On the 3-class field tower of some biquadratic fields

by

EIJII YOSHIDA (Nagoya)

1. Introduction. Let K be an algebraic number field. For a prime number p, let $K^{(0)} = K$ and $K^{(i)}$ denote the Hilbert p-class field of $K^{(i-1)}$ for $i \geq 1$. Then we have the tower of fields

$$K = K^{(0)} \subseteq K^{(1)} \subseteq \ldots \subseteq K^{(\infty)} = \bigcup_{i=0}^{\infty} K^{(i)}.$$

We call this tower the p-class field tower of K. We say that K has a finite (resp. an infinite) p-class field tower if $|K^{(\infty)} : K| < \infty$ (resp. $|K^{(\infty)} : K| = \infty$). Golod and Shafarevich (cf. [3]) proved that there exist algebraic number fields which possess infinite class field towers. In particular, if K is a real quadratic field, they have shown that K has an infinite 2-class field tower if the 2-rank of the ideal class group of K is greater than 5.

In this paper, we shall consider a number field with abelian p-class field towers (i.e. $K^{(1)} = K^{(2)}$). Hajir [5] has given all imaginary quadratic fields with abelian class field towers and Benjamin, Lemmermeyer and Snyder [1] have determined all real quadratic number fields with abelian 2-class field towers. Here we shall give a necessary and sufficient condition for the 3-class field tower of K to terminate at $K^{(1)}$, when K is a biquadratic field which contains $\sqrt{-3}$.

1.1. Notation. Throughout this paper, \mathbb{Z}, \mathbb{Q}, \mathbb{N} will be used in the usual sense. If L is an algebraic number field, let $L^{(1)}$ and Cl_L be the Hilbert 3-class field over L and the 3-class group (the 3-primary part of the ideal class group) of L, and h_L be the order of Cl_L. Let E_L, O_L be the group of units and the ring of integers of L respectively. If L is a Galois extension of an algebraic number field F, then $\text{Gal}(L/F)$ is the Galois group for L/F. Let K/\mathbb{Q} be a complex biquadratic extension and k_i be the three quadratic subfields of K. If two quadratic subfields have cyclic 3-class groups and the third one has

2000 Mathematics Subject Classification: 11R16, 11R37.

Key words and phrases: class field tower, biquadratic field, cubic field, ideal class group/3-class group.
trivial 3-class group, we denote these fields by k_1, k_2, and k_3 respectively. (When $k_3 = \mathbb{Q}(\sqrt{-3})$, we denote the complex subfield of K by k_1 and the real subfield of K by k_2.) In general, if L/k_i ($i = 1, 2, 3$) is an unramified abelian extension, then L/\mathbb{Q} is a Galois extension. In particular, if L/k_i is a cyclic extension with odd degree, then $\text{Gal}(L/\mathbb{Q})$ is a dihedral group. Therefore if $k_i^{(1)}/k_i$ is a cyclic extension, then there exist three intermediate fields of $k_i^{(1)}/\mathbb{Q}$ which are cubic extensions over \mathbb{Q} and these fields are conjugate over \mathbb{Q}. We denote one of these three fields by F_i if two quadratic subfields have cyclic 3-class groups and the third one has trivial 3-class group. In the case $k_3 = \mathbb{Q}(\sqrt{-3})$, we choose j ($j = 1, 2$) for which the discriminant of k_j is divisible by 3 and denote the fundamental units of F_1 and F_2 by $\{\varepsilon_0\}$, $\{\varepsilon_1, \varepsilon_2\}$ respectively.

The purpose of this paper is the following.

Theorem 1. Assume that $k_3 = \mathbb{Q}(\sqrt{-3})$ and set $A_1 = \{\varepsilon_0\}$, $A_2 = \{\varepsilon_1, \varepsilon_2, \varepsilon_1 \varepsilon_2, \varepsilon_1 \varepsilon_2^2\}$. Assume that $h_K \neq 1$. Then the 3-class field tower of K terminates at $K^{(1)}$ if and only if Cl_{k_1} is a cyclic group, and either

- Cl_{k_2} is trivial, or
- Cl_{k_2} is cyclic, and there are no $\varepsilon \in A_j$ which satisfy
 \[\varepsilon^2 \equiv 1 \pmod{3 \sqrt{-3} \cdot O_{L_j}(-3)}. \]

2. Proof of Theorem 1. When L is a finite extension of an algebraic number field F, we denote the map induced by extension of ideals by $\lambda_{L/F} : \text{Cl}_F \rightarrow \text{Cl}_L$. The following lemma exhibits a close relation between Cl_K and Cl_{k_i}.

Lemma 1 ([10]). Let L be a biquadratic field of \mathbb{Q}. Let L_i ($i = 1, 2, 3$) denote the three intermediate fields of L. Then the map $\lambda : \text{Cl}_{L_1} \oplus \text{Cl}_{L_2} \oplus \text{Cl}_{L_3} \rightarrow \text{Cl}_L$ given by $(\mathfrak{A}_1, \mathfrak{A}_2, \mathfrak{A}_3) \mapsto \lambda_{L/L_1} \mathfrak{A}_1 \cdot \lambda_{L/L_2} \mathfrak{A}_2 \cdot \lambda_{L/L_3} \mathfrak{A}_3$ ($\mathfrak{A}_i \in \text{Cl}_{L_i}$) is an isomorphism.

From Lemma 1, $\lambda_{K/k_i} : \text{Cl}_{k_i} \rightarrow \text{Cl}_K$ ($i = 1, 2, 3$) are injective and so each Cl_{k_i} can be identified with a subgroup of Cl_K. The following result will simplify our work.

Lemma 2 ([1]). Let L be an algebraic number field, and let r denote the p-rank of E_L/E_L^p. If the p-class field tower of L is abelian, then the rank of the p-class group of L is not greater than $(1 + \sqrt{1 + 8r})/2$.

When K is a complex biquadratic extension of \mathbb{Q} and $p = 3$, Lemma 2 implies that if $K^{(1)} = K^{(2)}$, then the rank of Cl_K is less than 3. If K has a cyclic 3-class group, then $K^{(1)} = K^{(2)}$. Hence we consider the case where $\text{Cl}_K \cong (3^s, 3^t)$ for $s, t \in \mathbb{N} - \{0\}$. (Here $(3^s, 3^t)$ means the direct product of cyclic groups of orders $3^s, 3^t$.)
Lemma 3. Let K/\mathbb{Q} be a complex biquadratic extension with noncyclic 3-class group. If the 3-class field tower of K terminates at $K^{(1)}$, then the three quadratic subfields k_i of K can be ordered in such a way that Cl_{k_1} and Cl_{k_2} are cyclic and Cl_{k_3} is trivial.

Proof. By Lemma 2, the 3-rank of Cl_K is 2. By Lemma 1, there are two possibilities: either two quadratic subfields have cyclic 3-class groups and the third one has trivial 3-class group, or one has 3-rank 2 and the 3-class groups of the other two are trivial. In the last case, let k denote the field with 3-rank 2. When k is a complex quadratic field, by Lemma 2, its 3-class field tower does not terminate with $k^{(1)}$. When k is a real quadratic field, by [11], its 3-class field tower does not terminate with $k^{(1)}$. Hence the same holds for K.

By Lemma 3, in the case $Cl_K \cong (3^s, 3^t)$, we have the following diagram where $K_1 = KF_1$, $K_2 = KF_2$, and K_i/K are unramified cyclic cubic extensions.

\[
\begin{array}{c}
K^{(1)} & \quad & K_1 & \quad & K_3 & \quad & K_4 & \quad & K_2 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
K & & F_1 & & k_1 & & k_3 & & F_2 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
Q & & k_1 & & k_3 & & k_2 \\
\end{array}
\]

From the following lemma, we see that K_i/k_3 ($i = 1, 2, 3, 4$) are Galois extensions.

Lemma 4 ([8]). Let F be an algebraic number field and L be a quadratic extension of F. Suppose that the class number of F is prime to an odd prime number p and the class number of L is divisible by p. Let L' be an unramified extension of degree p over L. Then L'/F is a Galois extension and $\text{Gal}(L'/F)$ is a dihedral group of order $2p$.

Since $\text{Gal}(K_i/k_3) \cong S_3$ (S_3 denotes the symmetric group of degree 3), there exist three distinct intermediate fields of K_i/k_3 which are non-Galois cubic extensions of k_3. We denote one of the three fields by L_i ($i = 1, 2, 3, 4$). In the case $k_3 = \mathbb{Q}(\sqrt{-3})$, we can set L_i ($i = 1, 2$) to be $F_i(\sqrt{-3})$.
PROPOSITION 1. If the rank of Cl_K is 2, then

$$h_{K_i} = \frac{h_K h_L^2}{3} \quad \text{or} \quad h_{K_i} = \frac{h_K h_L^2}{9} \quad (i = 1, 2, 3, 4).$$

In order to prove Proposition 1, we use the method of Callahan [2]. If H is a finite group, we denote by $H', Z(H)$ and $|H|$ the commutator subgroup, the center, and the number of elements of H respectively. If $x, y \in H$ and H_1 is a subgroup of H, we set $x^y = y^{-1}xy$ and $(H_1)_y = \{ z \in H_1 \mid z^y = z \}$. We define $V_i = \text{Gal}(K_i^{(1)}/k_3)$, $U_i = \text{Gal}(K_i^{(1)}/K)$ and $A_i = \text{Gal}(K_i^{(1)}/K_i)$ $(i = 1, 2, 3, 4)$. By Lemma 4, we have $\text{Gal}(K_i/k_3) \cong S_3 \cong V_i/A_i$. Since $K^{(1)}$ is a maximal abelian extension of K contained in $K_i^{(1)}$, $\text{Gal}(K_i^{(1)}/K^{(1)}) = U'_i$. We can pick $\sigma, \tau \in V_i - A_i$ so that

$$\sigma^2 = 1, \quad (\sigma\tau)^2 \equiv \tau^3 \equiv 1 \pmod{A_i}, \quad \tau \in U_i, \quad \sigma \in \text{Gal}(K_i^{(1)}/L_i).$$

There is an action of V_i/A_i on A_i given by

$$V_i/A_i \times A_i \rightarrow A_i, \quad (x, A_i, a) \mapsto a^x.$$

This action is well defined as A_i is an abelian normal subgroup of V_i. The two automorphisms $a \mapsto a^\sigma$ and $a \mapsto a^\tau$ define an action of S_3 on A_i. Since $\lambda_{K_i/L_i} : \text{Cl}_{L_i} \rightarrow \text{Cl}_{K_i}$ is injective and $\lambda_{K_i/L_i}(\text{Cl}_{L_i})$ is mapped onto $(A_i)_\sigma$ by the Artin map, we have $\text{Cl}_{L_i} \cong (A_i)_\sigma$. Thus we study the structure of A_i and $(A_i)_\sigma$ to prove Proposition 1. First we need two lemmas.

LEMMA 5 ([4, Theorem 1.4, p. 336]). Let G be any finite group of odd order and let $\sigma : G \rightarrow G$ be an automorphism of G of order 2. Suppose that $x^\sigma = x \Leftrightarrow x = 1$. Then G is abelian.

LEMMA 6. Let B_i be the minimal normal subgroup of U_i which contains $(A_i)_\sigma$. Then $B_i = U'_i$.

Proof. First we define

$$(A_i)_{\sigma}^\tau = \{ a^\tau \mid a \in (A_i)_\sigma \},$$

and show $B_i = \langle (A_i)_\sigma, (A_i)^{\tau} \rangle$, the group generated by $(A_i)_\sigma$ and $(A_i)^{\tau}$. Let $N_\tau : A_i \rightarrow A_i$ be defined by $N_\tau a = a a^\tau a^{\tau^2}$ for each $a \in A_i$. Then for all $a \in (A_i)_\sigma$, $N_\tau a$ is fixed by σ, τ. Since the class number of k_3 is prime to 3, we have $N_\tau a = 1$ and thus $a^{\tau^2} \in \langle (A_i)_\sigma, (A_i)^{\tau} \rangle$ for all $a \in (A_i)_\sigma$. This shows that $B_i = \langle (A_i)_\sigma, (A_i)^{\tau} \rangle$.

Next we prove U_i/B_i is abelian. It is clear that the automorphism $a \mapsto a^\sigma$ induces an automorphism of U_i/B_i of order 2. Assume that there exists $u \pmod{B_i}$ such that $u^\sigma \equiv u \pmod{B_i}$. If $u = \tau^l a$ for $a \in A_i$ and $l = 1, 2$, then $u^\sigma = (\tau^l a)^\sigma = (\tau^l)^a a^\sigma = \tau^{-l}(\mod A_i)$. Since $u^\sigma \equiv u \pmod{A_i}$, we get $\tau^{-l} \equiv \tau^l \pmod{A_i}$. This implies $\tau \in A_i$. Therefore $u \in A_i$. Since $aa^\sigma \in (A_i)_\sigma$ for $a \in A_i$, it follows that $u^\sigma \equiv u^{-1} \pmod{B_i}$. Hence $u^\sigma \equiv u^{-1} \equiv u \pmod{B_i}$ and $u \in B_i$. Thus by Lemma 5, U_i/B_i is abelian and $B_i \supseteq U'_i$. Conversely,
For $x \in U_i$, by repeating this procedure, we can find a normal extension N which contains F and $Gal(N/F) = \mathbb{Z}/3$. Therefore $f = 2$.

Proof of Proposition 1. If $x \in (A_i)_\sigma \cap (A_i)_\tau$, then $x = y^7$ for some $y \in (A_i)_\sigma$ and

$$x = x^\sigma = y^7^\sigma = y^{7^\sigma} = y^7 = x^7.$$

Hence $x \in Z(U_i)$. On the other hand, if $x \neq 1$, we see that U_i is nonabelian. Therefore $Z(U_i) \subset A_i$ and $Z(U_i) = \{a \in A_i \mid a^\tau = a\}$. Since $Z(U_i) \cong \{\mathfrak{m} \in CL_{K_i} \mid \mathfrak{m}^7 = \mathfrak{m}\} \subset CL_{K_i}$, from the formula for the ambiguous ideal classes of K_i/K (see [3]), $|Z(U_i)| = h_K/3$. Moreover by [6], $|\text{Ker} \lambda_{K_i/K}| = 3 \cdot |E_K : N_{K_i/K}E_K| = 3$ or 9, hence $|\lambda_{K_i/K}CL(K)| = h_K/9$ or $h_K/3$ and for all $x \in \lambda_{K_i/K}CL(K)$, $x^7 = x \iff x = 1$. We see that $|Cl(A_i)_{\sigma} \cap (A_i)_{\sigma}^7| \leq 3$. Thus

$$h_{K_i} = |A_i| = |U_i|/3 = |U_i/U_i'| \cdot |U_i'|/3 = h_K \cdot |(A_i)_{\sigma}| \cdot |(A_i)_{\sigma}^7|/3 \cdot |(A_i)_{\sigma} \cap (A_i)_{\sigma}^7| = h_Kh_{L_i'}^2/3 or h_Kh_{L_i'}^2/9.$$

If H is a finite p-group for a prime $p \in \mathbb{N}$ and $H_1 \neq \{1\}$ is any normal subgroup of H, then $Z(H) \cap H_1 \neq \{1\}$ ([4, Theorem 6.4, p. 31]). Hence if F is an algebraic number field and $F(2) = F(1)'$, then there exists a normal extension F' of F such that F' is a proper intermediate field of $F(2)/F(1)$ and $Gal(F(2)/F') \subset Z(Gal(F(2)/F))$. Since F' is a normal extension of F which contains $F(1)$, we also have a normal extension F'' of F such that F'' is a proper intermediate field of $F'/F(1)$ and $Gal(F'/F'') \subset Z(Gal(F'/F))$. By repeating this procedure, we can find a normal extension L of F such that $|L : F(1)|| = 3$ and $Gal(L/F(1)) \subset Z(Gal(L/F))$. We set $G = Gal(L/F)$ and $N = Gal(L/L')$ where L' is an unramified cyclic cubic extension of F. For $\sigma, \tau \in G$, we denote $\sigma^{-1} - \tau^{-1} - \sigma \tau$ by $[\sigma, \tau]$. In order to prove Theorem 1, we have to show the following lemma.

Lemma 7. Let F be an algebraic number field and assume $Cl_F \cong (3^s, 3^t)$. Then $F(1) = F(2)$ if and only if there is an unramified cyclic cubic extension L' of F with $h_{L'} = h_F/3$.

Proof. Suppose that there exists an unramified cyclic cubic extension L' of F with $h_{L'} = h_F/3$ and $F(1) \neq F(2)$. Then $L''(1) = F(1)$. Hence $G' = Gal(L/F(1)) = Gal(L/L''(1)) = N'$. On the other hand, since $G'/G' \cong Cl_F \cong (3^s, 3^t)$, G is generated by two elements σ_1 and σ_2. Since $|G'| = 3$, we can pick σ_1, σ_2 so that $G' = \langle [\sigma_1, \sigma_2] \rangle$. Notice that N is the subgroup of G. Hence index 3 of N is one of the four subgroups $\langle \sigma_1, \sigma_2^3, G' \rangle$, $\langle \sigma_2, \sigma_1^3, G' \rangle$, $\langle \sigma_1\sigma_2, \sigma_3^3, G' \rangle$, and $\langle \sigma_1\sigma_2^3, \sigma_3^3, G' \rangle$. As $G' \subset Z(G)$ and $|G'| = 3$, we have $|\sigma_1^i\sigma_2^j| = 1 (i, j \in \mathbb{Z})$. This implies that $\langle \sigma_1, \sigma_2^3, G' \rangle = \langle 1 \rangle$. Similarly $\langle \sigma_2, \sigma_1^3, G' \rangle = \langle 1 \rangle$, $\langle \sigma_1\sigma_2, \sigma_3^3, G' \rangle = \langle 1 \rangle$. Hence N' =
\{1\}. This contradicts \(F^{(1)} = L^{(1)} \). Conversely, if \(F^{(1)} = F^{(2)} \), it is easy to see that \(F^{(1)} = L^{(1)} \), and hence \(h_{L'} = h_F/3 \). ■

We shall consider whether \(h_{L_i} = 1 \) or not. If \(k_3 = \mathbb{Q}(\sqrt{-3}) \), then the following proposition holds.

Proposition 2. Assume that \(Cl_K \cong (3^e, 3^t) \) and \(k_3 = \mathbb{Q}(\sqrt{-3}) \). Then the class number of \(L_j \) is divisible by 3 if and only if there exists \(\varepsilon \in A_j \) such that \(\varepsilon^2 \equiv 1 \pmod{3\sqrt{-3} \cdot O_{F_j(\sqrt{-3})}} \).

Proof. We consider the decomposition of the prime ideals of \(F_j \). The ideal of \(k_j \) lying above 3 is completely decomposed in \(k_j^{(1)} \) because 3 is ramified in \(k_j \). Hence the decomposition of 3 in \(F_j \) is

\[
3 = p_1 p_2^2
\]

where \(p_i \ (i = 1, 2) \) are ideals of \(F_j \) lying above 3. Suppose that \(h_{L_j} \neq 1 \). Let \(L' \) be an unramified cyclic cubic extension over \(L_j \). Since \(Cl_{k_j} \) is cyclic, the class number of \(F_j \) is prime to 3. Hence \(L'/F_j \) is a normal extension from Lemma 4. Moreover, by Kummer theory, \(L' = L_j(\sqrt[3]{\alpha}) \) where \(\alpha \in L_j^* - L_j^3 \) \((L_j^* = L_j - \{0\})\), \(\alpha \) is prime to 3 and \((\alpha) = \mathfrak{A}^3 \) (\(\mathfrak{A} \) is an ideal of \(L_j \)). Let \(\sigma' \in \text{Gal}(L'/F_j) \) be an extension of the nontrivial automorphism of \(L_j \) over \(F_j \). Then \(\alpha^{\sigma'} \equiv \alpha \pmod{L_j^{*3}} \). Hence \(L' = L_j(\sqrt[3]{\alpha}) = L_j(\sqrt[3]{N_{L_j/F_j} \alpha}) \) where \(N_{L_j/F_j} \) is a norm from \(L_j \) to \(F_j \). Furthermore, since the class number of \(F_j \) is prime to 3, we can put \(\varepsilon \in A_j \) so that \(L' = L_j(\sqrt[3]{\varepsilon}) \).

The decompositions of \(p_i \ (i = 1, 2) \) in \(L_j \) are either

\[
\bullet \ p_1 = \mathfrak{P}_1^3, \quad p_2 = \mathfrak{P}_2 \mathfrak{P}_3, \\
\bullet \ p_1 = \mathfrak{P}_1^2, \quad p_2 = \mathfrak{P}_2, \quad N_{L_j/F_j} \mathfrak{P}_2 = \mathfrak{P}_2^2,
\]

where \(\mathfrak{P}_i \ (i = 1, 2, 3) \) are primes of \(L_j \) lying above 3. Since \(L' = L_j(\sqrt[3]{\varepsilon}) \) is unramified, the equation \(X^3 \equiv \varepsilon \pmod{\mathfrak{P}_i^3} \) has a root in \(O_{L_j} \) for \(i = 1, 2, 3 \). Assume that \(p_2 = \mathfrak{P}_2 \mathfrak{P}_3 \). Since \(O_{L_j}/\mathfrak{P}_i^3 \cong O_{\mathbb{Q}(\sqrt{-3})}/(\sqrt{-3}^3) \), we have \(\varepsilon \equiv \pm 1 \pmod{\mathfrak{P}_i^3} \) for \(i = 1, 2, 3 \). Hence \(\varepsilon^2 \equiv 1 \pmod{3\sqrt{-3} \cdot O_{F_j(\sqrt{-3})}} \).

Assume that \(p_2 = \mathfrak{P}_2 \) and \(N_{L_j/F_j} \mathfrak{P}_2 = \mathfrak{P}_2^2 \). Let \(\alpha = \alpha_1 + \alpha_2 \sqrt{-3} \in O_{L_j} \) \((\alpha_1, \alpha_2 \in F_j)\) satisfy \(\alpha^3 \equiv \varepsilon \pmod{\mathfrak{P}_2^3} \). Since \(2\alpha_1, 2\alpha_2 \sqrt{-3} \in O_{L_j} \), we can make \(\alpha_1, \alpha_2 \sqrt{-3} \in O_{L_j} \) by replacing \(\alpha_1, \alpha_2 \sqrt{-3} \) with \(-2\alpha_1, -2\alpha_2 \sqrt{-3} \). Since \(p_2 = \mathfrak{P}_2 \), we see that \((\alpha_1 - \alpha_2 \sqrt{-3})^3 \equiv \varepsilon \pmod{\mathfrak{P}_2^3} \). Hence

\[
\alpha^3 - (\alpha_1 - \alpha_2 \sqrt{-3})^3 = (\alpha_1 + \alpha_2 \sqrt{-3})^3 - (\alpha_1 - \alpha_2 \sqrt{-3})^3 \pmod{\mathfrak{P}_2^3} \\
= 2(3\alpha_1^2 \alpha_2 \sqrt{-3} - 3\alpha_2^3 \sqrt{-3}) \equiv 0 \pmod{\mathfrak{P}_2^3}.
\]

Since \(3\alpha_1^2 \in \mathfrak{P}_2 \), we have \(-3\alpha_2^3 \sqrt{-3} \in \mathfrak{P}_2 \) and hence \(\alpha_2 \sqrt{-3} \in \mathfrak{P}_2 \). Consequently,
\[\alpha^3 \equiv \alpha_1^3 + 3\alpha_1^2\alpha_2\sqrt{-3} - 9\alpha_1\alpha_2^2 - 3\alpha_2^3\sqrt{-3} \equiv \alpha_1^3 \pmod{p_2^3}. \]

We have \(\varepsilon \equiv \pm 1 \pmod{p_i^3} \) for \(i = 1, 2 \). Thus \(\varepsilon^2 \equiv 1 \pmod{3\sqrt{-3} \cdot O_{F_j(\sqrt{-3})}} \).

Conversely, if there exists \(\varepsilon \in A_j \) such that \(\varepsilon^2 \equiv 1 \pmod{3\sqrt{-3} \cdot O_{F_j(\sqrt{-3})}} \), then \(\varepsilon \equiv \pm 1 \pmod{p_i^3} \) (\(i = 1, 2, 3 \) or \(i = 1, 2 \)) and \(L_j(\sqrt{\varepsilon}) \) is an unramified cyclic cubic extension over \(L_j \).

The next result is well known.

Lemma 8 ([12, Theorem 10.10, p. 190]). Let \(d > 1 \) be square-free. Let \(r_1 \) (resp. \(r_2 \)) be the 3-rank of the ideal class group of \(\mathbb{Q}(\sqrt{-3d}) \) (resp. \(\mathbb{Q}(\sqrt{d}) \)). Then

\[r_2 \leq r_1 \leq r_2 + 1. \]

Proof of Theorem 1. If \(K^{(1)} = K^{(2)} \), we see that \(Cl_K \) is a nontrivial cyclic group or an abelian group of rank 2 from Lemma 2. If \(Cl_K \) is a nontrivial cyclic group, then \(Cl_{k_1} \) is a nontrivial cyclic group and \(Cl_{k_2} \) is trivial from Lemmas 1 and 8. If \(Cl_K \) is an abelian group of rank 2, then \(Cl_{k_1} \) and \(Cl_{k_2} \) are nontrivial cyclic groups. In this case \(h_{K_i} = h_K/3 \) for all \(i = 1, 2, 3, 4 \). By Propositions 1 and 2, \(F_j \) has no unit which satisfies the condition of Theorem 1. Conversely, if \(F_j \) has no such unit, then \(h_{L_j} = 1 \) and \(h_{K_j} = h_K/3 \) by Proposition 1. By Lemma 7, we have \(K^{(1)} = K^{(2)} \). □

3. Some examples. From the proof of Proposition 2, we see that

\[\varepsilon^2 \equiv 1 \pmod{3\sqrt{-3} \cdot O_{F_j(\sqrt{-3})}} \iff \varepsilon^2 \equiv 1 \pmod{p_1^2p_2^3}, \]

where \(p_1, p_2 \) are distinct prime ideals of \(O_{F_j} \) lying above 3 and \(3 = p_1p_2^3 \). Let

\[x^3 + ax^2 + bx - 1 \quad (a, b \in \mathbb{Z}) \]

be the minimal polynomial of \(\varepsilon^2 \). Then the minimal polynomial of \(\varepsilon^2 - 1 \) is

\[x^3 + (a + 3)x^2 + (2a + b + 3)x + a + b. \]

Since \(\varepsilon^2 - 1 \in p_1^2p_2^3 \), we see that

\[\frac{\varepsilon^2 - 1}{3} \in O_{F_j}, \quad 27 \mid a + b, \quad 9 \mid 2a + b + 3, \quad a + 3 = 2a + b + 3 - (a + b). \]

Moreover, since

\[(\varepsilon^2 - 1)^3 \in p_2^9, \quad (a + 3)(\varepsilon^2 - 1)^2 \in p_2^{10}, \quad (2a + b + 3)(\varepsilon^2 - 1) \in p_2^7, \]

we have \(81 \mid a + b \).

The minimal polynomial of \(\varepsilon^2 + a/3 \) is

\[x^3 - 3(a_0^2 - b_0)x + 2a_0^3 - 3a_0b_0 - 1, \]

where \(a = 3a_0 \), \(b = 3b_0 \), and we see that

\[3(a_0^2 - b_0) = \frac{(a + 3)^2}{3} - (2a + b + 3), \]
2a_0^3 - 3a_0b_0 - 1 = \frac{2(a + 3)^3}{27} - \frac{(a + 3)(2a + b + 3)}{3} + a + b.

The next lemma concerns the decomposition of ideals of a cubic field.

Lemma 9 ([7]). Let L be a cubic field over \(\mathbb{Q} \) and let \(\alpha \) be a primitive element of L whose minimal polynomial is \(x^3 - ax + b \) where \(a, b \in \mathbb{Z}, a, b \neq 0 \). Define \(v_3(m) = \max\{s \mid 3^s \mid m\} \). Then 3 = \(p_1p_2^2 \) if and only if either

i. \(v_3(a) = 2t + 1, v_3(b) \geq 3t + 2 \), or

ii. \(v_3(a) \geq 2t + 1, v_3(b) = 3t \), and either

- \(a/3^{2t} \equiv 3 \pmod{9}, (b/3^{3t})^2 \equiv a/3^{2t} + 1 \pmod{27} \) and \(v_3(4a^3 - 27b^2) \) is odd, or

- \(a/3^{2t} \equiv 6, 0 \pmod{9}, (b/3^{3t})^2 \equiv a/3^{2t} + 1 \pmod{9} \).

By the above lemma and since \(9 \mid a + 3, 2a + b + 3 \), we see that

\[
27 \left(\frac{(a + 3)^2}{3} - (2a + b + 3) \right), \quad 27 \mid a + 3, 2a + b + 3.
\]

As \(81 \mid a + b \), we have

\[
3^5 \mid 2a_0^3 - 3a_0b_0 - 1, \quad 3^5 \mid a + b.
\]

Thus if \(\varepsilon^2 \equiv 1 \pmod{3\sqrt{-3} \cdot O_{F_\theta}^{(\sqrt{-3})}} \), then \(27 \mid a + 3, 2a + b + 3 \) and \(3^5 \mid a + b \).

Conversely, it is easy to see that if \(27 \mid a + 3, 2a + b + 3 \) and \(3^5 \mid a + b \), then \(\varepsilon^2 \equiv 1 \pmod{3\sqrt{-3} \cdot O_{F_\theta}^{(\sqrt{-3})}} \). Thus

\[
\varepsilon^2 \equiv 1 \pmod{3\sqrt{-3} \cdot O_{F_\theta}^{(\sqrt{-3})}} \iff 27 \mid a + 3, 2a + b + 3, \quad 3^5 \mid a + b.
\]

By utilizing the above fact, one can find examples of \(K^{(1)} = K^{(2)} \) and \(K^{(1)} \neq K^{(2)} \).

An example of \(K^{(1)} = K^{(2)} \). Let \(F = \mathbb{Q}(\theta) \) be a cubic extension over \(\mathbb{Q} \) with \(\theta^3 - 9m \theta^2 - 1 = 0 \) (\(m \in \mathbb{N} - \{0\} \)) and let \(k = \mathbb{Q}(\sqrt[3]{-3(4(3m)^3 + 1)}) \). From [7], we see that \(kF/k \) is an unramified cyclic cubic extension. Furthermore by [9], the root of the equation \(x^3 - 9m x^2 - 1 = 0 \) is either a fundamental unit of \(F \) or its square. It is clear that \(\theta \) does not satisfy the condition of Theorem 1 and since \((\theta^2)^3 - 81m^2(\theta^2)^2 + 18m(\theta^2) - 1 = 0 \), neither does \(\theta^2 \). Therefore the following holds.

Corollary 1. Let \(K = \mathbb{Q}(\sqrt[3]{-3(4(3m)^3 + 1)}, \sqrt{-3}) \) (\(m \in \mathbb{N} - \{0\} \)). Assume that \(Cl_K \cong (3^3, 3^l) \). Then \(K^{(1)} = K^{(2)} \).

An example of \(K^{(1)} \neq K^{(2)} \). Let \(F = \mathbb{Q}(\theta) \) with \(\theta^3 + 3\theta + a^3 = 0 \) where \(a \in \mathbb{N} - \{0\} \) and let \(k = \mathbb{Q}(\sqrt[3]{-3(a^6 + 4)}) \). By [7], if \(3 \mid a \), then \(Fk/k \) is an unramified cyclic cubic extension. The minimal polynomial of \(1 - a^2 - a\theta \) is

\[
x^3 + 3(a^2 - 1)x^2 + (3(a^2 - 1)^2 + 3a^2)x - 1.
\]
Assume that \(a \not\equiv 0 \pmod{7} \). The discriminant of \(x^3 + 3x + a^3 \) is \(-27(a^6 + 4) \equiv 5 \not\equiv 0 \pmod{7} \). Moreover
\[
 x^3 + 3x + a^3 \\
\equiv \begin{cases}
 x^3 + 3x + 1 \equiv (x + 3)(x^2 - 3x + 5) \pmod{7} & \text{if } a^3 \equiv 1 \pmod{7}, \\
 x^3 + 3x - 1 \equiv (x - 3)(x^2 + 3x + 5) \pmod{7} & \text{if } a^3 \equiv -1 \pmod{7}.
\end{cases}
\]
Hence \(p = (\theta + 3, 7) \) \((a^3 \equiv 1 \pmod{7})\) and \(p = (\theta - 3, 7) \) \((a^3 \equiv -1 \pmod{7})\) are prime ideals of \(F \) lying above 7 whose relative degree is 1.

If \(a \not\equiv 0 \pmod{7} \), the polynomial \(x^3 - (1 - a^2 - a\theta) \) is irreducible in \(O_F/p \) because if \(a \not\equiv 0 \pmod{7} \), then \(x^3 - (1 - a^2 - a\theta) \equiv x^3 \pm 3 \pmod{p} \). Thus \(1 - a^2 - a\theta \not\in E_F^3 \) since if \(3 \mid a \), then \(27 \mid 3a^2 = 3(a^2 - 1) + 3, \) \(27 \mid 3a^2 + 3a^4 \) and \(3^5 \mid 3a^4 = 3(a^2 - 1) + 3(a^2 - 1)^2 + 3a^2 \). Therefore the class number of \(L_j = F(\sqrt{-3}) \) is divisible by 3. Suppose that \(Cl_K \) is cyclic where \(K = \mathbb{Q}(\sqrt{-3(a^6 + 4)}, \sqrt{-3}) \). Then \(Gal(K^{(1)}/\mathbb{Q}(\sqrt{-3})) \) is a dihedral group and so is \(Gal(K^{(1)}/F(\sqrt{-3})) \). Hence \(F(\sqrt{-3})(\sqrt{1 - a^2 - a\theta}) \) is not contained in \(K^{(1)} \). This is a contradiction. Hence the 3-rank of the ideal class group of \(K = \mathbb{Q}(\sqrt{-3(a^6 + 4)}, \sqrt{-3}) \) is greater than 2. Consequently, the following holds.

Corollary 2. Let \(K = \mathbb{Q}(\sqrt{-3(a^6 + 4)}, \sqrt{-3}) \). Assume that \(a \not\equiv 0 \pmod{7} \) and \(a \equiv 0 \pmod{3} \). Then \(K^{(1)} \neq K^{(2)} \).

Example 1: \(k_1 = \mathbb{Q}(\sqrt{-237}), k_2 = \mathbb{Q}(\sqrt{79}), k_3 = \mathbb{Q}(\sqrt{-3}) \). Then for \(K = \mathbb{Q}(\sqrt{-237}, \sqrt{-3}) \) we have \(Cl_K \cong (3, 3) \) and \(k_j = k_1 = \mathbb{Q}(\sqrt{-237}) \), and a primitive element of \(F_1 \) is one of the roots of the polynomial
\[
x^3 - 3x - 160.
\]
A fundamental unit of \(F_1 \) is the root of
\[
x^3 - 149x^2 + 23357x - 1.
\]
The root of
\[
x^3 + 24513x^2 + 545549151x - 1
\]
is the second power of the fundamental unit of \(F_1 \). Then 149 is prime to 3, and \(27 \parallel 24513 + 3 \), \(27 \parallel 545549151 + 24513 \). Therefore \(F_1 \) has no unit which satisfies the assumption of Theorem 1. Thus for \(K = \mathbb{Q}(\sqrt{-237}, \sqrt{-3}) \), \(K^{(1)} = K^{(2)} \).

Example 2: \(k_1 = \mathbb{Q}(\sqrt{-12540667}), k_2 = \mathbb{Q}(\sqrt{3 \cdot 12540667}), k_3 = \mathbb{Q}(\sqrt{-3}) \). Then \(3 \parallel h_{k_1} = 3 \) and \(3 \parallel h_{k_2} = 3 \). (The class numbers of \(k_1 \) and \(k_2 \) are 609 and 3 respectively). As a unit of \(F_j = F_2 \) which satisfies the assumption of Theorem 1, we can take a root of
\[
x^3 - 2190x^2 + 179337x - 1.
\]
Then \(3^7 \parallel -2190 + 3, \ 3^{11} \parallel -2190 + 179337\) and this root is not the cube of any unit of \(F_2\). The class number of \(L\) is 27 and \(K^{(1)} \neq K^{(2)}\).

We calculated these results by KASH.

References

Graduate School of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464-8602, Japan
E-mail: m98111i@math.nagoya-u.ac.jp

Received on 18.1.2002
and in revised form on 6.5.2002