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On the 3-class field tower of some biquadratic fields
by

Ew1 YosHIDA (Nagoya)

1. Introduction. Let K be an algebraic number field. For a prime
number p, let K© = K and K denote the Hilbert p-class field of K1
for 4 > 1. Then we have the tower of fields

K=KOckKWc. . .ckg®= UK(i).
=0

We call this tower the p-class field tower of K. We say that K has a finite
(resp. an infinite) p-class field tower if [K(*) : K| < oo (resp. |[K(®) : K|
= 00). Golod and Shafarevich (cf. [3]) proved that there exist algebraic
number fields which possess infinite class field towers. In particular, if K
is a real quadratic field, they have shown that K has an infinite 2-class
field tower if the 2-rank of the ideal class group of K is greater than 5.
In this paper, we shall consider a number field with abelian p-class field
towers (i.e. K1) = K(®)). Hajir [5] has given all imaginary quadratic fields
with abelian class field towers and Benjamin, Lemmermeyer and Snyder [1]
have determined all real quadratic number fields with abelian 2-class field
towers. Here we shall give a necessary and sufficient condition for the 3-class
field tower of K to terminate at K1), when K is a biquadratic field which

contains v/ —3.

1.1. Notation. Throughout this paper, Z, Q, N will be used in the usual
sense. If L is an algebraic number field, let L) and Cly, be the Hilbert 3-
class field over L and the 3-class group (the 3-primary part of the ideal class
group) of L, and hy, be the order of Cly,. Let Ep, Or, be the group of units and
the ring of integers of L respectively. If L is a Galois extension of an algebraic
number field F, then Gal(L/F') is the Galois group for L/F. Let K/Q be a
complex biquadratic extension and k; be the three quadratic subfields of K.
If two quadratic subfields have cyclic 3-class groups and the third one has
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trivial 3-class group, we denote these fields by k1, ko and k3 respectively.
(When k3 = Q(v/—3), we denote the complex subfield of K by k1 and the real
subfield of K by ks.) In general, if L/k; (i = 1,2, 3) is an unramified abelian
extension, then L/Q is a Galois extension. In particular, if L/k; is a cyclic
extension with odd degree, then Gal(L/Q) is a dihedral group. Therefore

if kl-(l)/ ki is a cyclic extension, then there exist three intermediate fields of

k:l(l) /Q which are cubic extensions over Q and these fields are conjugate
over Q. We denote one of the three fields by Fj; if two quadratic subfields
have cyclic 3-class groups and the third one has trivial 3-class group. In the
case k3 = Q(+/—3), we choose j (j = 1,2) for which the discriminant of k;
is divisible by 3 and denote the fundamental units of F} and Fy by {eo},
{e1,e2} respectively.

The purpose of this paper is the following.

THEOREM 1. Assume that ks = Q(v/—3) and set A = {eo}, Ay =
{81,62,6152,615%}. Assume that hi # 1. Then the 3-class field tower of K
terminates at KW if and only if Cly, s a cyclic group, and either

o Cly, 1is trivial, or
o Cly, 1is cyclic, and there are no € € A;j which satisfy

2
ec=1 (m0d3\/ _3OLJ(\/T3))

2. Proof of Theorem 1. When L is a finite extension of an algebraic
number field F', we denote the map induced by extension of ideals by Ar,/p :
Clg — Clp. The following lemma exhibits a close relation between Clx and
Cly,.

LEMMA 1 ([10]). Let L be a biquadratic field of Q. Let L; (i1 = 1,2,3)
denote the three intermediate fields of L. Then the map A : Cly, & Cly, &
Clry — Cly, given by (U1, A2, A3) — Ap/p, A1-Ap A2 A/, (A € Cly,)
s an isomorphism.

From Lemma 1, Mg/, : Cly, — Cli (i = 1,2,3) are injective and so
each Cly, can be identified with a subgroup of Clk. The following result
will simplify our work.

LEMMA 2 ([1]). Let L be an algebraic number field, and let v denote the
p-rank of EL/E% If the p-class field tower of L is abelian, then the rank of
the p-class group of L is not greater than (14 /1 + 8r)/2.

When K is a complex biquadratic extension of Q and p = 3, Lemma, 2
implies that if K1) = K®) then the rank of Clg is less than 3. If K has
a cyclic 3-class group, then K1) = K Hence we consider the case where
Cly = (3%,3") for s,t € N — {0}. (Here (3%,3") means the direct product of
cyclic groups of orders 3%, 3!.)
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LEMMA 3. Let K/Q be a complex biquadratic extension with noncyclic
3-class group. If the 3-class field tower of K terminates at K1), then the
three quadratic subfields k; of K can be ordered in such a way that Cly, and
Cly, are cyclic and Cly, is trivial.

Proof. By Lemma 2, the 3-rank of Clg is 2. By Lemma 1, there are two
possibilities: either two quadratic subfields have cyclic 3-class groups and
the third one has trivial 3-class group, or one has 3-rank 2 and the 3-class
groups of the other two are trivial. In the last case, let k denote the field
with 3-rank 2. When k is a complex quadratic field, by Lemma 2, its 3-class
field tower does not terminate with (). When k is a real quadratic field,
by [11], its 3-class field tower does not terminate with k(1. Hence the same
holds for K. =

By Lemma 3, in the case Clx = (3% 3"), we have the following dia-
gram where K1 = KFy, Ky = KF,, and K;/K are unramified cyclic cubic
extensions.

/ kﬂ)
R
Fy / ‘ \ Fy

From the following lemma, we see that K;/ks (i = 1,2,3,4) are Galois
extensions.

LEMMA 4 ([8]). Let F be an algebraic number field and L be a quadratic
extension of F. Suppose that the class number of F is prime to an odd
prime number p and the class number of L is divisible by p. Let L' be an
unramified extension of degree p over L. Then L'/F is a Galois extension
and Gal(L'/F) is a dihedral group of order 2p.

Since Gal(K;/ks) = S3 (S3 denotes the symmetric group of degree 3),
there exist three distinct intermediate fields of K;/ks which are non-Galois
cubic extensions of k3. We denote one of the three fields by L; (i = 1,2, 3,4).
In the case k3 = Q(y/—3), we can set L; (i = 1,2) to be F;(v/=3).
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PROPOSITION 1. If the rank of Cly is 2, then

hKh%i hKh%i
3 9

In order to prove Proposition 1, we use the method of Callahan [2]. If H
is a finite group, we denote by H’', Z(H) and |H| the commutator subgroup,
the center, and the number of elements of H respectively. If x,y € H and
H, is a subgroup of H, we set z¥ =y~ lay and (Hiy), = {z € Hy | 2¥ = z}.
We define V; = Gal(K\" /ks), Ui = Gal(K'V/K) and A; = Gal(K\V/K;)
(i =1,2,3,4). By Lemma 4, we have Gal(K; /k3) = S3 = V; /A;. Since K1) is
a maximal abelian extension of K contained in KZ.(I), Gal(Ki(l)/K(l)) =U].
We can pick 0,7 € V; — A; so that

o?=1, (o1)*’=7°=1(mod4;), 71€U; o€ Gal(Kzgl)/Li).
There is an action of V;/A; on A; given by
Vz/Az X Az — Ai7 (.CCA,‘,(I) — a”.

This action is well defined as A; is an abelian normal subgroup of V;. The
two automorphisms a — a? and a +— a” define an action of S3 on A;. Since
Ak, /L, : Clp, — Clk, is injective and A, /1, (Cly,) is mapped onto (A;), by
the Artin map, we have Cl, = (A;),. Thus we study the structure of A;
and (A;)s to prove Proposition 1. First we need two lemmas.

LEMMA 5 ([4, Theorem 1.4, p. 336]). Let G be any finite group of odd
order and let 0 : G — G be an automorphism of G of order 2. Suppose that
2 =z < x=1. Then G is abelian.

hK or K; (Z = 1,2,3,4).

LEMMA 6. Let B; be the minimal normal subgroup of U; which contains
(Ai)o. Then B; = U].

Proof. First we define

(Ai)g ={a” | a € (Ai)s},

and show B; = ((Ai)s, (4i)1), the group generated by (A;), and (4;)7. Let
N; : A; — A; be defined by N;a = aa"a” for each a € A;. Then for all
a € (Aj)y, Nra is fixed by o, 7. Since the class number of k3 is prime to 3,
we have Nya = 1 and thus a™ € ((A;)q, (4;)7) for all a € (A;),. This shows
that B; = <(Ai)g, (Az);>

Next we prove U;/B; is abelian. It is clear that the automorphism a +— a”
induces an automorphism of U;/B; of order 2. Assume that there exists u
(mod B;) such that u’ = v (mod B;). If u = 7la for a € A; and | = 1,2,
then u® = (7la)? = (71)7a® = 77! (mod 4;). Since u° = u (mod 4;), we get
77t = 7! (mod 4;). This implies 7 € A;. Therefore u € A;. Since aa® € (A;),
for a € A, it follows that u® = u~! (mod B;). Hence u = v~ = u (mod B;)
and u € B;. Thus by Lemma 5, U;/B; is abelian and B; O U,. Conversely,
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since U;/U! = Gal(K(1) /K) and from Lemma 1, we have 2% = 2~ (mod U})
for z € U;. Hence (4;) C U] and B; =U]. »

Proof of Proposition 1. If © € (A;)s N (A4;)7, then z = y” for some
y € (4;)s and

2 7.2 T

$:l‘U:yTU:yJT =y =2

Hence x € Z(U;). On the other hand, if z # 1, we see that U; is nonabelian.
Therefore Z(U;) C A; and Z(U;) = {a € A; | a™ = a}. Since Z(U;) =
{S € Clg, | 7 = Q} C Clg,, from the formula for the ambiguous ideal
classes of K;/K (see [3]), |Z(U;)| = hr /3. Moreover by [6], |[Ker Ak, /x| =
3-|Ek : Nk, ykEr;| = 3 or 9, hence |\, k(Clk)| = hx /9 or hy /3 and for
all x € Ak, )k (Clk), 27 = x < x = 1. We see that |(4;), N (A4;)7] < 3. Thus

h, = |Ail = Uil /3 = Ui/ Uj| - 1U;| /3
= hi - |(Ai)o| - [(Ai)g]/3 - [(Ai)e N (Ai)g]
= hihi, /3 or hghy /9. u

If H is a finite p-group for a prime p € N and H; # {1} is any normal
subgroup of H, then Z(H) N Hy # {1} ([4, Theorem 6.4, p. 31]). Hence if
F is an algebraic number field and F?) # F(1) then there exists a normal
extension F’ of F such that F’ is a proper intermediate field of F(2)/F(1)
and Gal(F®/F") ¢ Z(Gal(F®)/F)). Since F’ is a normal extension of F
which contains F(!), we also have a normal extension F” of F such that F”
is a proper intermediate field of F//F(1) and Gal(F'/F") c Z(Gal(F'/F)).
By repeating this procedure, we can find a normal extension L of F' such
that |L : FU| = 3 and Gal(L/F) ¢ Z(Gal(L/F)). We set G = Gal(L/F)
and N = Gal(L/L') where L’ is an unramified cyclic cubic extension of F.
For 0,7 € G, we denote 017~ 'o7 by [0, 7]. In order to prove Theorem 1,
we have to show the following lemma.

LEMMA 7. Let F be an algebraic number field and assume Clp = (3%,3%).
Then FV = F@) if and only if there is an unramified cyclic cubic extension

L' of F with hy = hp/3.

Proof. Suppose that there exists an unramified cyclic cubic extension L’
of F with hyy = hp/3 and F() £ F®) Then L' = F(U. Hence G' =
Gal(L/F™M) = Gal(L/L'M) = N’. On the other hand, since G/G’ = Clp =
(3%,3"), G is generated by two elements o1 and o5. Since |G’| = 3, we can
pick 01,09 so that G’ = ([o1,02]). Notice that N is the subgroup of G.
Hence index 3 of N is one of the four subgroups (01,03, G’), (02,03, G),
(0109,03,G"), and (0103,05,G"). As G’ C Z(G) and |G'| = 3, we have
(0%, 05] = [01,02)3 =1 (i, € Z). This implies that (01,03, G") = {1}.
Similarly (09,03, G"Y = (0109,03,G"Y = (0103,05,G") = {1}. Hence N’ =
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{1}. This contradicts F") = L'V, Conversely, if F(1) = F() it is easy to
see that F(1) = /U and hence hyy = hg/3. =

We shall consider whether hz, = 1 or not. If k3 = Q(1/—3), then the
following proposition holds.

PROPOSITION 2. Assume that Clx = (3%,3") and ks = Q(/—3). Then
the class number of L; is divisible by 3 if and only if there exists € € A;
such that €2 =1 (mod 3v/—3 - Op,(v=3))

Proof. We consider the decomposition of the prime ideals of F;. The ideal
(1)

of k; lying above 3 is completely decomposed in kj because 3 is ramified

in k;. Hence the decomposition of 3 in Fj is

3 = p1p3

where p; (i = 1,2) are ideals of F; lying above 3. Suppose that hy; # 1. Let
L’ be an unramified cyclic cubic extension over L;. Since Cly, is cyclic, the
class number of F; is prime to 3. Hence L’/F} is a normal extension from
Lemma 4. Moreover, by Kummer theory, L' = L;(/a) where v € L% — L%?
(L; = Lj —{0}), a is prime to 3 and (a) = A3 (A is an ideal of L;). Let
o’ € Gal(L'/F}) be an extension of the nontrivial automorphism of L; over
Fj. Then o’ = a (modL;*-?’). Hence L' = L;({/a) = L;j({/Nr, r,«) where
Np,/F; is a norm from Lj to Fj. Furthermore, since the class number of Fj
is prime to 3, we can put € € A; so that L' = L;({/e).

The decompositions of p; (i = 1,2) in L; are either

o p1 =P, p2 = PaPs or

o p1 =Pi, p2 = P2, N, 5, B2 = p3,
where B; (i = 1, 2, 3) are prime ideals of L; lying above 3. Since L' = L;(/¢)
is unramified, the equation X3 = ¢ (mod ‘}3?) has aroot in Or,; fori =1,2,3.
Assume that py = P2%s. Since O, /PB; = Oq(v=3)/(V —33), we havee = +1
(mod P3) for i = 1,2,3. Hence £ = 1 (mod 3y/—3 - OFj(\/j3)).

Assume that po = Po and NLJ./FJ.‘BQ = p%. Let = a1 + aoy/—3 €
Or, (a1, a2 € Fj) satisfy a® = ¢ (mod*P3). Since 201,202/ -3 € Or;, we
can make oy, agy/—3 € OLj by replacing o, agy/—3 with —2a1, —2ais+/—3.
Since py = Po, we see that (a1 — agy/—3)% =& (modP3). Hence

o — (a1 — aav/=3)3 = (o1 + asvV—=3)3 — (a1 — avvV/—3)® (mod P3)

= 2(302asv/—3 — 3a3v/—3) = 0 (mod P3).
Since 304% € Ps, we have —3043\/ —3 € P9 and hence asyv/—3 € Pso. Conse-
quently,
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o3 = ol + 30tV =3 — 903 — 303V =3 = o3 (mod P3).
We have ¢ = 41 (mod B3) for i = 1,2. Thus e = 1 (modS\/—_S-OFj(\/_—ig)).
Conversely, if there exists e € A; such that €2 =1 (mod 3\/__3'0Fj(\/—_3))’
then e = £1 (modP3) (i =1,2,3 or i = 1,2) and L;(/2) is an unramified
cyclic cubic extension over L;. =

The next result is well known.

LEMMA 8 ([12, Theorem 10.10, p. 190]). Letd > 1 be square-free. Let ry
(resp. T3) be the 3-rank of the ideal class group of Q(v/=3d) (resp. Q(+/d)).
Then

rg <rp<ry+ 1.

Proof of Theorem 1. If K1) = K®) we see that Clg is a nontrivial
cyclic group or an abelian group of rank 2 from Lemma 2. If Clk is a
nontrivial cyclic group, then Cl, is a nontrivial cyclic group and Clg, is
trivial from Lemmas 1 and 8. If Clk is an abelian group of rank 2, then
Cly, and Cly, are nontrivial cyclic groups. In this case hx, = hi /3 for all
i = 1,2,3,4. By Propositions 1 and 2, F; has no unit which satisfies the
condition of Theorem 1. Conversely, if F; has no such unit, then hz; =1

and hg, = hx /3 by Proposition 1. By Lemma 7, we have KO =K® g

3. Some examples. From the proof of Proposition 2, we see that
2 _ /o 2 _ 2.3
ee=1 (mod3 —BOFJ(\/?:)))) & ef=1 (modppo),
where py1, po are distinct prime ideals of Op; lying above 3 and 3 = p1p3.
Let
B +ar® +bx—1 (a,be)
be the minimal polynomial of £2. Then the minimal polynomial of €2 — 1 is
23+ (a+3)2* + (2a+b+3)r +a+b.

Since £2 — 1 € p?p3, we see that

e2 -1

Mor?e’zover, since

E-1%ep3, (a+3)(E-1?epy’, (20+b+3)(e?—1) € p,
we have 81 |a + b.

The minimal polynomial of €2 + a/3 is

3 — 3(a(2) — b))z + 2&3 — 3agby — 1,

where a = 3ag, b = 3bg, and we see that
(a+3)?

3

€OF;, 27[a+b, 9[2a+b+3, a+3=2a+b+3—(a+b).

3(ag — bo) = —(2a+b+3),
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2 3)3 3)(2a+b+3
3agby 1= (a;) (a4 )(;+ + )+a+b.

The next lemma. concerns the decomposition of ideals of a cubic field.

LEMMA 9 ([7]). Let L be a cubic field over Q and let o be a primitive
element of L whose minimal polynomial is 3 —ax+b where a,b € Z, a,b # 0.

Define v3(m) = max{s | 3°|m}. Then 3 = p1p3 if and only if either
e u3(a) =2t + 1, v3(b) > 3t +2, or
e v3(a) > 2t + 1, v3(b) = 3t, and either
—a/3% =3 (mod9), (b/3%)2 = a/3%' +1 (mod 27) and v3(4a’—27b?)
is odd, or
—a/3?" =6,0 (mod9), (b/3%)2 = a/3% +1 (mod9).

By the above lemma and since 9|a + 3,2a + b + 3, we see that

(a+3)2
27
3

—(2a+b+3), 27|a+3,2a+b+3.

As 81|a + b, we have
3°%12a3 — 3agbp — 1, 3°|a+b.
Thus if €2 = (mod3\/—3-OFj(\/_—3)),then27]a+3,2a—|—b+3and35\a+b.

Conversely, it is easy to see that if 27|a + 3,2a + b+ 3 and 3° | a + b, then
£2 =1 (mod3v/— 3-Op(y=3 —3))- Thus

e? =1 (mod3v/—3 Op,(y=3)) & 27|a+3,2a+b+3, 3°|a+b.

By utilizing the above fact, one can find examples of K = K® and
D £ K®),

An ezample of K1) = K®), Let F = Q(f) be a cubic extension over Q
with 63 —9m62 —1 =0 (m € N — {0}) and let k = Q(y/—3(4(3m)3 + 1)).
From [7], we see that kF/k is an unramified cyclic cubic extension. Fur-
thermore by [9], the root of the equation z3 — 9ma? — 1 = 0 is either a
fundamental unit of F' or its square. It is clear that # does not satisfy the
condition of Theorem 1 and since (62)3 — 81m?(0%)? + 18m(6?) — 1 = 0,
neither does 62. Therefore the following holds.

COROLLARY 1. Let K = Q(1/—3(4(3m)? +1),+/=3) (m € N — {0}).
Assume that Clg =2 (3%,3!). Then K = K,

An example of K £ K®) . Let F = Q(0) with 6% + 30 + a® = 0 where
a € N—{0} and let k = Q( —3(&6 +4)). By [7], if 3| a, then Fk/k is an
unramified cyclic cubic extension. The minimal polynomial of 1 — a® — af is

23 +3(a® — Da? + (3(a® — 1)* + 3a})z — 1.
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Assume that a # 0 (mod 7). The discriminant of 2343z +a? is —27(a®+4) =
5# 0 (mod 7). Moreover

3+ 3z +a®
(2*+32+1=(2+3)(2? - 32+5) (mod7) if a® =1 (mod7),
B {x3 +3z—1=(z—-3)(22+32x+5) (mod7) if a® =—1 (mod7).
Hence p = (04 3,7) (a® =1 (mod 7)) and p = (§ — 3,7) (a®> = —1 (mod 7))
are prime ideals of F' lying above 7 whose relative degree is 1.

If a # 0 (mod 7), the polynomial 23 — (1 —a? — af) is irreducible in O /p
because if @ Z 0 (mod7), then 2® — (1 — a? — af) = 23 + 3 (modp). Thus
1 —a% — af ¢ E3 since if 3| a, then 27|3a® = 3(a® — 1) + 3, 27| 3a® + 3a*
and 3°|3a* = 3(a® — 1) + 3(a® — 1) + 3a®. Therefore the class number
of L; = F(y/=3) is divisible by 3. Suppose that Cl is cyclic where K =

—3(a% + 4),v/=3). Then Gal(K™/Q(v/=3)) is a dihedral group and
so is Gal(K(M /F(/=3)). Hence F(v/=3)(¥/1 — a% — af) is not contained in
K@ This is a contradiction. Hence the 3-rank of the ideal class group of

K = Q(/—3(a% +4),+/-3) is greater than 2. Consequently, the following
holds.

COROLLARY 2. Let K = Q(y/—3(a% +4),v/—3). Assume that a # 0
(mod7) and a =0 (mod3). Then K #£ K®),

EXAMPLE 1: k; = Q(v/=237), ka = Q(v/79), k3 = Q(v/=3). Then for
K = Q(v/=237,1/=3) we have Clg = (3,3) and k; = k1 = Q(v/—237), and

a primitive element of F} is one of the roots of the polynomial
z® — 3z — 160.
A fundamental unit of F} is the root of
z® — 1492” + 23357z — 1.

The root of
2 + 2451322 + 5455491512 — 1

is the second power of the fundamental unit of Fy. Then 149 is prime to 3,
and 27| 24513 4+ 3, 27 || 545549151 + 24513. Therefore F; has no unit which
satisfies the assumption of Theorem 1. Thus for K = Q(/—237,1/-3),
KO = g2,

EXAMPLE 2: k1 = Q(v/—12540667), ky = Q(v/3-12540667), k3 =
Q(v/=3). Then 3| hx, = 3 and 3| hy, = 3. (The class numbers of k; and
ko are 609 and 3 respectively). As a unit of F; = F» which satisfies the
assumption of Theorem 1, we can take a root of

z3 — 219022 + 179337z — 1.
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Then 37 || —2190 + 3, 3! || —2190 + 179337 and this root is not the cube of
any unit of Fb. The class number of Ly is 27 and K® % K@),

[10]
[11]

[12]

We calculated these results by KASH.
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