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On theta series vanishing at ∞ and related lattices
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1. Introduction. In a recent paper [8], Imamoḡlu and Kohnen have
studied the mth power of the Riemann theta function ϑ in relation with the
number rm(n) of representations of a positive integer n as a sum of m integral
squares. Their result is interesting, since, for each m, the computation of
rm(n) does not require any pre-knowledge of rm(n′) for n′ < n. One of the
main tools used in this proof was that ϑm has highest order of vanishing
at one cusp or, better, that a translate of ϑ has highest order of vanishing
at the cusp ∞; subsequently Kohnen and the second author extended the
result to the integral representations of the lattice D+

m (see [9]).

In this paper we want to treat the problem of theta series with the highest
order of vanishing at the cusp ∞. When the level is a power of 2, these theta
series are the mth powers of a certain theta function with characteristic,
related to the quadratic form 2k1m or, in the language of lattices, to the
lattice

√
2k Zm. Instead if the level is a power of 3, these theta series are the

(m/2)th powers of a theta series associated to the 2-dimensional root lattice
A2 with characteristic. These modular forms have also many representations
as theta series related to different lattices.

Let L be an integral lattice of rank m. We denote by (·, ·) its associated
scalar product, and we say as usual that L is even if (x, x) ≡ 0 mod 2. We
define the dual lattice by

L′ = {x ∈ L ⊗ Q | (x, y) ∈ Z for all y ∈ L}.
If L is even, we define the level of L as the minimal positive integer l such
that the lattice

√
l L′ is an even lattice.

It is a standard method to exploit the properties of the theta series that
can be attached to a lattice to derive some interesting arithmetic properties
of the lattice. For example, one can derive bounds for the minimum, which
turn out to be tight for small levels and dimension. Also the consideration
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of the shadow of odd lattices and of its theta series has led to interesting
results, and the property that a lattice contains designs is controlled by
theta series with spherical coefficients.

In this paper, we shall consider cosets of L/2L, L/3L and their theta
series. In the case of unimodular lattices, among the cosets of L/2L, there is a
fundamental one, the so-called canonical class (cf. [11]), that is characterised
by the property that all vectors w in this coset satisfy (v, w) ≡ (v, v) mod 2
for all v ∈ L. In this paper we shall consider more general cosets.

For any coset 2L + w, we set

m(w) := min
x∈2L+w

(x, x),

and for any coset 3L + v, we set

n(v) := min
x∈3L+v

(x, x).

We shall prove that for even lattices of level 2k,

m(w) ≤ m2k−1.

Similarly for even lattices of level 3k, we will get

n(v) ≤ m3k.

Both these estimates are sharp. Moreover, we shall characterise the lattices
that have a coset reaching these bounds to be the lattices obtained from
binary and ternary codes. For a fixed level, the theta series associated to
this coset is the same for all these lattices, while their homogeneous theta
series may of course vary.

Of special interest is the case of odd unimodular lattices; in this case we
get m(w) ≤ m and this coset exists if and only if the lattice is isometric to
Zm and 2L+w is the canonical class. This extends the results of [4] and [5].

2. Some basic facts about modular forms. Let H be the upper
complex half-plane. The group Γ (1) := SL(2, Z) acts on it by fractional
linear transformations:

z 7→ σ · z :=
az + b

cz + d
, σ :=

(
a b

c d

)
∈ Γ (1).

For any positive integer N , we denote by Γ (N) the subgroup of Γ (1) defined
by σ ≡ 12 mod N . The index of Γ (N) in Γ (1) is

i(N) := N3
∏

p|N

(1 − p−2).

We shall also use the intermediate subgroup Γ0(N) defined in Γ (1) by the
condition c ≡ 0 mod N and its subgroup Γ1(N) defined in Γ0(N) by the
conditions a ≡ d ≡ 1 mod N .
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Let Γ , k and χ be respectively a subgroup of finite index of Γ (1), a
positive integer and a character of Γ . Then a modular form relative to Γ of
weight k and character χ is a holomorphic function f : H → C such that
for all σ ∈ Γ ,

f(σ · z) = χ(σ)(cz + d)kf(z)

and f is holomorphic at the cusps. Such forms form a finite-dimensional
vector space that we denote by [Γ, k, χ]. The graded ring of modular forms

A(Γ, χ) :=
∞⊕

k=0

[Γ, k, (χ)k]

is finitely generated and normal. We shall omit the character if it is trivial.
The projective variety associated to the ring of modular forms is the

Satake compactification of H/Γ . Set-theoretically this is the union of H/Γ
and a finite set of cusps, denoted by C. In the Γ (N) case, the number of cusps
is equal to the index of ±Γ1(N) in Γ (1). It is 1, 3 and c(N) := i(N)/2N ,
according as N is 1, 2 or > 2.

For N = 1, 2, 4, the ring A(Γ (N)) is generated by suitable polynomials
in the theta functions with half-integral characteristics ϑ(a,b) defined by

ϑ(a,b)(z) :=
∑

n∈Z

eπi((n+a)2z+2b(n+a)) (z ∈ H, a, b = 0, 1/2).

The theta function ϑ(1/2,1/2) is identically zero. Only the theta function
ϑ(1/2,0)(z) vanishes at the cusp ∞, in fact it has the expansion

ϑ(1/2,0)(z) = 2eπiz/4
∑

n≥0

e2πin(n+1)z/2 (z ∈ H).

On the theta functions with half-integral characteristics acts the group Γ (1).
The action can be described on the generators by

(1) ϑ(a,b)(−1/z) =
√

z/i ϑ(b,−a)(z)

where the square root is chosen to be positive on the positive imaginary
axis. Moreover we have




ϑ(0,0)(z + 1) = ϑ(0,1/2)(z),

ϑ(0,1/2)(z + 1) = ϑ(0,0)(z),

ϑ(1/2,0)(z + 1) = eπi/4ϑ(1/2,0)(z).

From these transformation formulae, it follows that ϑ(a,b)(z)4 belongs to
[Γ (2), 2] (see [7]).

Any modular form f of weight k relative to Γ (N) has a Fourier expansion
of the form

f(z) =
∑

n≥0

a(n)e2πinz/N (z ∈ H).
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For such modular forms we will define the vanishing order at infinity v∞(f)
putting

v∞(f) := min
a(n) 6=0

(n/N).

Moreover we define the slope sl(f) setting

sl(f) := k/v∞(f).

The following result is rather well known, but we repeat it for the sake of
completeness:

Proposition 2.1. Let f ∈ [Γ (N), k, χ] with χ of finite order. Then f
vanishes identically :

(1) if N = 1 and sl(f) < 12,
(2) if N = 2 and sl(f) < 4,
(3) if N > 2 and sl(f) < 12/c(N).

Proof. This follows easily from the classical formula for the degree of the
divisor associated to f . With the notations of [10], if f ∈ [Γ (N), k] with k
even is non-zero, then ([10, Theorem 2.3.3, Theorem 4.2.11])

(2)
∑

a∈H/Γ (N)∪C

νa(f) =
kN

12
|C|.

This follows from the fact that H/Γ (2) and H/Γ (N) have respectively 3
and c(N) cusps (with the definition of [10], ν∞(f) = Nv∞(f)). In case the
character χ is non-trivial (in our situation it is quadratic) or the weight is
odd, we replace f by f2 or by a suitable power of f .

If N = 1, 2, 4, we have simple examples showing that these estimates are
sharp: the modular form

∆(z) = (ϑ(1/2,0)(z)ϑ(0,1/2)(z)ϑ(0,0)(z))8

is in [Γ (1), 12] and sl(∆) = 12, the modular form ϑ(1/2,0)(z)4 is in [Γ (2), 2]

and has slope 4, and the modular form ϑ(1/2,0)(2z)2 is in [Γ (4), 1] and has
slope 2. We could exhibit examples also for another few cases. In general
these examples are not easy to obtain; in fact, theta functions or more
generally theta series will not reach the sharp bound, since, geometrically
speaking, they do not separate cusps. For example ϑ(1/2,0)(4z)2 is in [Γ (8), 1]
and has slope 1 (instead of 1/2). However, as we shall see in the next section
we can give a sharp bound for theta series.

3. Lattices and their associated theta series. For any lattice L we
define the theta series

ϑL(z) =
∑

x∈L

eπi(x·x)z (z ∈ H).
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We shall also consider theta series with rational characteristic. We proceed
as follows: for any w ∈ L, we set

ϑL,w/q =
∑

x∈L+w/q

eπi(x·x)z (z ∈ H).

Obviously this definition depends only on cosets qL+w, and clearly, ϑZ,1(z)
= ϑ(1/2,0)(z). We will be mainly interested in the cases q = 2, 3. In the first
case we will speak of theta series with half-integral characteristic

ϑL,w/2(z) =
∑

x∈L+w/2

eπi(x·x)z (z ∈ H).

In the second case we will speak of theta series with one-third-integral char-

acteristic

ϑL,v/3(z) =
∑

x∈L+v/3

eπi(x·x)z (z ∈ H).

Let A2 denote the 2-dimensional root lattice with Gram matrix ( 2 1
1 2 ) in the

basis (e1, e2) and let e := e1 + e2. We have

(3) ϑA2,e/3(z) = eπi 2

3
z(3 + 3eπi2z + 6eπi4z + 6eπi8z + · · · ).

From the inversion formula (cf. [1, p. 24]), we can calculate that

ϑA2,e/3

(
−1

z

)
=

z

i

1√
3

∑

y∈A′

2

e2πi(y,e)eπi(y,y)z(4)

=
z

i

1√
3

(1 − 3eπi 2

3
z + 6eπi2z + · · · ).(5)

We now state our main theorems:

Theorem 3.1. Let L be an even lattice of rank m, of level 2k, k ≥ 0.
Then m(w) ≤ 2k−1m. Moreover , if for some w ∈ L, m(w) = 2k−1m, then

ϑL,w/2(z) = λϑ(1/2,0)(2
k−1z)m for some λ ∈ R∗.

Theorem 3.2. Let L be an even lattice of rank m, of level 3k, k ≥ 0.
Then n(v) ≤ 3km. Moreover , if for some v ∈ L, n(v) = 3km, then m is

even, and ϑL,v/3(z) = λϑA2,e/3(3
k−1z)m/2 for some λ ∈ R∗.

Proof. The proofs of the two theorems are very similar. We shall give
all details for Theorem 3.1. For Theorem 3.2 the same proof can be easily
adapted. We can assume that the rank m is even, otherwise we replace L by
L⊕L. According to Theorem 1.3.13 in Andrianov’s book [1, p. 23], when L
is unimodular, ϑL,w/2(2z) is in [Γ (2), m/2]. Similarly if L is even of level N ,
then ϑL,w(z) belongs to [Γ (N), m/2, χ] for some quadratic character χ.
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Assume that L is unimodular. Then ϑL,w/2(2z) has weight m/2 and
vanishing order m(w)/4 at ∞, so from Proposition 2.1(1) we have

sl(ϑL,w/2(2z)) =
2m

m(w)
≥ 4.

Hence m(w) ≤ m/2.
Now we assume that for some w ∈ L, m(w) = m/2. Then ϑL,w/2(z) and

ϑ(1/2,0)(z/2)m have the same weight and vanishing order at ∞. Moreover
ϑm

(1/2,0) does not have other zeros, so ϑL,w/2(z)/ϑ(1/2,0)(z/2)m is a holomor-

phic modular function, also at the cusps, hence it is a constant.
The case of level 2 is exactly the same. For the levels N = 2k with k > 1,

we need a sharper estimate for the slope of theta series. In the already cited
theorem of [1], the transformation formula shows that the theta series ϑL,w/2

vanishes not only at the cusp ∞, but also at all its Γ0(N)-conjugates. Indeed,
a matrix M = ( a b

c d ) ∈ Γ0(N) transforms L + w/2 into L + aw/2 = L + w/2
because ad ≡ 1 mod 2, hence a ≡ 1 mod 2 (in the case of level 3 we have
L+aw/2 = L±w/2). So the vanishing order is equal at all these cusps. The
cardinality of the orbit of the cusp ∞ under the action of Γ0(N) is equal to
the index of ±Γ1(N) in Γ0(N), which is φ(N)/2 = 2k−2. Here φ is the Euler
function.

Because of this result for theta series and again from (2) we have:

Proposition 3.1. Let L be an even lattice of level 2k and rank m, and let

f ∈ [Γ (2k), m/2, χ] be a theta series of the form ϑL,w/2(z). Then it vanishes

identically if

sl(f) <
6φ(2k)

c(2k)
= 23−k.

From this fact the proof of the theorem easily follows.

Remark 3.1. As we wrote, the proof of Theorem 3.2 is similar. Also in
this case a proposition similar to Proposition 3.1 holds. Obviously for the
slope we get the bound

6φ(3k)

c(3k)
= 32−k.

Remark 3.2. These precise estimates can be obtained, since in both
cases the theta series ϑL,w/2(z) and ϑL,v/3(z) have equal vanishing order at

all cusps Γ0(q
k)-conjugate to the cusp ∞, q = 2, 3. In all other cases, this is

false since we have different vanishing orders, as the characteristics change
by a factor a ∈ (Z/qZ)∗. This is one of the main obstructions to further
generalisations of the results of this paper.

Of special interest is the case of odd unimodular lattices. Replacing L
by

√
2L, an odd unimodular lattice becomes an even lattice of level 4, so

we have:
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Corollary 3.1. Let L be an odd unimodular lattice of rank m. Then

m(w) ≤ m. Moreover , if for some w ∈ L, m(w) = m, then ϑL,w/2(z) =
λϑ(1/2,0)(z)m for some λ ∈ R∗.

There are well known lattices for which the estimate is sharp, namely
E8, D4, Z

m, A2. They are special cases of a more general family of lattices
described in the next sections.

Moreover, a natural question is to characterise the cases when this esti-
mate is sharp. This is done in Sections 5 and 8.

4. Lattices from binary codes. We describe some lattices for which
there exist elements w with the maximal value for m(w) according to The-
orem 3.1.

We recall what is usually meant by “a lattice constructed from a binary
code”. Let C ⊂ Fn

2 be a linear binary code of length m. We denote by 1 the
all-one word. We define

LC := {(x1, . . . , xm) ∈ Zn | (x1, . . . , xm) mod 2 ∈ C}.
We have the following result:

Theorem 4.1. Let C be a binary code with 1 ∈ C. Let w := (1, . . . , 1)
∈ LC . Then m(w) = m and

ϑLC ,w/2(z) =
|C|
2m

ϑ(1/2,0)(z)m.

Proof. Sending 0 ∈ F2 to 0 ∈ Z and 1 ∈ F2 to −1 ∈ Z, we define a lifting
map c 7→ c̃ from Fm

2 to Zm. We have

LC + w/2 =
⋃

c∈C

(2Z)m + c̃ + w/2.

The vectors c̃ + w/2 have all coordinates equal to ±1/2. Hence, for every c,
a suitable isometry σ of the form (x1, . . . , xm) 7→ (ε1x1, . . . , εmxm) with
εi = ±1 sends (2Z)m + c̃ + w/2 to (2Z)m + w/2. We derive

ϑLC ,w/2 = |C|ϑ(2Z)m,w/2.

It is immediate that
∑

x∈2Zn+w/2

eπi(x,x)z =
(∑

n∈Z

eπi(2n+1/2)2
)m

= 2−mϑ(1/2,0)(z)m,

which gives the desired formula.

Remark 4.1. In the case L = Zn, w = (1, . . . , 1) defines the only coset
of norm m; this is not true for other lattices. For example, when L = Dm,
w′ = (−1, 1, . . . , 1) satisfies m(w′) = m but w′ 6= w mod 2L.
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From the previous theorem, an easy way to construct a lattice L contain-
ing an element w with m(w) = 2k−1m is the following: take L =

√
2k−1 LC

with C a binary code.
Let us discuss in which cases such a lattice L is even of level 2k.

(1) k = 0. Then L = (1/
√

2)LC is even unimodular if and only if C = C⊥

and C is doubly even.
(2) k = 1. Then L = LC is even if and only if C is even.

(3) k > 1. Then L =
√

2k−1 LC is always even.

Moreover, we need that 2k(x, x) ∈ 2Z for all x ∈ L′. Since L′ = (1/
√

2k−1)L′
C

and since L′
C = 1

2LC⊥ , we need (x, x) ∈ 4Z for all x ∈ LC⊥ . This leads to

the condition that C⊥ is doubly even.
Let {e1, . . . , em} denote the canonical basis of Zm. If an even lattice L has

the form L = (1/
√

2)LC , the elements {
√

2 e1, . . . ,
√

2 em} provide pairwise
orthogonal elements of norm 2 in L, also called roots.

Conversely, an even lattice L containing m pairwise orthogonal roots is
easily seen to be isometric to a lattice of the form L = (1/

√
2)LC .

Standard examples are the following: C = F2(1, . . . , 1) leads to L =
LC = Dm. The lattice E8 arises from the extended Hamming code; the
Golay code of length 24 leads to the even unimodular lattice in dimension
24 with root system A24

1 .

5. Lattices with the largest m(w). Here we characterise all lattices
that reach the bounds of Theorem 3.1.

Theorem 5.1. Let L be an even lattice of rank m and level 2k, k ≥ 0,

such that there exists w ∈ L with m(w) = 2k−1m. Then L =
√

2k−1 M ,
and there exists a binary code C such that M = LC . Moreover , C has the

following properties:

(1) If k = 0, then C = C⊥ and C is doubly even.

(2) If k = 1, then C⊥ is doubly even and 1 ∈ C⊥.

(3) If k > 1, then C⊥ is doubly even.

In all cases, w :=
√

2k−1(1, . . . , 1) ∈ L and m(w) = 2k−1m.

Proof. From Theorem 3.1, we have ϑL,w/2(z) = λϑ(1/2,0)(2
k−1z)m for

some λ ∈ R∗. We recall the inversion formula for ϑL,w/2(z) ([3, Prop. 3.1]):

(6) ϑL,w/2

(
−1

z

)
=

(√
z

i

)m 1√
det(L)

∑

x∈L′

e2πi(x,w/2)eπiz(x,x).

Taking account of the inversion formula (1) for ϑ(1/2,0) we obtain

(7)
1√

det(L)

∑

x∈L′

e2πi(x,w/2)eπiz(x,x) =
λ

2(k−1)m/2
ϑ(0,1/2)

(
z

2k−1

)m

.
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Since the constant coefficients of the left and right hand side must be equal,
we have in fact

(8)
∑

x∈L′

e2πi(x,w/2)eπiz(x,x) = ϑ(0,1/2)

(
z

2k−1

)m

.

It is worth noticing that this argument in fact calculates the value of λ. We
have

ϑ(0,1/2)(z)m =
(
1 + 2

∑

n≥1

(−1)neπin2z
)m

= 1 − 2meπiz + · · · .

Now we compare the second coefficient in (8). Set Li :={x∈L | (x, x)= i}
and S := L′

1/2k−1. We obtain

(9)
∑

x∈S

eπi(x,w) = −2m.

The first easy consequence of (9) is that S is non-empty, but we need
more: we want to prove that S contains m pairwise orthogonal elements.
We first notice that, if x belongs to S, then (x, w) can take only the values
0,±1,±2. Indeed, since L has level 2k, we have 2kx ∈ L and therefore
(w ± 2k+1x)2 ≥ w2, which leads to |(x, w)| ≤ 2. We partition S into two
subsets: S0 := {x ∈ S | (x, w) = 0,±2} and S1 := {x ∈ S | (x, w) =
±1}. The contribution of the first set to (9) is +1 and of the second is −1.
Obviously, vectors go in pairs ±x. So (9) tells us that S1 contains at least
2m pairs of elements. Moreover, let us prove that, if x 6= ±x′ ∈ S, then
(x, x′) = 0,±1/2k. Since L has level 2k, it follows that 2k−1(y, y) ∈ Z for
any y ∈ L′. Hence, if x 6= ±x′, then (x ± x′)2 ≥ 1/2k−1, and therefore
|(x, x′)| ≤ 1/2k. Finally, 2kx ∈ L implies (x, x′) ∈ 1/2kZ.

Now assume (x1, . . . , xs) is a maximal chain of pairwise orthogonal ele-
ments in S1. Of course s ≤ m and we want to prove that s = m. To any
x ∈ S1 not in this chain, we can associate an index i such that (x, xi) =
±1/2k (from the previous discussion), otherwise we could increase the chain.
If, without loss of generality, (x, xi) = −1/2k, then x′ = x − xi is another
element of S but this one belongs to S0. So the pair (x, x′) contributes 0 to
the sum (9). Since the chain itself contributes −2s, this proves that we must
have s = m.

We have found a sublattice of L′ isometric to ((1/
√

2k−1)Z)m. This proves

that (up to isometry) L ⊂ (
√

2k−1 Z)m. In the case k = 0, i.e. for even
unimodular lattices, we have found m pairwise orthogonal roots in L = L′,
so we are in case (2) described in the previous section.

Assume k > 0. Let M := (1/
√

2k−1)L; then M is an integral lattice and

M ⊂ Zm. Moreover, since 2kL′ ⊂ L and ((1/
√

2k−1)Z)m ⊂ L′, we also have
(2Z)m ⊂ M . This obviously means that M = LC for some binary code C.
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The condition 2k(x, x) ∈ 2Z for all x ∈ L′ is equivalent to 2(x, x) ∈ 2Z for
all x ∈ M ′. Since M ′ = (LC)′ = 1

2LC⊥ , this leads to the condition that C⊥

is doubly even. When k > 1, L is automatically even; when k = 1, L = LC

is even if and only if 1 ∈ C⊥.
In all cases, the code C⊥ is doubly even, which guarantees that 1 ∈ C,

and hence w :=
√

2k−1(1, . . . , 1) ∈ L. From Theorem 4.1, m(w) = 2k−1m.

As a consequence, in the case of unimodular lattices we obtain a strength-
ening of Elkies’s result ([4]):

Corollary 5.1. The lattice Zm is the unique unimodular lattice of di-

mension m that contains a coset of minimal norm m. Moreover , this coset

is the canonical class.

Proof. Let U be such a unimodular lattice. From Theorem 3.1, U must be
odd. Consider the lattice L :=

√
2U , which is even of level 4. The assumption

on U implies that L contains an element w with m(w) = 2m. From the
previous theorem, L =

√
2M with M ⊂ Zm. Hence M = U = Zm.

6. Lower bound. In some cases we can give a lower bound for the
maximum of the possible m(w). For this purpose we need to introduce theta
series with double characteristics. For w ∈ L and l ∈ L′ ⊗ Q, we set

ϑL,w/2,l(z) =
∑

x∈L+w/2

eπi[(x·x)z+2(x·l)] (z ∈ H).

Now let L be an even unimodular lattice such that 2L ⊂ Zm and a
vector of the form (1, . . . , 1) + 2Zm is in 2L. We shall denote this vector
by w0. We remark that all even unimodular 24-dimensional lattices have
these properties.

Let d be the order of 1
2L′/Zm. Then we have

∑

x∈(1/2)L′/Zm

e2πi(x·(w0/2))ϑZm,w0,x(z)

=
∑

x∈(1/2)L′/Zm

∑

y∈Zm

eπi[((y+w0/2)·(y+w0/2))z+2(x·y)].

Using the orthogonality of characters we get

d
∑

y∈2L

eπi((y+w0/2)·(y+w0/2))z = dϑ2L,w0
(z) (z ∈ H).

We know that the theta series ϑZm,w,x(z) have vanishing order m/8 at
the cusp ∞. For a linear combination the vanishing order cannot decrease,
thus for the above described lattices, we have m(w0/2) ≥ m/4.

Unfortunately this estimate is not sharp, since we know that for even
unimodular 24-dimensional lattices we have maxm(w) ≥ 8. For the Leech
lattice we have maxm(a) = 8.
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7. Lattices from ternary codes. We describe some lattices for which
there exist elements v with the maximal value for n(v) according to Theo-
rem 3.2.

Let C ⊂ Fn
3 be a linear ternary code of length n. Using the isomorphism

A2/3A′
2 ≃ Z/3Z, we can lift a ternary code to a sublattice of An

2 :

LC := {(x1, . . . , xn) ∈ An
2 | (x1, . . . , xn) mod (3A′

2)
n ∈ C}.

The resulting lattice is of dimension m = 2n, and is even since it is a
sublattice of An

2 . It has level 3, 9 or 27; the case of level 3 corresponds to
C⊥ ⊂ C.

It is worth noticing that e/3 ∈ A′
2 and hence (e, . . . , e) ∈ LC . We have

the following result:

Theorem 7.1. Let C be a ternary code. Let v := (e, . . . , e) ∈ LC . Then

n(v) = m and

ϑLC ,v/3(z) =
|C|

3m/2
ϑA2,e/3(z)m/2.

Proof. We fix a preimage ã ∈ A2 of each element a ∈ F3 in the following

way: [0̃, 1̃, 2̃] = [0,−e1,−e2], and define c̃ for all c ∈ Fn
3 in the obvious way.

Then

LC + v/3 =
⋃

c∈C

(v/3 + c̃ + (3A′
2)

n).

The coordinates of v/3 + c̃ belong to {e/3, e/3 − e1, e/3 − e2}. These three
vectors have the same norm 2/3, moreover they are transitively permuted
by the automorphism group of A2. Let σi ∈ Aut(A2) be such that e/3 =
σi(e/3 + c̃i) and let σ := (σ1, . . . , σn). Obviously, σ ∈ Aut((3A′

2)
n), and

hence v/3 + c̃ + (3A′
2)

n = σ(v/3 + (3A′
2)

n). As a consequence, the classes
v/3 + c̃ + (3A′

2)
n and v/3 + (3A′

2)
n have the same theta series, and

ϑLC ,v/3(z) = |C|ϑ3A′

2
,e(z)m/2.

Moreover, the decomposition A2 = 3A′
2 ∪ (3A′

2 − e1) ∪ (3A′
2 − e2) and the

transitive action of Aut(A2) on {e/3, e/3 − e1, e/3 − e2} show that

ϑA2,e/3(z) = 3ϑ3A′

2
,e/3(z),

which yields the desired formula.

8. Lattices with the largest n(v). Here we characterise all lattices
that reach the bounds of Theorem 3.2.

Theorem 8.1. Let L be an even lattice of rank m and level 3k, k ≥ 0,
such that there exists v ∈ L with n(v) = 3km. Then L =

√
3k M , and there

exists a ternary code C such that M = LC . Moreover , C has the following

properties:
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(1) If k = 0, then C = C⊥.

(2) If k > 0, then C⊥ ⊂ C.

Proof. From Theorem 3.2, we have ϑL,v/3(z) = λϑA2,e/3(3
k−1z)m/2 for

some λ ∈ R∗.
We recall the inversion formula for ϑL,v/3(z) ([3, Prop. 3.1]):

ϑL,v/3

(
−1

z

)
=

(√
z

i

)m 1√
det(L)

∑

x∈L′

e2πi(x,v/3)eπiz(x,x).

Taking account of the inversion formula (4) for ϑA2,e we obtain

1√
det(L)

∑

x∈L′

e2πi(x,v/3)eπi(x,x)z =
λ

3m/2(k−1/2)

(
1 − 3m

2
e
πi 2

3k z
+ · · ·

)

from which we obtain

(10)
∑

x∈(L′)
2/3k

e2πi(x,v/3) = −3m

2
.

Let S := (L′)2/3k . Similar arguments to those in the case of level 2 show
that |(v, x)| ≤ 3. We set for i = 0, 1, 2,

Si := {x ∈ S | (x, v) = i mod 3}.
If x ∈ S0, then −x ∈ S0 and the pair (x,−x) contributes 2 to (10); if x ∈ S1,
then −x ∈ S2 and (x,−x) contributes −1 (and similarly if x ∈ S2).

Similar arguments to the case of level 2 show that the set R := 3k/2S
satisfies (r, r′) = 0,±1,±2 for all r, r′ ∈ R and hence is a root system.
Defining R0, R1, R2 in the obvious way, we let s be the maximal integer
such that a chain As

2 is contained in R1 ∪ R2 (here A2 denotes the root
system, not the root lattice). The contribution of this As

2 to (10) equals
−3s. Our goal is to prove that s = m/2.

Let x ∈ R1 ∪ R2, x /∈ As
2. There are two possibilities:

(1) x is orthogonal to all the elements of As
2.

(2) There exists one component A2 and one root r in this component
such that (x, r) = −1.

If several elements x are as in case (1), they can only be pairwise orthog-
onal since otherwise s would not be maximal. So this leads to a root system
of type As

2 ⊥ At
1 and 2s + t ≤ m. The contribution to (10) is −3s− t. Since

−3s − t = (−2s − t) − s ≥ −m − m/2, it can reach −3m/2 only if s = m/2
and t = 0.

Now let us consider case (2). The component A2 together with x generate
a root lattice of dimension 3 which can only be isometric to A3, and hence
contains twelve roots. We need to discuss how many of these roots belong to
R0 and how many to R1∪R2. It is easy to exhaust all possibilities since these
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roots are linear combinations of a given basis (r1, r2) of the component A2

and of x, with (x, r1) = −1 and (x, r2) = 0. We have (v, x), (v, r1), (w, r2) ∈
[1,−1, 2,−2] and they uniquely determine the other values (v, r) when r is
one of these twelve roots. By the computation of all possibilities, after having
eliminated irrelevant possibilities (e.g. |(v, r)| > 3 for some r), we find that
the contribution of these twelve roots is either −3 or 0. The conclusion is
that there is no hope that such a root x can make the value of the summation
decrease. In order to have (10), we must have s = m/2.

The end of the argument is essentially the same: we have found a sublat-
tice of L′ isometric to ((1/

√
3k−1)A′

2)
m/2, which proves that up to isometry

L ⊂ (
√

3k−1A2)
m/2. Let M := (1/

√
3k−1)L. The lattice M is a sublattice

of A
m/2
2 , hence is even. Moreover, (3A′

2)
m/2 ⊂ M ⊂ (A2)

m/2, which means
that M arises from a ternary code.

When k = 0, we want L = (1/
√

3)LC to be unimodular, which is equiv-
alent to C = C⊥. When k > 0, L has level 3k if and only if M = LC has
level 3, which is equivalent to C⊥ ⊂ C.

References

[1] A. Andrianov, Quadratic Forms and Hecke Operators, Grundlehren Math. Wiss.
286, Springer, Berlin, 1987.

[2] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Grund-
lehren Math. Wiss. 290, Springer, Berlin, 1988.

[3] W. Ebeling, Lattices and Codes, Vieweg, Braunschweig, 1994.
[4] N. Elkies, A characterization of the Zn lattice, Math. Res. Lett. 2 (1995), 321–326.
[5] —, Lattices and codes with long shadows, ibid., 643–651.
[6] E. Freitag, Singular Modular Forms and Theta Relations, Lecture Notes in Math.

1487, Springer, Berlin, 1991.
[7] J. Igusa, Theta Functions, Grundlehren Math. Wiss. 194, Springer, Berlin, 1972.
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