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Points on elliptic curves over finite fields
by

M. SkALBA (Warszawa)

The main result of the present paper asserts that given a polynomial
f(X)= X3+ AX + B € Q[X] with A # 0 we can find X, X2, X3,U € Q
satisfying

F(X0) f(Xa) f(X3) = U
In fact our method gives a two-parameter solution, but even the problem of
the existence of any solution is non-trivial.

As the first application we give a deterministic polynomial time algorithm
which produces points other than the point at infinity on a given elliptic
curve E: Y2 = X3 + AX + B defined over a finite field F,;, provided A4 # 0
and a certain n € [y \Fg is given. Remarkably, no subexponential algorithm
for this problem has been known before (according to N. Koblitz’s remarks
on p. 129 of his book [2]). But the first recognition of the problem can be
attributed to R. Schoof, who writes in his classical paper [7]:...in practice
there is mo problem in finding a point P, but I do not know how to prove that
computing a point in E(F,) is easy.

The restriction to A # 0 is essential for our method. Fortunately we can
refer to Theorem 1 of [6], where an effective method for finding points on
E :Y? = X3 + B is provided.

Our second application concerns patterns of quadratic residues. We will
prove some result related to a conjecture of E. Lehmer and R. K. Guy.
Moreover we interpret this conjecture in the language of elliptic curves and
supplement another conjecture.

I am greatly indebted to Prof. A. Schinzel for his help and encouragement
at every stage of writing this paper.
THEOREM 1. Let F' be any field of characteristic unequal to 2 or 3 and
f(X)= X3+ AX + B, with A,B€ F and A # 0. Put
Nj(t)
(1) = 3
’ Dj(t)
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for j=1,2,3,
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where
5
A%Z( > nlhatBt)y, :Z( > dganB),
7j=0 2a+3b=3j 7j=0 2a+3b=3j
6 4
o)=Y (D nZaB), D —144At2( > dfans),
j=0 2a+3b=3j =0 2a+3b=3j

(X s

j=0 2a+3b=3j+3

:AZ( 3 d?’lA“Bb)t] Z( 3 d32A“Bb)tJ

j=0 2a+3b=3j 7j=0 2a+3b=3j
and the coefficients nl% and d% are given in the tables at the end of the
paper. Then
(1) FX(E) f(Xa(t*) f(X3(t%) = U?  for some U € F(t)
and X1(t), Xo(t), X3(t) are not constant.

THEOREM 2. Let F, be a finite field of q elements, gcd(q,6) = 1, and
consider an elliptic curve E : Y? = X3 + AX + B, where A,B € F, and
A #0. Let T C Fy satisfy the condition: if t € T then —t ¢ T. Define a
map ¢ : T — E(F,) as follows:

B(t) = (X;(2), VI @), where j=min{l <i<3| f(Xi(2) € F2),

and X;(t) (i = 1,2,3) are defined in Theorem 1. Then ® is well defined for
at least |T'| — 25 values of t and

26

COROLLARY 1. Let F be a finite field of characteristic unequal to 2 or 3,
E :Y? = X3 4+ AX + B an elliptic curve defined over F, where A # 0,
and suppose a certain n € F\ F 2 s given. Then we can compute a point
P € E(F)\ {oc} in time polynomial in log|F|. The relevant O-constant is
absolute.

) > 2221,

Thus, according to N. Koblitz’s remarks ([2, p. 129]), we can say that
the main obstacle to a deterministic polynomial time algorithm for finding
a point on E has been overcome. The remaining obstacle, the theoretical
difficulty of extracting square roots, can also be overcome in the following
special case.

COROLLARY 2. Let E : Y? = X3 + AX + B be an elliptic curve,
where A,B € 7 and A # 0. If pt4A> + 27B? then we can find a point
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P e E(F,)\{oo} in time polynomial in logp. The relevant O-constant de-
pends only on |B|.

REMARK. Our method of finding points in E(F,), based on Theorem 2,
gives actually any number of points that is of polynomial growth in log g, in
time polynomial in logg. For the sake of simplicity of formulation we have
confined ourselves in the above corollaries to single points P # oc.

There are many papers devoted to investigation of patterns of power
residues. We are interested in the following special problem. Let a < b be
positive integers. Denote (after E. Lehmer and R. K. Guy [1, Problem F6]) by
2(a,b) the least number such that for all p > p(a, b) there exists n < 2(a, b)
such that each of n,n + a,n + b is a quadratic residue modulo p; moreover,
write 2(a,b) = oo if there is no such finite number. There is a conjecture of
R. K. Guy and E. Lehmer ([1, Problem F6]) that

if (a,b) #(1,2) mod 3, (1,3) mod 5, (2,3) mod 5, (2,4) mod 5,(1,5) mod 7,
(2,3) mod 7, (4,6) mod 7, then 2(a,b) < co.

Our modest task at the moment is to formulate this conjecture using
explicitly the language of elliptic curves.

CONJECTURE 1. Consider the elliptic curve E : Y? = X(X +a)(X +b)
where a < b are natural numbers. Assume that for each prime p satisfying
ptab(b—a), the duplication does not send all points of E(F,) to the point co
(equivalently |E(F,)| > 4). Then 2(a,b) < co.

The equivalence of both conjectures is easily obtainable by H. Hasse’s

estimate
[E®Ep)| = (p+ 1] <2vp,

which implies that |E(FF,)| > 4 for p > 11. Hence the only candidates for
delay primes (using the terminology of E. Lehmer [3]) can be 3,5 or 7. It
is a very elementary verification that E(F,) = Cy x C5 if and only if (a,b)
appears in the above list of R. K. Guy and E. Lehmer.

We prove the following result related to Conjecture 1.

THEOREM 3. For any rational numbers a # b there exist rational num-
bers ri,ro, T3 satisfying: for every sufficiently large prime number p there
exists j € {1,2,3} such that

(- (59)- () -»

where (5) stands for the Legendre symbol and the numerators are considered
modulo p.

For the sake of completeness we formulate a conjecture which is even
more basic than Conjecture 1 (see also Problem in [6]).
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CONJECTURE 2. Consider the elliptic curve E : Y? = X3 + AX? +
BX +C, where A, B, C are given integers. Assume that for each prime num-
ber p at which E has good reduction, the reduced curve E(F),) contains at
least one affine point (equivalently |E(F,)| > 1). Then there exists a constant
C(E) such that for each sufficiently large prime p there exist integers X,Y
satisfying the congruence

Y?= X34+ AX? + BX + C (modp)
and additionally 1 < X < C(FE).
For the proofs we need three lemmas.
LEMMA 1. If f(X)= X3+ AX + B then the following identity holds:
f( o’ +4B ) B (a3+4Aa—8B>2‘ a’+ Ao+ B
—4A — 302 —4A — 302 —4A — 302
LEMMA 2. Let F be a field of characteristic unequal to 2 or 3 and con-
sider the algebraic set V defined over F by the equation
(3) ?4+12422 =22+ A2+ B=: f(2), where A/ BcF and A+#Q0.

Then V 1is irreducible and if we put

. _ Yz tdAe 22 +4B X} +4B
= y—3xz 27 YA 322 3_—414—3)(127
then
f(X0)f(X2)f(X3)

(X} 4+ AX1 + B)(X} +4AX, - 8B)(2® + 442 — 8B)(y — 322)\

B (—4A — 3X?)(—4A — 322)2 ’
where both sides are to be understood as elements of F(V'), the function field
of V.

Proof. For the proof of irreducibility of V' we refer to [5, p. 68, Corollary 2
and Corollary 3|. By Lemma 1 we obtain

2314442 —8B\? 2+ A2+ B
Xo) = .
J(X2) ( —4A =322 ) —4A =332
F(X) = X} +4AX; —8B\* X} +AX, +B
YU —aa-3x2 —4A—3X2
and hence
2+ Az + B
F(X)f(X2)f(X3) =

(—4A — 3X2)(—4A — 322)
L (X3 + AXq + B)(XP + 44X, — 8B)(z* + 44z — 8B) 2
(—4A — 3X2)(—4A — 322) '
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We use the equation defining V' and transform further

2B+ Az+ B B y? 4+ 12A22 B y— 3xz 2
(—4A — 3X7)(—4A — 322)  (—4A —3X})(—4A—322)  \ —4A4 322

Now the assertion follows by combining the above formulas.

LEMMA 3. Let V be the variety given by (3). Then we have rational
morphism
v F? S V(F),
given by the formulas
U(t,s) = (x(t, s), y(t, s), 2(, ),
where
= x(t,s) = 3m?r — 4Amtr + A%*t*r — 12413 — 12A%rs*
+ 3Bmts — ABt*s + 12ABs3,
y=1y(t,s) =m> — 2Am?t + A*mt* — 36 Amr® — 12A*ms*
+ B%t3 + 24 A%tr® — 36 ABtrs,
z=z(t,s) = m? + 12472,
At? — 12452 Bt? -1

m:m(t,s)::2—t, r=r(ts):= YV

Proof. This result belongs to Mordell. It is a special case of Theorem 1
on page 113 of his classical treatise [4]. We have only performed all detailed
elementary calculations to make the solution as explicit as possible.

Proof of Theorem 1. We apply Lemmas 2 and 3. When we substitute
s = t in the formulas for z,y, z in Lemma 3 and then compute X7, Xo, X3
of Lemma 2 we shall obtain X7 (#2), X2(?), X3(t?), where X1 (t), X2(t), X3(t)
are displayed in Theorem 1. Now we will verify that D1 (t) D2(t)D3(t) # 0 and
that X (t), Xo(t), X3(t) are non-constant. The lowest term in the product
D1(t)Do(t)D3(t) is 144 A%t (this follows from the tables given at the end of
the paper). Since A # 0 and char F' # 2,3 we obtain 14442 # 0 and hence
D1(t)D2(t)Ds(t) # 0.

The equality N1(t)/D1(t) = ¢1 € F would imply N;(¢) = 0. From Table 1
we see that the coefficients 21242, 208 4%2B and 161568 A% 4264 A% B? vanish.
The fact that 21242 = 0, while A is not zero, implies that char F' = 53. Since
208 # 0 (mod 53), we have B = 0 and hence, as 161568 # 0 (mod 53), we
find A = 0, a contradiction.

Next X2(t) ¢ F because N2(0) # 0 and D2(0) = 0. For the proof that
X3(t) € F we use the formula

_ Xi(t)3+4B
X:0) = —11 3
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The equality X3(t) = c3 € F would give
X1(t)2 + 3c3X1(t)* + (4B + 4c3A) = 0,
but ¢35 = X3(0) = —B/A, which leads to

X2 (0 - 5 ) =0
a contradiction with X (¢) & F'.
Proof of Theorem 2. The set
{t € T | D1(t*)D(t*) D3(t*) = 0}

has no more than deg D1 (t) + deg D2 (t) + deg D3(t) < 25 elements. For the
remaining values of ¢ the map @ is well defined because of (1) and the fact
that [} is cyclic. In the worst case the same point in E(F,) can be obtained
by our procedure for deg X (¢) + deg X2(t) + deg X3(t) < 26 values of t € T,
and this ends the proof of inequality (2).

Proof of Corollary 1. Obviously we can assume that |F| > 49. First,
take a subset T of F satisfying T'N (—7') = () and |T| = 26. Secondly, using
Theorem 2 find X € F such that f(X) € F2. Finally, compute the relevant
square root Y = /f(X) using n € F'\ F? and the well known “approxima-
tion” procedure due to D. Shanks [8], in time polynomial in log|F|.

First proof of Corollary 2. We distinguish two cases. If f(0) = B is a
quadratic residue mod p we compute y = v/B modp, using the algorithm of

R. Schoof [7], in time O((|B|'/**¢logp)?). If B is a quadratic non-residue
we put n = B and apply Corollary 1.

Second (direct) proof of Corollary 2. The proof differs from the above
only in the case (%) = —1. So we can compute all square roots which
appear in what follows in deterministic polynomial time. By Lemma 1 it is

sufficient to find o € Z satisfying

(4) (ﬂ) _—

p
Consider the quadratic form
g(u,v) = —4Au? — 30°.
If we find u,v € F,, such that
(5) <M> =—1 and wuv #0,
p
then we put « = v/u and (4) holds. If either —4A = ¢g(1,0) or —3 = ¢(0, 1)

is a quadratic non-residue mod p then we easily find u,v € F, satisfying
g(u,v) = —4A or g(u,v) = —3 (respectively) and (5) holds. If both —4A4
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and —3 are squares mod p we first find ¢, d € F} such that
? =44, d*=-3.

In new variables s = cu,t = dv the form g(u,v) transforms to G(s,t) =
s? + t2. Let no be the unique number in the interval [2,p — 1] satisfying
ng = B mod p and define

nj+1:nj—[,/nj]2 fOI‘jZO,l,....
For J =max {j >0 | (%) = —1} we obtain

ny=G(f,[Vns])
with f € F} satisfying f? = nyy1. Since J < loglogp we have arrived at
u = f/c,v=[/ny]/d satisfying (5) in polynomial time.
Proof of Theorem 3. Consider the elliptic curve
E:Y?=X(X+a)(X+0b) = g(X).
The map

)Z'HX:)Z'+ }7|—>Y

a+b

gives an isomorphism of Eonto E : Y2 = X3 + AX + B, where A =
(ab — a2~— b~2) /3 # 0. We apply Theorem 1 to obtain rational numbers
X1, X9, X3,U such that

(6) 9(X1)9(X2)9(X3) = U* and U #0.

Now we define

(X — ab)?
’I“j = =
49(X;)
and verify that
- r+a_(5€f+2a5€j+ab)2 r‘+b_(55j2+2b)?j+ab)2
J - I ) J — = .
49(X;) 49(X;)

If a prime number p appears neither in the numerators nor in the denom-
inators of g(X;) (j = 1,2,3), then using the fact that I}, is cyclic and (6)

we infer that at least one of g(X;) is a square in F,,. The desired assertion
follows now by the definition of r; and (7).

Table 1 (i = 1)

nily =212, n§l) = —208; n) = ~161568, n{!) = —264;
nl!) = 441408, nf'} =304; n{) = —92765376, nf) = 127776, nf) = —44;
iy =1 d) =5 d{) =10536, d') = —10; dS') = 9480, df'} = 10;
dSly = 4024944, d) = —4488, df') = —5; df] = 2108304, d'} = 2904, df') = 1.
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Table 2 (i = 2)

niy=—1; nGl=6; nYy=-4356, niy = —15 n§) = 424944, n§) = 20;
(2) _

n$) = —6324912, n$) = —26136, n’} = —15;
@) _

n$’) = 12649824, n$) = 17424, n’) = 6;

n) = —3061257408, niy = —6324912, n{’) = —4356, niy = —1;

diy =1, d§) =—4; d§) =5976, diY) =6; d) = —5808, df} = —4;

d?) = 2108304, d$2) = 2904, d) = 1.
Table 3 (i = 3,31, 32)
W= =0, nff = —15; af) = 31608, nff} = 105
n{®) = —2382032, n{) = 287640, nl) = —455;
&) = 327958320, nY) = —1124496, n§} = 1365;

Ng1 =

n$’) = 5446134144, nf’) = —949378416, nS’) = 2369808, n{’y = —3003;

n’] = 940697745408, nf’) = 185899568, n§y = —2531880, nyy = 5005;

n{3)s = 1023635467008, nf’) = —4041852271488,

n’) = 3844905120, n{) = —14904, n$y = —6435;

n{3), = —1271178606627072, n’) = —557953136640,
n$’) = —5637798432, ni’) = 4402080, nS’) = 6435;
n{y, = —3711755775062016, niy, = —3365703371771136,
ng’) = 1809225932544, niy = 2558454048, ni’) = —7401888, n’), = —5005;
n{¥, = —502999567986972672, i3, = —924766944152832,
n’) = —3401013749760, nf’) = 1784103840, nf’) = 7013304, n*), = 3003;

n{%, = 447914759358173184, n{Y, = —981669643253544960, niy, = 320477012308224,

$3 = 913161021696, n’y = —3372070032, i), = —4408920, n*), = —1365;

Nge =
n{y), = —73786028437373497344, n'}, = —459570852044992512,
n{3s = —977913669655296, nyy = 439245379584,
n$’) = 2438317040, n{), = 1904112, nf’), = 455;
nY = 1042769766152244658176, n'y, = —84332284536876355584,

n{?, = 5961076345331712, niy s = —43484326592256,
n$’) = —707241693312, n’), = —1030036656, ny1, = —555120, niy, = —105;

Sy, = —2848874263082603053056, niy, = —63482146340076490752,

n{s = —101522561076541440, n'3), = 69490543161600,

nd’) = 280657428480, nf’), = 255430032, n§); = 100584, nl); = 15;
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nSY = 199571139166470771769344, njy, = 824674128787069304832,
n{¥) , = —7951403445605351424, n{Y = —37420516674680832, ni3s = —66000709716480,
n$®)y = —61039617408, nf’), = —31603264, n{’), = —8712, n{)s = —1;
dy) =-1; 4P’ =5; d%) =10536, diy) = —10; dS)) = 9480, 4’ = 10;
diy) = 4024944, d°)) = —4488, di’} = —5;
s’} = 2108304, d°; = 2904, d) =1;
diy =1; 4P =10, 4%y =12636, dS3 =45; dS7 = 20256, dS3 = —120;

s’y = 51578784, diy) = —158448, dy;) = 210;
s’y = 426572352, di}) = 149472, df} = —252;

A%y = 74892304368, dS3 = —178487712, dS3) = 146472, dS'3) = 210;
Y = 42705805824, dS3) = —194173056, dSz = —328224, dS2 = —120;
d{y’) = 38682048607488, dS;) = 217678171392,

s’} = 339663456, dS’3) = 208656, d’s = 45;
diy) = —44449457564160, dS; = —122450296320,

%Y = —126498240, d*7 = —58080, dS3 = 10;
d{¥) = 6454061238316032, d\5) = 22224728782080,
d$’} = 30612574080, dSg = 21083040, dS's = 7260, di’1) = 1.
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