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On the 3-class field tower of some biquadratic fields

by

Eiji Yoshida (Nagoya)

1. Introduction. Let K be an algebraic number field. For a prime
number p, let K(0) = K and K(i) denote the Hilbert p-class field of K(i−1)

for i ≥ 1. Then we have the tower of fields

K = K(0) ⊆ K(1) ⊆ . . . ⊆ K(∞) =
∞⋃

i=0

K(i).

We call this tower the p-class field tower of K. We say that K has a finite
(resp. an infinite) p-class field tower if |K(∞) : K| < ∞ (resp. |K(∞) : K|
= ∞). Golod and Shafarevich (cf. [3]) proved that there exist algebraic
number fields which possess infinite class field towers. In particular, if K
is a real quadratic field, they have shown that K has an infinite 2-class
field tower if the 2-rank of the ideal class group of K is greater than 5.
In this paper, we shall consider a number field with abelian p-class field
towers (i.e. K(1) = K(2)). Hajir [5] has given all imaginary quadratic fields
with abelian class field towers and Benjamin, Lemmermeyer and Snyder [1]
have determined all real quadratic number fields with abelian 2-class field
towers. Here we shall give a necessary and sufficient condition for the 3-class
field tower of K to terminate at K(1), when K is a biquadratic field which
contains

√
−3.

1.1. Notation. Throughout this paper, Z, Q, N will be used in the usual
sense. If L is an algebraic number field, let L(1) and ClL be the Hilbert 3-
class field over L and the 3-class group (the 3-primary part of the ideal class
group) of L, and hL be the order of ClL. LetEL,OL be the group of units and
the ring of integers of L respectively. If L is a Galois extension of an algebraic
number field F , then Gal(L/F ) is the Galois group for L/F . Let K/Q be a
complex biquadratic extension and ki be the three quadratic subfields of K.
If two quadratic subfields have cyclic 3-class groups and the third one has
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trivial 3-class group, we denote these fields by k1, k2 and k3 respectively.
(When k3 = Q(

√
−3), we denote the complex subfield ofK by k1 and the real

subfield of K by k2.) In general, if L/ki (i = 1, 2, 3) is an unramified abelian
extension, then L/Q is a Galois extension. In particular, if L/ki is a cyclic
extension with odd degree, then Gal(L/Q) is a dihedral group. Therefore
if k(1)

i /ki is a cyclic extension, then there exist three intermediate fields of

k
(1)
i /Q which are cubic extensions over Q and these fields are conjugate

over Q. We denote one of the three fields by Fi if two quadratic subfields
have cyclic 3-class groups and the third one has trivial 3-class group. In the
case k3 = Q(

√
−3), we choose j (j = 1, 2) for which the discriminant of kj

is divisible by 3 and denote the fundamental units of F1 and F2 by {ε0},
{ε1, ε2} respectively.

The purpose of this paper is the following.

Theorem 1. Assume that k3 = Q(
√
−3) and set A1 = {ε0}, A2 =

{ε1, ε2, ε1ε2, ε1ε
2
2}. Assume that hK 6= 1. Then the 3-class field tower of K

terminates at K(1) if and only if Clk1 is a cyclic group, and either

• Clk2 is trivial , or
• Clk2 is cyclic, and there are no ε ∈ Aj which satisfy

ε2 ≡ 1 (mod 3
√
−3 ·OLj(√−3)).

2. Proof of Theorem 1. When L is a finite extension of an algebraic
number field F , we denote the map induced by extension of ideals by λL/F :
ClF → ClL. The following lemma exhibits a close relation between ClK and
Clki .

Lemma 1 ([10]). Let L be a biquadratic field of Q. Let Li (i = 1, 2, 3)
denote the three intermediate fields of L. Then the map λ : ClL1 ⊕ ClL2 ⊕
ClL3 → ClL given by (A1,A2,A3) 7→ λL/L1A1 ·λL/L2A2 ·λL/L3A3 (Ai ∈ ClLi)
is an isomorphism.

From Lemma 1, λK/ki : Clki → ClK (i = 1, 2, 3) are injective and so
each Clki can be identified with a subgroup of ClK . The following result
will simplify our work.

Lemma 2 ([1]). Let L be an algebraic number field , and let r denote the
p-rank of EL/E

p
L. If the p-class field tower of L is abelian, then the rank of

the p-class group of L is not greater than (1 +
√

1 + 8r)/2.

When K is a complex biquadratic extension of Q and p = 3, Lemma 2
implies that if K(1) = K(2), then the rank of ClK is less than 3. If K has
a cyclic 3-class group, then K(1) = K(2). Hence we consider the case where
ClK ∼= (3s, 3t) for s, t ∈ N− {0}. (Here (3s, 3t) means the direct product of
cyclic groups of orders 3s, 3t.)
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Lemma 3. Let K/Q be a complex biquadratic extension with noncyclic
3-class group. If the 3-class field tower of K terminates at K(1), then the
three quadratic subfields ki of K can be ordered in such a way that Clk1 and
Clk2 are cyclic and Clk3 is trivial.

Proof. By Lemma 2, the 3-rank of ClK is 2. By Lemma 1, there are two
possibilities: either two quadratic subfields have cyclic 3-class groups and
the third one has trivial 3-class group, or one has 3-rank 2 and the 3-class
groups of the other two are trivial. In the last case, let k denote the field
with 3-rank 2. When k is a complex quadratic field, by Lemma 2, its 3-class
field tower does not terminate with k(1). When k is a real quadratic field,
by [11], its 3-class field tower does not terminate with k(1). Hence the same
holds for K.

By Lemma 3, in the case ClK ∼= (3s, 3t), we have the following dia-
gram where K1 = KF1, K2 = KF2, and Ki/K are unramified cyclic cubic
extensions.
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From the following lemma, we see that Ki/k3 (i = 1, 2, 3, 4) are Galois
extensions.

Lemma 4 ([8]). Let F be an algebraic number field and L be a quadratic
extension of F . Suppose that the class number of F is prime to an odd
prime number p and the class number of L is divisible by p. Let L′ be an
unramified extension of degree p over L. Then L′/F is a Galois extension
and Gal(L′/F ) is a dihedral group of order 2p.

Since Gal(Ki/k3) ∼= S3 (S3 denotes the symmetric group of degree 3),
there exist three distinct intermediate fields of Ki/k3 which are non-Galois
cubic extensions of k3. We denote one of the three fields by Li (i = 1, 2, 3, 4).
In the case k3 = Q(

√
−3), we can set Li (i = 1, 2) to be Fi(

√
−3).
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Proposition 1. If the rank of ClK is 2, then

hKi =
hKh

2
Li

3
or hKi =

hKh
2
Li

9
(i = 1, 2, 3, 4).

In order to prove Proposition 1, we use the method of Callahan [2]. If H
is a finite group, we denote by H ′, Z(H) and |H| the commutator subgroup,
the center, and the number of elements of H respectively. If x, y ∈ H and
H1 is a subgroup of H, we set xy = y−1xy and (H1)y = {z ∈ H1 | zy = z}.
We define Vi = Gal(K(1)

i /k3), Ui = Gal(K(1)
i /K) and Ai = Gal(K(1)

i /Ki)
(i = 1, 2, 3, 4). By Lemma 4, we have Gal(Ki/k3) ∼= S3 ∼= Vi/Ai. Since K(1) is
a maximal abelian extension of K contained in K

(1)
i , Gal(K(1)

i /K(1)) = U ′i .
We can pick σ, τ ∈ Vi −Ai so that

σ2 = 1, (στ)2 ≡ τ3 ≡ 1 (modAi), τ ∈ Ui, σ ∈ Gal(K(1)
i /Li).

There is an action of Vi/Ai on Ai given by

Vi/Ai × Ai → Ai, (xAi, a) 7→ ax.

This action is well defined as Ai is an abelian normal subgroup of Vi. The
two automorphisms a 7→ aσ and a 7→ aτ define an action of S3 on Ai. Since
λKi/Li : ClLi → ClKi is injective and λKi/Li(ClLi) is mapped onto (Ai)σ by
the Artin map, we have ClLi ∼= (Ai)σ. Thus we study the structure of Ai
and (Ai)σ to prove Proposition 1. First we need two lemmas.

Lemma 5 ([4, Theorem 1.4, p. 336]). Let G be any finite group of odd
order and let σ : G→ G be an automorphism of G of order 2. Suppose that
xσ = x⇔ x = 1. Then G is abelian.

Lemma 6. Let Bi be the minimal normal subgroup of Ui which contains
(Ai)σ. Then Bi = U ′i .

Proof. First we define

(Ai)τσ = {aτ | a ∈ (Ai)σ},
and show Bi = 〈(Ai)σ, (Ai)τσ〉, the group generated by (Ai)σ and (Ai)τσ. Let
Nτ : Ai → Ai be defined by Nτa = aaτaτ

2
for each a ∈ Ai. Then for all

a ∈ (Ai)σ, Nτa is fixed by σ, τ . Since the class number of k3 is prime to 3,
we have Nτa = 1 and thus aτ

2 ∈ 〈(Ai)σ, (Ai)τσ〉 for all a ∈ (Ai)σ. This shows
that Bi = 〈(Ai)σ, (Ai)τσ〉.

Next we prove Ui/Bi is abelian. It is clear that the automorphism a 7→ aσ

induces an automorphism of Ui/Bi of order 2. Assume that there exists u
(modBi) such that uσ ≡ u (modBi). If u = τ la for a ∈ Ai and l = 1, 2,
then uσ = (τ la)σ = (τ l)σaσ ≡ τ−l (modAi). Since uσ ≡ u (modAi), we get
τ−l ≡ τ l (modAi). This implies τ ∈ Ai. Therefore u ∈ Ai. Since aaσ ∈ (Ai)σ
for a ∈ Ai, it follows that uσ ≡ u−1 (modBi). Hence uσ ≡ u−1 ≡ u (modBi)
and u ∈ Bi. Thus by Lemma 5, Ui/Bi is abelian and Bi ⊇ U ′i . Conversely,
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since Ui/U ′i ∼= Gal(K(1)/K) and from Lemma 1, we have xσ ≡ x−1 (modU ′i)
for x ∈ Ui. Hence (Ai)σ ⊂ U ′i and Bi = U ′i .

Proof of Proposition 1. If x ∈ (Ai)σ ∩ (Ai)τσ, then x = yτ for some
y ∈ (Ai)σ and

x = xσ = yτσ = yστ
2

= yτ
2

= xτ .

Hence x ∈ Z(Ui). On the other hand, if x 6= 1, we see that Ui is nonabelian.
Therefore Z(Ui) ⊂ Ai and Z(Ui) = {a ∈ Ai | aτ = a}. Since Z(Ui) ∼=
{= ∈ ClKi | =τ = =} ⊂ ClKi , from the formula for the ambiguous ideal
classes of Ki/K (see [3]), |Z(Ui)| = hK/3. Moreover by [6], |KerλKi/K | =
3 · |EK : NKi/KEKi | = 3 or 9, hence |λKi/K(ClK)| = hK/9 or hK/3 and for
all x ∈ λKi/K(ClK), xσ = x⇔ x = 1. We see that |(Ai)σ ∩ (Ai)τσ| ≤ 3. Thus

hKi = |Ai| = |Ui|/3 = |Ui/U ′i | · |U ′i |/3
= hK · |(Ai)σ| · |(Ai)τσ|/3 · |(Ai)σ ∩ (Ai)τσ|
= hKh

2
Li/3 or hKh2

Li/9.

If H is a finite p-group for a prime p ∈ N and H1 6= {1} is any normal
subgroup of H, then Z(H) ∩ H1 6= {1} ([4, Theorem 6.4, p. 31]). Hence if
F is an algebraic number field and F (2) 6= F (1), then there exists a normal
extension F ′ of F such that F ′ is a proper intermediate field of F (2)/F (1)

and Gal(F (2)/F ′) ⊂ Z(Gal(F (2)/F )). Since F ′ is a normal extension of F
which contains F (1), we also have a normal extension F ′′ of F such that F ′′

is a proper intermediate field of F ′/F (1) and Gal(F ′/F ′′) ⊂ Z(Gal(F ′/F )).
By repeating this procedure, we can find a normal extension L of F such
that |L : F (1)| = 3 and Gal(L/F (1)) ⊂ Z(Gal(L/F )). We set G = Gal(L/F )
and N = Gal(L/L′) where L′ is an unramified cyclic cubic extension of F .
For σ, τ ∈ G, we denote σ−1τ−1στ by [σ, τ ]. In order to prove Theorem 1,
we have to show the following lemma.

Lemma 7. Let F be an algebraic number field and assume ClF ∼= (3s, 3t).
Then F (1) = F (2) if and only if there is an unramified cyclic cubic extension
L′ of F with hL′ = hF /3.

Proof. Suppose that there exists an unramified cyclic cubic extension L′

of F with hL′ = hF /3 and F (1) 6= F (2). Then L′(1) = F (1). Hence G′ =
Gal(L/F (1)) = Gal(L/L′(1)) = N ′. On the other hand, since G/G′ ∼= ClF ∼=
(3s, 3t), G is generated by two elements σ1 and σ2. Since |G′| = 3, we can
pick σ1, σ2 so that G′ = 〈[σ1, σ2]〉. Notice that N is the subgroup of G.
Hence index 3 of N is one of the four subgroups 〈σ1, σ

3
2, G

′〉, 〈σ2, σ
3
1, G

′〉,
〈σ1σ2, σ

3
2, G

′〉, and 〈σ1σ
2
2, σ

3
2, G

′〉. As G′ ⊂ Z(G) and |G′| = 3, we have
[σi1, σ

3j
2 ] = [σ1, σ2]3ij = 1 (i, j ∈ Z). This implies that 〈σ1, σ

3
2, G

′〉′ = {1}.
Similarly 〈σ2, σ

3
1, G

′〉′ = 〈σ1σ2, σ
3
2, G

′〉′ = 〈σ1σ
2
2, σ

3
2, G

′〉′ = {1}. Hence N ′ =



332 E. Yoshida

{1}. This contradicts F (1) = L′(1). Conversely, if F (1) = F (2), it is easy to
see that F (1) = L′(1), and hence hL′ = hF /3.

We shall consider whether hLi = 1 or not. If k3 = Q(
√
−3), then the

following proposition holds.

Proposition 2. Assume that ClK ∼= (3s, 3t) and k3 = Q(
√
−3). Then

the class number of Lj is divisible by 3 if and only if there exists ε ∈ Aj
such that ε2 ≡ 1 (mod 3

√
−3 ·OFj(√−3)).

Proof. We consider the decomposition of the prime ideals of Fj . The ideal

of kj lying above 3 is completely decomposed in k
(1)
j because 3 is ramified

in kj . Hence the decomposition of 3 in Fj is

3 = p1p
2
2

where pi (i = 1, 2) are ideals of Fj lying above 3. Suppose that hLj 6= 1. Let
L′ be an unramified cyclic cubic extension over Lj . Since Clkj is cyclic, the
class number of Fj is prime to 3. Hence L′/Fj is a normal extension from
Lemma 4. Moreover, by Kummer theory, L′ = Lj( 3

√
α) where α ∈ L∗j − L∗3j

(L∗j = Lj − {0}), α is prime to 3 and (α) = A3 (A is an ideal of Lj). Let
σ′ ∈ Gal(L′/Fj) be an extension of the nontrivial automorphism of Lj over
Fj . Then ασ

′ ≡ α (modL∗3j ). Hence L′ = Lj( 3
√
α) = Lj( 3

√
NLj/Fjα) where

NLj/Fj is a norm from Lj to Fj . Furthermore, since the class number of Fj
is prime to 3, we can put ε ∈ Aj so that L′ = Lj( 3

√
ε).

The decompositions of pi (i = 1, 2) in Lj are either

• p1 = P2
1, p2 = P2P3 or

• p1 = P2
1, p2 = P2, NLj/FjP2 = p2

2,

where Pi (i = 1, 2, 3) are prime ideals of Lj lying above 3. Since L′ = Lj( 3
√
ε)

is unramified, the equation X3 ≡ ε (modP3
i ) has a root in OLj for i = 1, 2, 3.

Assume that p2 = P2P3. SinceOLj/P
3
i
∼= OQ(

√−3)/(
√
−33), we have ε ≡ ±1

(modP3
i ) for i = 1, 2, 3. Hence ε2 ≡ 1 (mod 3

√
−3 ·OFj(√−3)).

Assume that p2 = P2 and NLj/FjP2 = p2
2. Let α = α1 + α2

√
−3 ∈

OLj (α1, α2 ∈ Fj) satisfy α3 ≡ ε (modP3
2). Since 2α1, 2α2

√
−3 ∈ OLj , we

can make α1, α2
√
−3 ∈ OLj by replacing α1, α2

√
−3 with −2α1,−2α2

√
−3.

Since p2 = P2, we see that (α1 − α2
√
−3)3 ≡ ε (modP3

2). Hence

α3 − (α1 − α2
√
−3)3 = (α1 + α2

√
−3)3 − (α1 − α2

√
−3)3 (modP3

2)

= 2(3α2
1α2
√
−3− 3α3

2

√
−3) ≡ 0 (mod P3

2).

Since 3α2
1 ∈ P2, we have −3α3

2
√
−3 ∈ P2 and hence α2

√
−3 ∈ P2. Conse-

quently,
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α3 ≡ α3
1 + 3α2

1α2
√
−3− 9α1α

2
2 − 3α3

2

√
−3 ≡ α3

1 (modP3
2).

We have ε ≡ ±1 (modP3
i ) for i = 1, 2. Thus ε2 ≡ 1 (mod 3

√
−3 ·OFj(√−3)).

Conversely, if there exists ε ∈ Aj such that ε2 ≡ 1 (mod 3
√
−3·OFj(√−3)),

then ε ≡ ±1 (modP3
i ) (i = 1, 2, 3 or i = 1, 2) and Lj( 3

√
ε) is an unramified

cyclic cubic extension over Lj .

The next result is well known.

Lemma 8 ([12, Theorem 10.10, p. 190]). Let d > 1 be square-free. Let r1

(resp. r2) be the 3-rank of the ideal class group of Q(
√
−3d) (resp. Q(

√
d)).

Then
r2 ≤ r1 ≤ r2 + 1.

Proof of Theorem 1. If K(1) = K(2), we see that ClK is a nontrivial
cyclic group or an abelian group of rank 2 from Lemma 2. If ClK is a
nontrivial cyclic group, then Clk1 is a nontrivial cyclic group and Clk2 is
trivial from Lemmas 1 and 8. If ClK is an abelian group of rank 2, then
Clk1 and Clk2 are nontrivial cyclic groups. In this case hKi = hK/3 for all
i = 1, 2, 3, 4. By Propositions 1 and 2, Fj has no unit which satisfies the
condition of Theorem 1. Conversely, if Fj has no such unit, then hLj = 1
and hKj = hK/3 by Proposition 1. By Lemma 7, we have K(1) = K(2).

3. Some examples. From the proof of Proposition 2, we see that

ε2 ≡ 1 (mod 3
√
−3 ·OFj(√−3)) ⇔ ε2 ≡ 1 (modp2

1p
3
2),

where p1, p2 are distinct prime ideals of OFj lying above 3 and 3 = p1p
2
2.

Let
x3 + ax2 + bx− 1 (a, b ∈ Z)

be the minimal polynomial of ε2. Then the minimal polynomial of ε2 − 1 is

x3 + (a+ 3)x2 + (2a+ b+ 3)x+ a+ b.

Since ε2 − 1 ∈ p2
1p

3
2, we see that

ε2 − 1
3
∈ OFj , 27 | a+ b, 9 | 2a+ b+ 3, a+ 3 = 2a+ b+ 3− (a+ b).

Moreover, since

(ε2 − 1)3 ∈ p9
2, (a+ 3)(ε2 − 1)2 ∈ p10

2 , (2a+ b+ 3)(ε2 − 1) ∈ p7
2,

we have 81 | a+ b.
The minimal polynomial of ε2 + a/3 is

x3 − 3(a2
0 − b0)x+ 2a3

0 − 3a0b0 − 1,

where a = 3a0, b = 3b0, and we see that

3(a2
0 − b0) =

(a+ 3)2

3
− (2a+ b+ 3),
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2a3
0 − 3a0b0 − 1 =

2(a+ 3)3

27
− (a+ 3)(2a+ b+ 3)

3
+ a+ b.

The next lemma concerns the decomposition of ideals of a cubic field.

Lemma 9 ([7]). Let L be a cubic field over Q and let α be a primitive
element of L whose minimal polynomial is x3−ax+b where a, b ∈ Z, a, b 6= 0.
Define v3(m) = max{s | 3s |m}. Then 3 = p1p

2
2 if and only if either

• v3(a) = 2t+ 1, v3(b) ≥ 3t+ 2, or
• v3(a) ≥ 2t+ 1, v3(b) = 3t, and either

— a/32t ≡ 3 (mod 9), (b/33t)2 ≡ a/32t+1 (mod 27) and v3(4a3−27b2)
is odd , or

— a/32t ≡ 6, 0 (mod 9), (b/33t)2 ≡ a/32t + 1 (mod 9).

By the above lemma and since 9 | a+ 3, 2a+ b+ 3, we see that

27
∣∣∣∣

(a+ 3)2

3
− (2a+ b+ 3), 27 | a+ 3, 2a+ b+ 3.

As 81 | a+ b, we have

35 | 2a3
0 − 3a0b0 − 1, 35 | a+ b.

Thus if ε2 ≡ 1 (mod 3
√
−3 ·OFj(√−3)), then 27 | a+3, 2a+b+3 and 35 | a+b.

Conversely, it is easy to see that if 27 | a+ 3, 2a+ b+ 3 and 35 | a+ b, then
ε2 ≡ 1 (mod 3

√
−3 ·OFj(√−3)). Thus

ε2 ≡ 1 (mod 3
√
−3 ·OFj(√−3)) ⇔ 27 | a+ 3, 2a+ b+ 3, 35 | a+ b.

By utilizing the above fact, one can find examples of K(1) = K(2) and
K(1) 6= K(2).

An example of K(1) = K(2). Let F = Q(θ) be a cubic extension over Q
with θ3 − 9mθ2 − 1 = 0 (m ∈ N − {0}) and let k = Q(

√
−3(4(3m)3 + 1)).

From [7], we see that kF/k is an unramified cyclic cubic extension. Fur-
thermore by [9], the root of the equation x3 − 9mx2 − 1 = 0 is either a
fundamental unit of F or its square. It is clear that θ does not satisfy the
condition of Theorem 1 and since (θ2)3 − 81m2(θ2)2 + 18m(θ2) − 1 = 0,
neither does θ2. Therefore the following holds.

Corollary 1. Let K = Q(
√
−3(4(3m)3 + 1),

√
−3) (m ∈ N − {0}).

Assume that ClK ∼= (3s, 3t). Then K(1) = K(2).

An example of K(1) 6= K(2). Let F = Q(θ) with θ3 + 3θ + a3 = 0 where
a ∈ N − {0} and let k = Q(

√
−3(a6 + 4)). By [7], if 3 | a, then Fk/k is an

unramified cyclic cubic extension. The minimal polynomial of 1− a2− aθ is

x3 + 3(a2 − 1)x2 + (3(a2 − 1)2 + 3a2)x− 1.
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Assume that a 6≡ 0 (mod 7). The discriminant of x3+3x+a3 is −27(a6+4) ≡
5 6≡ 0 (mod 7). Moreover

x3 + 3x+ a3

≡
{
x3 + 3x+ 1 ≡ (x+ 3)(x2 − 3x+ 5) (mod 7) if a3 ≡ 1 (mod 7),

x3 + 3x− 1 ≡ (x− 3)(x2 + 3x+ 5) (mod 7) if a3 ≡ −1 (mod 7).

Hence p = (θ + 3, 7) (a3 ≡ 1 (mod 7)) and p = (θ − 3, 7) (a3 ≡ −1 (mod 7))
are prime ideals of F lying above 7 whose relative degree is 1.

If a 6≡ 0 (mod 7), the polynomial x3− (1−a2−aθ) is irreducible in OF /p
because if a 6≡ 0 (mod 7), then x3 − (1 − a2 − aθ) ≡ x3 ± 3 (modp). Thus
1 − a2 − aθ 6∈ E3

F since if 3 | a, then 27 | 3a2 = 3(a2 − 1) + 3, 27 | 3a2 + 3a4

and 35 | 3a4 = 3(a2 − 1) + 3(a2 − 1)2 + 3a2. Therefore the class number
of Lj = F (

√
−3) is divisible by 3. Suppose that ClK is cyclic where K =

Q(
√
−3(a6 + 4),

√
−3). Then Gal(K(1)/Q(

√
−3)) is a dihedral group and

so is Gal(K(1)/F (
√
−3)). Hence F (

√
−3)( 3

√
1− a2 − aθ) is not contained in

K(1). This is a contradiction. Hence the 3-rank of the ideal class group of
K = Q(

√
−3(a6 + 4),

√
−3) is greater than 2. Consequently, the following

holds.

Corollary 2. Let K = Q(
√
−3(a6 + 4),

√
−3). Assume that a 6≡ 0

(mod 7) and a ≡ 0 (mod 3). Then K(1) 6= K(2).

Example 1: k1 = Q(
√
−237), k2 = Q(

√
79), k3 = Q(

√
−3). Then for

K = Q(
√
−237,

√
−3) we have ClK ∼= (3, 3) and kj = k1 = Q(

√
−237), and

a primitive element of F1 is one of the roots of the polynomial

x3 − 3x− 160.

A fundamental unit of F1 is the root of

x3 − 149x2 + 23357x− 1.

The root of
x3 + 24513x2 + 545549151x− 1

is the second power of the fundamental unit of F1. Then 149 is prime to 3,
and 27 ‖ 24513 + 3, 27 ‖ 545549151 + 24513. Therefore F1 has no unit which
satisfies the assumption of Theorem 1. Thus for K = Q(

√
−237,

√
−3),

K(1) = K(2).

Example 2: k1 = Q(
√
−12540667), k2 = Q(

√
3 · 12540667), k3 =

Q(
√
−3). Then 3 ‖hk1 = 3 and 3 ‖hk2 = 3. (The class numbers of k1 and

k2 are 609 and 3 respectively). As a unit of Fj = F2 which satisfies the
assumption of Theorem 1, we can take a root of

x3 − 2190x2 + 179337x− 1.
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Then 37 ‖−2190 + 3, 311 ‖−2190 + 179337 and this root is not the cube of
any unit of F2. The class number of L2 is 27 and K(1) 6= K(2).

We calculated these results by KASH.
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