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1. Introduction. Any real number x ∈ (0, 1] has the Oppenheim ex-
pansion [14]

x ∼ 1
d1

+
a1

b1

1
d2

+ . . .+
a1a2 . . . an
b1b2 . . . bn

1
dn+1

+ . . . ,(1)

where an = an(d1, . . . , dn), bn = bn(d1, . . . , dn) are positive integers and the
denominators dn are determined by the algorithm

x = x1, dn = [1/xn] + 1, xn = 1/dn + an/bn · xn+1(2)

(here and in what follows [y] denotes the integer part of y). By (2),
1
dn

< xn ≤
1

dn − 1
,(3)

hence for any n ≥ 1,

dn+1 >
an
bn
dn(dn − 1).(4)

The expansion defined by (1) and (2) is convergent and its sum is equal
to x. A sufficient condition for a series on the right hand side in (1) to be
the expansion of its sum by the algorithm (2) is (see [14])

dn+1 ≥
an
bn
dn(dn − 1) + 1 for any n ≥ 1.(5)

Definition 1. We call the expansion (1) (obtained by the algorithm
(2)) the restricted Oppenheim expansion of x if an and bn depend on the
last denominator dn only and if the function

hn(j) =
an(j)
bn(j)

j(j − 1)(6)

is integer-valued.
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In the present paper, we deal with restricted Oppenheim expansions only.
In this case, (4) and (5) are equivalent.

There has been much work on the metric theory of restricted Oppenheim
expansions. One usually chooses Lebesgue measure on the Borel subsets
of the interval (0, 1] as the underlying probability space, and asks about
metric properties of digits in restricted Oppenheim expansions (see [1], [4]–
[11], [15]–[18]). In this paper, we investigate the Hausdorff dimension of
exceptional sets in the metric properties of digits in restricted Oppenheim
expansions. The corresponding results for Engel and Sylvester expansions
have been obtained by Liu and the author [12], [19]; here more attention is
paid to the estimates in order to apply the mass distribution principle. On
the way, we also consider the fractal dimension of the exceptional set of a
uniformly distributed sequence modulo 1.

We use | · | to denote the diameter of a subset of (0, 1], dimH to denote
the Hausdorff dimension and cl the closure of a subset of (0, 1] respectively.

2. Oppenheim series expansions and Hausdorff dimensions

Definition 2. Let t ≥ 1 and β > 0. We say that the function hn(j) is
of order t with constant β > 0 if

hn(j)
jt
→ β as n, j →∞.(7)

We now list some special cases which have been considered in the liter-
ature earlier.

Example 1 (Engel expansion). Let an(d1, . . . , dn) = 1, bn(d1, . . . , dn) =
dn (n = 1, 2, . . .). Then (1), together with the algorithm (2), is the Engel
expansion of x,

x =
1
d1

+
1

d1d2
+ . . .+

1
d1d2 . . . dn

+ . . .(8)

Here hn(j) = j − 1 is of order 1 with β = 1.

Example 2 (Sylvester expansion). Choosing an(d1, . . . , dn) = 1,
bn(d1, . . . , dn) = 1 (n = 1, 2, . . .), we get the Sylvester expansion of x,

x =
1
d1

+
1
d2

+ . . .+
1
dn

+ . . .(9)

In this case, hn(j) = j(j − 1) is of order 2 with β = 1.

Example 3 (Generalized Cantor product). Taking an(d1, . . . , dn) =
k + dn, bn(d1, . . . , dn) = dn (n = 1, 2, . . .), where k is a fixed positive in-
teger, yields the generalized Cantor product ,

1 + kx =
(

1 +
k

d1

)(
1 +

k

d2

)
. . .

(
1 +

k

dn

)
. . .(10)
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Here hn(j) = (j + k)(j − 1) is of order 2 with β = 1. Generalized Can-
tor products were studied in Oppenheim [13]. For k = 2, Escott [2] used
the above product representation for a rapid approximation of quadratic
irrationals.

Example 4 (Modified Engel expansion). Letting an(d1, . . . , dn) = 1,
bn(d1, . . . , dn) = dn − 1 (n = 1, 2, . . .), we get the modified Engel expansion
of x,

x =
1
d1

+
1

(d1 − 1)d2
+ . . .+

1
(d1 − 1)(d2 − 1) . . . (dn−1 − 1)dn

+ . . .(11)

Thus hn(j) = j is of order 1 with β = 1.

Example 5 (Daróczy–Kátai–Birthday expansion). If we choose
an(d1, . . . , dn) = dn, bn(d1, . . . , dn) = 1 (n = 1, 2, . . .), the resulting series
expansion of x takes the form

x =
1
d1

+
d1

d2
+ . . .+

d1d2 . . . dn−1

dn
+ . . .(12)

Here hn(j) = j2(j−1) is of order 3 with β = 1. This Daróczy–Kátai–Birthday
expansion was introduced for the first time in Galambos [9].

All the expansions in the examples above are restricted Oppenheim ex-
pansions; note that in all these cases hn(j) is independent of n.

In this paper, we always assume hn(j) is of order t (t ≥ 1) with β > 0.
Under this assumption, for any ε > 0, there exists a positive integer n(ε)
such that for any n and j ≥ n(ε),

hn(j) ≤ (β + ε)jt.(13)

We first state the mass distribution principle (see [3, Proposition 2.3])
that will be used later.

Lemma 1. Let E⊂(0, 1] be a Borel set and µ be a measure with µ(E)>0.
If for any x ∈ E,

lim inf
r→0

logµ(B(x, r))
log r

≥ s,

where B(x, r) denotes the open ball with center at x and radius r, then
dimHE ≥ s.

In what follows we often make use of a symbolic space defined as follows.
Let {Ln : n ≥ 1} and {Mn : n ≥ 1} be two sequences of positive numbers
such that L1 ≥ 1 and Lk+1 ≥ maxj{hk(j) : [Lk] + 1 ≤ j ≤ [Mk]} for any
k ≥ 1. For any n ≥ 1, let

Dn = {(σ1, . . . , σn) ∈ Nn : Lk < σk ≤Mk for all 1 ≤ k ≤ n},
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and define

D =
∞⋃

n=0

Dn (D0 = ∅).

For any σ = (σ1, . . . , σn) ∈ Dn, let Jσ denote the following closed subinterval
of (0, 1]:

Jσ = cl{x ∈ (0, 1] : d1(x) = σ1, . . . , dn(x) = σn};
each Jσ is called an interval of nth order. Define

E =
∞⋂

n=1

⋃

σ∈Dn
Jσ.(14)

It is obvious that

E = {x ∈ (0, 1] : Ln < dn(x) ≤Mn for all n ≥ 1}.(15)

For any α > 0, define

A(α) = {x ∈ (0, 1] : lim
n→∞

dn+1(x)/dtn(x) = α}.

Theorem 1. If hn(j) is of order t with β > 0 and t > 1, then

dimHA(α) = 1 for any α > β.

Proof. We adopt the idea from [19]. Fix γ such that β < γ < α. By (13),
there exists n(γ) such that hn(j) ≤ γjt for any n and j ≥ n(γ). We consider
three cases.

Case 1: α > 1. Let {cn : n ≥ 1} be a sequence such that c1 = 2,
cn+1 = hn(cn) + 2 for any n ≥ 1. Choose n1 ≥ n(γ) large enough such that
for any n ≥ n1,

(
n+ 1
n

)t
γ < α,

1
n
αt

n−1/(t−1) > 1,

αt
n−1/(t−1) ≥ hn(γ)(cn(γ)) + 1, αt

n−1/(t−1) > n(γ) + 1.

For any n ≥ 1, let

Ln = cn − 1/2, Mn = cn + 1/2, for 1 ≤ n ≤ n(γ),

Ln = αt
n+n1−1/(t−1), Mn =

n+ 1
n

αt
n+n1−1/(t−1), for n > n(γ).

Thus for any n ≥ n(γ) and [Ln] + 1 ≤ j ≤ [Mn], we have

Ln+1 ≥ α
(

n

n+ 1

)t
[Mn]t > γ[Mn]t ≥ γjt > hn(j);

this implies, for any n > n(γ) and [Ln] + 1 ≤ j ≤ [Mn],

[Ln+1] + 1 ≥ hn(j) + 1.(16)
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By the choice of {cn : n≥ 1} and the definition of {Ln : n≥ 1}, {Mn : n≥ 1},
it is easy to see that formula (16) holds for any n ≥ 1 and [Ln]+1 ≤ j ≤ [Mn].

Now we estimate the length of Jσ for any σ ∈ Dn. By [4, Lemma 1], we
have

|{x ∈ (0, 1] : d1(x) = σ1, . . . , dn(x) = σn}|

=
a1(σ1) . . . an−1(σn−1)
b1(σ1) . . . bn−1(σn−1)

· 1
(σn − 1)σn

,

thus by (6),

c−nα−t
n+n1+1/(t−1) ≤ |Jσ| ≤ cnα−t

n+n1+1/(t−1),(17)

where c is a positive constant which does not depend on n.
Let µ be a mass distribution supported on E such that for any n ≥ 1

and σ ∈ Dn,

µ(Jσ) =
1
]Dn

(]D0 := 1),(18)

where ] denotes the cardinality. By the definition of Dn, it is easy to check

d−nαt
n+n1+1/(t−1) ≤ ]Dn ≤ dnαt

n+n1+1/(t−1),(19)

where d is a positive constant which does not depend on n.
For any x ∈ E, we prove that

lim inf
r→0

logµ(B(x, r))
log r

≥ 1.

For r < α−t
n1+1/(t−1), choose a positive integer k ≥ tn1+1/(t− 1) such that

α−k−1 < r ≤ α−k.(20)

Choose nk ≥ 1 such that

tnk+n1

t− 1
≤ k < tnk+n1+1

t− 1
,

and write
k =

tnk+n1

t− 1
+ k̃.

Then

k̃ <
tnk+n1+1

t− 1
− tnk+n1

t− 1
= tnk+n1 .

By inequalities (17) and (20), B(x, r) can intersect at most 4cnkαt
n1+nk−k̃

nkth-order intervals, thus by (18) and (19),

lim inf
r→0

logµ(B(x, r))
log r

≥ lim inf
k→∞

log(dnkα−t
n1+nk+1/(t−1)4cnkαt

n1+nk−k̃)

logα−tn1+nk/(t−1)−k̃−1
= 1.
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By Lemma 1, we have dimHE = 1. To finish the proof of Case 1, it is enough
to show E ⊂ A(α).

By the definition of E, {Ln : n ≥ 1} and {Mn : n ≥ 1}, we have, for any
x ∈ E and n > n(γ),

(
n

n+ 1

)t
α ≤ dn+1(x)

dtn(x)
≤ n+ 2
n+ 1

α,

therefore

lim
n→∞

dn+1(x)
dtn(x)

= α.

Case 2: α = 1. As this case is very similar to Case 1, we just give an
outline. Let γ, n(γ) and {cn : n ≥ 1} be as in Case 1, and choose n1 ≥ n(γ)
large enough such that for any n ≥ n1,

(
n+ 1
n

)t
γ < 1,

1
n
et
n
> 1,

et
n ≥ hn(γ)(cn(γ)) + 1, et

n
> n(γ) + 1.

For any n ≥ 1, let

Ln = cn − 1/2, Mn = cn + 1/2, for 1 ≤ n ≤ n(γ),

Ln = et
n+n1

, Mn =
n+ 1
n

et
n+n1

, for n > n(γ).

Following the proof of Case 1 step by step, we get dimHA(1) = 1.

Case 3: α < 1. In this case, 0 < β < α < 1. Let γ, n(γ) and {cn : n ≥ 1}
be as in Case 1, and choose n1 ≥ n(γ) large enough such that for any n ≥ n1,

(
n+ 1
n

)t
γ < α,

1
n
α−t

n−1/(t−1) > 1,

α−t
n−1/(t−1) ≥ hn(γ)(cn(γ)) + 1, α−t

n−1/(t−1) > n(γ) + 1.

For any n ≥ 1, let

Ln = cn − 1/2, Mn = cn + 1/2, for 1 ≤ n ≤ n(γ),

Ln = α−t
n+n1−1/(t−1), Mn =

n+ 1
n

α−t
n+n1−1/(t−1), for n > n(γ).

Following the proof of Case 1 step by step, we again get dimHA(α) = 1.
The proof of Theorem 1 is finished.

Now we consider the case when hn(j) is of order 1.

Theorem 2. If hn(j) is of order 1 with β > 0, then

dimHA(α) = 1 for any α > max(1, β).
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Proof. Let γ, n(γ) and {cn : n ≥ 1} be as in Theorem 1, and choose
n1 ≥ n(γ) large enough such that for any n ≥ n1,

n+ 1
n

γ < α,
1
n
αn > 1, αn ≥ hn(γ)(cn(γ)) + 1, αn > n(γ) + 1.

For any n ≥ 1, let

Ln = cn − 1/2, Mn = cn + 1/2, for 1 ≤ n ≤ n(γ),

Ln = αn+n1, Mn =
n+ 1
n

αn+n1 , for n > n(γ).

Proceeding as in Theorem 1, we get the assertion.

Theorem 3. If hn(j) is of order 1 with 0 < β < 1, then dimHA(1) = 1.

Proof. Let γ, n(γ) and {cn : n ≥ 1} be as in Theorem 1, and choose
n1 ≥ n(γ) large enough such that for any n ≥ n1,

(
1 + 1/

√
n+ 1

1 + 1/
√
n

)n
> γ,

(
1 +

1√
n

)n
> 1,

n

(
1 +

1√
n

)n
≥ hn(γ)(cn(γ)) + 1, n

(
1 +

1√
n

)n
> n(γ) + 1.

For any n ≥ 1, let

Ln = cn − 1/2, Mn = cn + 1/2, for 1 ≤ n ≤ n(γ),

Ln = n

(
1+

1√
n+n1

)n+n1

, Mn = (n+1)
(

1+
1√

n+n1

)n+n1

, for n>n(γ).

Just as in Theorem 1, we get dimHA(1) = 1.

Remark 1. When hn(j) is of order 1 with 0 < β < 1, it is easy to see
that for any β < α < 1, the set

A(α) = {x ∈ (0, 1] : lim
n→∞

dn+1(x)/dn(x) = α}
is empty. Thus the conclusions of Theorems 2 and 3 cannot hold.

Remark 2. Let hn(j) be of order t with β > 0 (β ≥ 1 when t = 1), and
let α = β. We do not know whether the conclusions of Theorems 1–3 hold
when α = β. In the next section, we show that the results are true when
hn(j) is a polynomial.

By Theorems 1 and 2, we get the following corollaries immediately.

Corollary 1. If hn(j) is of order t with β > 0, then for any M >
max(1, 1/β), the set

A(M) =
{
x ∈ (0, 1] : lim

n→∞
hn(dn(x))
dn+1(x)

=
1
M

}

is of Hausdorff dimension 1.
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Galambos [4] (see also [7]) showed that if hn(j) ≥ j − 1 for all n, then,
for almost all x, as n→∞,

1
n

n∑

l=1

log
dl(x)

hl−1(dl−1(x))
→ 1 (h0(k) := 1).(21)

Corollary 2. Suppose that hn(j) ≥ j − 1 for all n and hn(j) is of
order t with β > 0 and t ≥ 1. Then, for any k > 1, the set

{
x ∈ (0, 1] :

n∑

l=1

log
dl(x)

hl−1(dl−1(x))
≥ kn for any n ≥ 1

}

is of Hausdorff dimension 1. In particular , the Hausdorff dimension of the
set where (21) fails is 1.

3. The case of hn(j) being a polynomial. In this section, we shall
discuss the cases when hn(j) is a polynomial for any n and get a little
stronger results than those in Theorems 1–3.

We first investigate the case when hn(j) is linear for any n.

Theorem 4. If hn(j) = aj + b with a > 0, then dimHA(α) = 1 for any
α ≥ max(1, a).

Proof. By Theorems 2 and 3, it is enough to deal with the case α =
a ≥ 1. Here we only investigate the situation when α = a > 1. The case
α = a = 1 can be discussed in a similar way to Theorem 3.

Choose n1 large enough such that αn > b + 1 for any n ≥ n1. For any
n ≥ 1, let

Ln = (2(n+ n1)− 1)αn+n1, Mn = 2(n+ n1)αn+n1.

Then, for any n ≥ 1 and Ln < j < Mn,

Ln+1 = (2(n+ n1 + 1)− 1)αn+n1+1 > αMn + b+ 1 ≥ hn(j) + 1.

Following the proof of Theorem 1, we get the assertion.

Corollary 3. For Engel and modified Engel expansions, for any α ≥ 1,
the set

{x ∈ (0, 1] : lim
n→∞

dn+1(x)/dn(x) = α}

is of Hausdorff dimension 1.

Theorem 5. Suppose hn(j) = amj
m + am−1j

m−1 + . . .+ a1j + a0 with
am > 0 and m ≥ 2.Then dimHA(α) = 1 for any α ≥ am.

Proof. By Theorem 1, it is enough to deal with the case α = am. As
in Theorem 1, we can divide the proof into three cases: α = am > 1, α =
am = 1 and α = am < 1. Here we only investigate the case α = am > 1,
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the other two can be discussed similarly to Theorem 1. Define h̃n(j) =
am−1j

m−1 + . . .+ a1j + a0 and

K(n) = max
{
h̃n(k) + 1 : αm

n− 1
m−1−

1
n < k ≤

(
n2 + 1
n2

)1/m

αm
n− 1

m−1−
1
n

}
.

Choose n1 large enough such that for any n ≥ n1,
1
n
<

1
2

logα, α−m/n > 1/2,
((

n2 + 1
n2

)1/m

− 1
)
αm

n− 1
m−1−

1
n > 1,

1
4

(m− 1) logα · αmn− 1
m−1−

1
n > K(n).

For any n ≥ 1, let

Ln = α
mn+n1− 1

m−1−
1

n+n1 , Mn =
(

(n+ n1)2 + 1
(n+ n1)2

)1/m

α
mn+n1− 1

m−1−
1

n+n1 .

Note that ex ≥ 1+x for any x ≥ 0. We have, for any n ≥ 1 and Ln < j ≤Mn,

Ln+1 − αMm
n = αm

n+n1+1− 1
m−1

(
α
− 1
n+n1+1 − (n+ n1)2 + 1

(n+ n1)2 α
− m
n+n1

)

= αm
n+n1+1− 1

m−1α
− m
n+n1

(
α

m
n+n1

− 1
n+n1+1 − (n+ n1)2 + 1

(n+ n1)2

)

≥ αmn+n1+1− 1
m−1α

− m
n+n1

(
α

m−1
n+n1+1 − (n+ n1)2 + 1

(n+ n1)2

)

≥ αmn+n1+1− 1
m−1α

− m
n+n1

(
m− 1

n+ n1 + 1
logα− 1

(n+ n1)2

)

≥ 1
2

(m− 1) logα · αmn+n1+1− 1
m−1α

− m
n+n1

≥ 1
4

(m− 1) logα · αmn+n1+1− 1
m−1 > K(n+ n1).

By the definition of K(n+ n1), we have, for any n ≥ 1 and Ln < j < Mn,

Ln+1 ≥ hn(j) + 1.

Now just follow the proof of Theorem 1; we omit the details.

By Theorem 5, we get the following corollaries immediately.

Corollary 4. For Sylvester expansion and generalized Cantor product ,
for any α ≥ 1, the set

{x ∈ (0, 1] : lim
n→∞

dn+1(x)/d2
n(x) = α}

is of Hausdorff dimension 1.
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Corollary 5. For Daróczy–Kátai–Birthday expansion, for any α ≥ 1,
the set

{x ∈ (0, 1] : lim
n→∞

dn+1(x)/d3
n(x) = α}

is of Hausdorff dimension 1.

4. The exceptional set of the uniform distribution modulo 1. In
this section, we always assume an(j) = a(j), bn(j) = b(j) for any n ≥ 1. In
this case, hn(j) does not depend on n. Consider the map T : (0, 1]→ (0, 1]
defined by

Tx =
(
x− 1

k + 1

)
b(k)
a(k)

on
(

1
k + 1

,
1
k

]
.

Schweiger (see [17, Chapter 11, Theorem 11.1.1]) proved

Theorem 6. Suppose that h(k) ≥ k − 1. Then for almost every x, the
sequence (h(dn(x))Tn(x))n≥1 is uniformly distributed modulo 1.

Let

F ={x∈ [0, 1) : (h(dn(x))Tn(x))n≥1 is not uniformly distributed modulo 1}.

Theorem 7. Suppose that h(k) ≥ k − 1 and h(k) is of order t with
β > 0. Then dimH F = 1.

Proof. For any x ∈ (0, 1], let

x =
1
d1

+
a1

b1

1
d2

+ . . .+
a1a2 . . . an
b1b2 . . . bn

1
dn+1

+ . . .

be the Oppenheim expansion of x. By the algorithm for the Oppenheim
expansion, we have for any n ≥ 1,

Tn(x) ∈
(

1
dn+1(x)

,
1

dn+1(x)− 1

)
.

This implies

h(dn(x))Tn(x) ≥ h(dn(x))
dn+1(x)

.

Choose M > max(1, 1/β). We see from Corollary 1 that for any x ∈ A(M),
there exists n(x) such that h(dn(x))Tn(x) 6∈ [0, 1/(2M)] for any n ≥ n(x),
thus (h(dn(x))Tn(x))n≥1 is not uniformly distributed modulo 1. This implies
A(M) ⊂ F . Since dimHA(M) = 1, we have dimH F = 1.
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