνZ)× and it follows that

(♣) ψ(at) =

(
at − 1

a− 1

)
ψ(a) = (at − 1)

ψ(a)

a− 1
= at

ψ(a)

a− 1
− ψ(a)

a− 1

with ψ(a)/(a− 1) ∈ Z/pνZ. Hence ψ is a coboundary in this case.
Only the case n0 = pν−m remains, where m is an integer satisfying 1 ≤

m < ν. This corresponds to the case G = {α ∈ (Z/pνZ)× : α ≡ 1 mod pm}.
Thus a, the chosen generator of G, satisfies a ≡ 1 + upm mod pν , with
u 6= 0 mod p. It suffices to show that ψ(a) ≡ 0 mod pm since that will imply
that ψ(a)/(a− 1) ∈ Z/pνZ and we can proceed as in (♣) to prove that ψ is
a coboundary. We start with

0 ≡ ψ(1) ≡ ψ(a · apν−m−1) ≡ ψ(a) + a · ψ(ap
ν−m−1) mod pν

and

ψ(ap
ν−m−1) ≡

(
ap

ν−m−1 − 1

a− 1

)
ψ(a) mod pν ,

thus

(z) 0 ≡ ψ(a) + a

(
ap

ν−m−1 − 1

a− 1

)
ψ(a) mod pν .

It is easy to see that (1 +upη)p
κ

= 1 +u′pη+κ, with u ≡ u′ mod p. Hence

a

(
ap

ν−m−1 − 1

a− 1

)
=
ap

ν−m − 1

a− 1
− 1 ≡ pν−m − 1 mod pν+1

and the congruence remains true modulo pν . Finally, substituting in (z)
above, we obtain
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0 ≡ ψ(a) + (pν−m − 1)ψ(a) ≡ pν−mψ(a) mod pν .

Therefore, ψ(a) ≡ 0 mod pm, which concludes the proof of the lemma.

We have thus finished the proof of Theorem 1.1.

2. Example. Let K = Q(
√
−11), p = 11 and set τ = (1 +

√
−11)/2. We

write ℘ for the unique prime ideal of K lying above 11, thus the ramification
index e = e(℘ | p) is 2. Let A/K be the curve

A : y2 + (2τ − 1)y = x3 + τx2, j(A) =
−61440− 851968τ

11 · 4931
,

∆A = −3795−352τ, NK/Q(∆A) = 33 · 112 · 3941, NK/Q(j(A)) =
224 · 33

112 · 3941
.

In particular, t = −v℘(j(A)) = 2. Note that e = 2 is not divisible by
p− 1 = 10; gcd(p, t) = gcd(11, 2) = 1 and ep/(p− 1) = 11/5 > 2 = t.

Hence it remains to check that the representation %̃A : Gal(K/K̃) →
SL(2,Fp) is surjective. In [Ser72, Proposition 19], J.-P. Serre gives conditions
for a subgroup G of SL(2,Fp) to be the full group SL(2,Fp). We reproduce
the result here for the reader’s convenience:

Proposition. Suppose p ≥ 5 and the following hypotheses are satisfied :

(1) the subgroup G contains a matrix s1 such that Tr(s1)2 − 4 det(s1) is
a nonzero quadratic residue modulo p, and Tr(s1) 6= 0 mod p;

(2) G contains a matrix s2 such that Tr(s2)2−4 det(s2) is not a quadratic
residue modulo p, and Tr(s2) 6= 0 mod p;

(3) G contains a matrix s3 such that u = Tr(s3)2/det(s3) is not 0, 1, 2
or 4 modulo p and u2 − 3u+ 1 6= 0 mod p.

Then G is the full group SL(2,Fp).

Let G < SL(2,Fp) be the image of the representation %̃A. Let SA denote
the set of all prime ideals of K such that A has bad reduction. SA is the
set of prime ideals which divide ∆A, i.e. SA = {3, 11, 3941}. Then, for every

ν /∈ SA ∪ {℘}, the image via %̃A of a Frobenius element πν ∈ Gal(K/K̃) is
a matrix that we also denote by πν such that:

(1) Tr(πν) ≡ aν mod p where aν is the trace of the Frobenius automor-
phism of A at the place ν;

(2) det(πν) ≡ N(ν) mod p.

In order to conclude that G = SL(2,Fp) we exhibit three Frobenius elements
s1, s2, s3 (s3 = s2) that satisfy the conditions in the Proposition above. The
trace of the Frobenius automorphism was calculated using the computer
software PARI [Pari00].
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• The prime number 5 is split in K. Let ν5 be one of the prime ideals of
K lying above 5 (so N(ν5) = 5). The trace of the Frobenius automor-
phism is aν5 = −1. Let s1 = πν5 . Then

Tr(s1)2 − 4 det(s1) ≡ (−1)2 − 4 · 5 ≡ −19 ≡ 52 mod 11.

• The prime number 13 is inert in K. Let ν13 be the prime ideal of K
lying above 13 (so N(ν13) = 169). The trace of the Frobenius auto-
morphism is aν13 = 10. Let s2 = πν13 . Then

Tr(s2)2 − 4 det(s2) ≡ (10)2 − 4 · 169 ≡ −576 ≡ 7 mod 11

and 7 is not a quadratic residue modulo 11.
• Let s3 = s2 and let u = Tr(s3)2/det(s3) ≡ 100

169 ≡ 3 mod 11. Then

u2 − 3u+ 1 ≡ 1 mod 11.

Therefore %̃A is surjective and all conditions of Theorem 1.1 have been ver-

ified, thus the map %A : Gal(K/K̃)→ SL(2,Z11[[X]]) is surjective.
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