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1. Introduction and statement of results. If H(−n) denotes the
Hurwitz–Kronecker class number of positive definite binary quadratic forms
with discriminant −n, then Zagier’s weight 3/2 Eisenstein series is given by
(q = e2πiz throughout)

H3/2(z) = − 1
12

+
∞∑

n=1

H(1, n)qn = − 1
12

+
∑

0<n≡0,3 (mod 4)

H(−n)qn.(1.1)

This series fits into Cohen’s general theory of weight k+1/2 Eisenstein series

Hk+1/2(z) =
∞∑

n=0

H(k, n)qn,(1.2)

where H(k, n) = H1(k, n) is defined in (1.4). If k ≥ 2, then Hk+1/2(z)
is a weight k + 1/2 modular form on the congruence subgroup Γ0(4) (see
[3, Th. 3.1]).

If D ≡ 0, 1 (mod 4), and χD(•) =
(
D
•
)

denotes the usual Kronecker
character, then it is a classical fact (see [1, Ch. 5, §4]) that

H(1,−D) = H(D) =
|D|−1∑

a=0

χD(a)a,

when D < −4 is a fundamental discriminant.
We generalize this classical result in a variety of ways. See, for example,

Corollary 1.2. Moreover, we obtain an elegant uniform description of the
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H(k, n) in terms of values of the Bernoulli polynomials Bk(x), weighted
against the mod n representation numbers of sums of squares.

To state our result, if χ is a Dirichlet character, we let L(s, χ) =∑
χ(n)n−s be its L-series. For positive integers r, n and k with r odd, let

D := (−1)kn and set

(1.3) hr(k, n)

=





(−1)[k/2]χ8(r)(k − 1)!nk−r/2L(k, χD)
2k−(r+1)/2πk

if (−1)kn ≡ 0 (mod 4),

(−1)[k/2](k − 1)!nk−r/2L(k, χD)
2k−1πk

if (−1)kn ≡ 1 (mod 4),

0 if (−1)kn ≡ 2, 3 (mod 4).

Define also

Hr(k, n) =





∑
d2|n hr(k, n/d

2) if (−1)kn ≡ 0, 1 (mod 4),

ζ(1− 2k) if n = 0,

0 otherwise.

(1.4)

Note that hr(k, n)� nk−r/2 log(2n) (where the log(2n) is necessary only
for k = 1). In particular,

Hr(k, n)� nmax(k−r/2,0)+ε.(1.5)

Next, we define, for positive integers r and n,

(1.6) Rr(a, n) := #{(ν1, . . . , νr) ∈ (Z/nZ)r : ν2
1 + . . .+ ν2

r ≡ a (modn)}.
If k is a positive integer, then let Bk be the kth Bernoulli number and let
Bk(x) denote the usual kth Bernoulli function with the convention that

B1(x) =
{
x− 1/2 if x 6= 0,

0 if x = 0.
(1.7)

Finally, define the two formal Dirichlet series Hr,k(s) and Fr,k(s) by

Hr,k(s) =
∞∑

n=1

Hr(k, n)
ns

,(1.8)

Fr,k(s) = −
χ(−1)k(r)

k

∞∑

n=1

∑n−1
a=0 Rr(a, n)Bk(a/n)

ns
.(1.9)

By (1.5), Hr,k(s) converges for Re(s) > max(1, k+ 1− r/2). For Fr,k(s),
we note that Bk(x) is bounded in the interval [0, 1] and

∑
Rr(a, n) = nr.

This implies that Fr,k(s) converges for Re(s) > r + 1. As a consequence of
the following theorem, we can extend the region of convergence for Fr,k(s)
to Re(s) > max(r/2 + 1, r − k + 1).

By modifying an argument of J. Bruinier (see [2, Th. 11]) in the case
where k = 1, for positive odd integers r, we obtain the following descrip-
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tion of Hr,k(s) as a formal product of Fr,k(s) and a simple quotient of the
Riemann zeta function ζ(s). In particular, if r = 1, we obtain a convenient
description of the Mellin transform of Cohen’s half-integral weight Eisen-
stein series.

Theorem 1.1. If r is a positive odd integer and k ≥ 1, then

Hr,k(s) =
ζ(2s)
ζ(s)

Fr,k(s− k + r).

As is well known, ζ(2s)/ζ(s) =
∑∞

n=1 λ(n)n−s, where λ is the Liouville
function, the totally multiplicative function on positive integers defined on
primes p by λ(p) = −1. Then Theorem 1.1 gives an immediate formula for
Hr(k, n).

Corollary 1.2. For r, n, k ∈ Z with r odd ,

Hr(k, n) = −
χ(−1)k(r)

k

∑

d|n
λ(n/d)dk−r

d−1∑

a=0

Rr(a, d)Bk(a/d).

We cannot resist interpreting the r = 1 case of Theorem 1.1 in terms of
the logarithmic derivatives of the infinite products

Fk(q) =
∞∏

n=1

(1− qn)H(k,n)/n.(1.10)

Corollary 1.3. If k is a positive integer , then

q ddq (Fk(q))

Fk(q)
+

∑

a,b≥1
c≥2

b square-free

H(k, a)qabc
2

=
1
k

∞∑

n=1

n−1∑

a=0

R1(a, n)Bk(a/n)nk−1qn.

Acknowledgments. The authors thank the referee, whose contribu-
tions improved this paper.

2. Proofs. We begin with the following elementary lemmas. The first
lemma is standard and can be found in [4, p. 522].

Lemma 2.1. The Fourier expansion of Bk(x) is given by

Bk(x) =
−k!

(2πi)k
∑′

n∈Z

e(nx)
nk

,(2.1)

where
∑′ indicates that we are summing over all non-zero integers, and

e(x) = e2πix.

The proof of the following lemma is a straightforward analogue of the
proof of Möbius inversion and will be left to the reader.
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Lemma 2.2. Let f : Z+ → C. Define F,G : Z+ → C by

F (N) =
∑

d|N
f(N/d), G(N) =

∑

d2|N
f(N/d2).(2.2)

Then
(i) F (N) =

∑

a|N
N/a square-free

G(a),

(ii) G(N) =
∑

a|N
λ(N/a)F (a).

(2.3)

Fixing notation, we define, for integers m and a,

G(m,a) =
∑

ν∈Z/aZ
e(mν2).(2.4)

In the following lemma, we recall some basic facts on the Gauss sums in
(2.4). For their proofs, we refer the reader to [5, IV.3].

Lemma 2.3. Suppose that a, b and c are integers with b, c ≥ 1.

(i) If c | (a, b), then G(a, b) = c ·G(a/c, b/c).
(ii) If (b, c) = 1 and (a, bc) = 1, then G(a, bc) = G(ab, c)G(ac, b).

(iii) If b is odd and (a, b) = 1, then G(a, b) =
(
a
b

)
G(1, b).

(iv) If a is odd , then G(a, 2s) =
(−2s

a

)
ε((a− 1)/2)G(1, 2s).

(v) G(1, b) =





(1 + i)
√
b if b ≡ 0 (mod 4),√

b if b ≡ 1 (mod 4),

0 if b ≡ 2 (mod 4),

i
√
b if b ≡ 3 (mod 4).

Here, ε(b) = 1 if b is even and ε(b) = i if b is odd.

For positive integers k and r, let

gk,r(m,a) =
{

Re(G(m,a)r) if k ∈ 2Z,

Im(G(m,a)r) if k ∈ 2Z+ 1.
(2.5)

Then we see immediately from the definition and (i) above that, for b | (m,a),

gk,r(m,a) = brgk,r(m/b, a/b).(2.6)

Then we have the following proposition.

Proposition 2.4. For integers m and a such that (m,a) = 1,

(2.7) gk,r(m,a)

= ar/2
(

(−1)ka
m

)
·





2(r−1)/2χ(−1)k8(r) if (−1)ka ≡ 0 (mod 4),

χ(−1)k(r) if (−1)ka ≡ 1 (mod 4),

0 if (−1)ka ≡ 2, 3 (mod 4).
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Proof. If (−1)ka ≡ 1 (mod 4), then G(m,a)r =
(
m
a

)r
ε(k)rar/2. There-

fore,

gk,r(m,a) = ar/2
(
m

a

)
ε(k)r−1 = ar/2

(
m

a

)
χ(−1)k(r).(2.8)

Clearly, by Lemma 2.3, if (−1)ka ≡ 2 (mod 4), then gk,r(m,a) = 0. If
(−1)ka ≡ 3 (mod 4), then G(m,a)r =

(
m
a

)r
ε(k− 1)rar/2 and gk,r(m,a) = 0.

Therefore, the only case left is (−1)ka ≡ 0 (mod 4). Suppose a = 2sa0
with a0 odd; then, by Lemma 2.3, we see that

G(m,a) =
(−m
a0

)(−2s

m

)
ε

(
ma0 − 1

2

)
G(1, 2s)G(1, a0).(2.9)

Therefore, if a0 ≡ 1 (mod 4), then

G(m,a) =
(−2sa0

m

)
ε

(
m− 1

2

)
(1 + i)2s/2

√
a0(2.10)

=
(−a
m

)
ε

(
m− 1

2

)√
a (1 + i),

and if a0 ≡ 3 (mod 4), then

G(m,a) = −
(−a0

m

)(−2s

m

)
ε

(
m+ 1

2

)
i
√
a0 (1 + i)2s/2(2.11)

= −
(
a

m

)
ε

(
m+ 1

2

)
i
√
a (1 + i)

=
(−a
m

)
ε

(
m− 1

2

)√
a (1 + i).

Then we see that

G(m,a)r = 2(r−1)/2ar/2
(−a
m

)
ε

(
m− 1

2

)r
i(r−1)/2.(2.12)

After a lengthy verification, we obtain

gk,r(m,a) =
(

(−1)ka
m

)
2(r−1)/2ar/2χ(−1)k8(r),(2.13)

as desired.

The following proposition provides the foundation for Theorem 1.1.

Proposition 2.5. For r, k, n ∈ Z+ with r odd ,

n−1∑

a=0

Rr(a, n)Bk(a/n) = −
χ(−1)k(r)k

nk−r
∑

d|n
hr(k, d).
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Proof. Let N be a positive integer; then by Lemma 2.1,

(2.14)
N−1∑

a=0

Rr(a,N)Bk(a/N)

=
∑

ν1,...,νr (modN)

Bk

(
ν2

1

N
+ . . .+

ν2
r

N

)

=
−k!

(2πi)k
∑′

n∈Z
n−k

∑

ν1,...,νr (modN)

e

(
n

(
ν2

1

N
+ . . .+

ν2
r

N

))

=
−k!

(2πi)k
∑′

n∈Z
n−kG(n,N)r

=
−k!

(2πi)k
∑′

n∈Z
n−k (Re(G(n,N)r) + i Im(G(n,N)r))

=
−2ε(k)k!

(2πi)k
∑

n≥1

n−kgk,r(n,N).

Reindexing this sum on the divisors of N , we find

(2.15)
N−1∑

a=0

Rr(a,N)Bk(a/N)

=
−2ε(k)k!

(2πi)k
∑

a|N

∑

n≥1
(n,N)=N/a

n−kgk,r(n,N)

=
−2ε(k)k!

(2πi)k
N r−k∑

a|N
ak−r

∑

m≥1
(m,a)=1

m−kgk,r(m,a).

Since χa(m) = 0 if (m,a) 6= 1, Proposition 2.4 yields

(2.16) ak−r
∑

m≥1
(m,a)=1

m−kgk,r(m,a)

= 2(r−1)/2χ(−1)k8(r)ak−r/2
∑

m≥1

m−kχ(−1)ka(m)

= 2(r−1)/2χ(−1)k8(r)ak−r/2L(k, χ(−1)ka)

if (−1)ka ≡ 0 (mod 4), and

ak−r
∑

m≥1
(m,a)=1

m−kgk,r(m,a) = χ(−1)k(r)ak−r/2
∑

m≥1

m−kχ(−1)ka(m)(2.17)

= χ(−1)k(r)ak−r/2L(k, χ(−1)ka)
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if (−1)ka ≡ 1 (mod 4). If (−1)ka ≡ 2, 3 (mod 4), the sum is zero. (1.3) yields

N−1∑

a=0

Rr(a,N)Bk(a/N) = −
χ(−1)k(r)k

Nk−r
∑

d|N
hr(k, d)(2.18)

as desired.

We are now prepared to prove the main theorem.

Proof of Theorem 1.1. Combining Proposition 2.5 with Lemma 2.2(ii)
yields

Hr(k, n) = −
χ(−1)k(r)

k

∑

d|n
λ(n/d)dk−r

d−1∑

a=0

Rr(a, d)Bk(a/d).(2.19)

A straightforward calculation involving formal Dirichlet series shows that,
for any series

∑
n≥1 b(n)n−s,

ζ(2s)
ζ(s)

∑

n≥1

b(n)n−s =
∑

n≥1

(∑

d|n
λ(n/d)b(d)

)
n−s.

Applying this to (2.19), we obtain the theorem.

Proof of Corollary 1.2. This is (2.19) in the proof of Theorem 1.1.

Proof of Corollary 1.3. If we define a formal product

F (q) =
∞∏

n=1

(1− qn)c(n),(2.20)

then one obtains formally

q ddq (F (q))

F (q)
= −

∞∑

n=1

(∑

d|n
c(d)d

)
qn.(2.21)

Combining Proposition 2.5 with Lemma 2.2(i), we get

−
χ(−1)k(r)

nr−kk

n−1∑

a=0

Rr(a, n)Bk(a/n) =
∑

d|n
n/d square-free

Hr(k, d).(2.22)

The result follows from this and (2.21) when r = 1.

3. Remarks. We remark that these calculations can be carried out in
similar settings with similar results. We state some interesting formulas that
are obtained when r is even in the above calculations.
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Theorem 3.1. With notation as above:

(i) If r ≡ 2 (mod 4) and k is even,

1
Bk

n−1∑

a=0

Rr(a, n)Bk(a/n) = nr−k
∑

d|n
2 - d

(−1
d

)
dk−r/2

∏

p|d

(
1− 1

pk

)
.

(ii) If r ≡ 2 (mod 4) and k is odd ,

(−1)(r−2)/4

2r/2Bk(1/4)

n−1∑

a=0

Rr(a, n)Bk(a/n) = nr−k
∑

d|n
4|d

dk−r/2
∏

p|d
p6=2

(
1−

(−1
p

)

pk

)
.

(iii) If r ≡ 0 (mod 4) and k is even,

1
Bk

n−1∑

a=0

Rr(a, n)Bk(a/n) = nr−k
∑

d|n
dk−r/2

∏

p|d

(
1− 1

pk

)
η(d), where

η(d) =





1 if 2 - d,

0 if d ≡ 2 (mod 4),

(−1)r/42r/2 if 4 | d.
(iv) If r ≡ 0 (mod 4) and k is odd ,

n−1∑

a=0

Rr(a, n)Bk(a/n) = 0.
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