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Polynomials dividing infinitely many
quadrinomials or quintinomials

by

L. Hajdu (Debrecen) and R. Tijdeman (Leiden)

1. Introduction. In this paper we give necessary and sufficient condi-
tions for polynomials in Q[x] having only simple roots to divide infinitely
many standard quadrinomials or quintinomials over Q.

Let K be any field of characteristic zero. A polynomial P ∈ K[x] which
is of the form

P (x) =
k∑

i=1

aix
mi with m1 > . . . > mk−1 > mk = 0 and a1 = 1

is called a standard k-nomial . For a standard k-nomial P which is not a
standard (k−1)-nomial, we call (m1, . . . ,mk) the exponent k-tuple of P . Put

PRk = {P ∈ Q[x] : ∃Q ∈ Q[x] and r ∈ Z with deg(Q) < k

and r ≥ 1 such that P (x) |Q(xr) over Q}.
Two algebraic numbers β1, β2 are called equivalent if for some root of unity
ε we have β1ε = β2. For a polynomial P ∈ Q[x] having only simple roots we
have P ∈ PRk if and only if the roots of P belong to the union of at most
k− 1 equivalence classes (cf. [6, Proposition 2.1]). We will use this assertion
throughout the paper without any further reference.

In 1965 Posner and Rumsey noted (see [4, pp. 339 and 348]) that P ∈
PRk implies that P divides infinitely many standard k-nomials over Q. They
proposed the converse as a conjecture, that is, if a polynomial P ∈ Q[x]
divides infinitely many standard k-nomials over Q, then P ∈ PRk. For
k = 2 the conjecture is obvious.
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At this point we mention that the restriction to standard k-nomials is
only for convenience. We may replace every standard k-nomial by some
constant multiple of it and the theorems would still be valid.

In [2] Győry and Schinzel proved the conjecture in a quantitative form
for k = 3. They gave an explicit expression C1 such that if P divides more
than C1 standard trinomials over Q, then P ∈ PR3. Here C1 is a number
depending on the degree of P and some other parameters. Later, Schlickewei
and Viola [5] presented a value of C1 which depends only on the degree of P .

On the other hand, Győry and Schinzel [2] disproved the conjecture for
every k ≥ 4 by giving counterexamples. For every k ≥ 2 they provided a
polynomial P ∈ Q[x] that divides infinitely many standard quadrinomials
over Q, but P 6∈ PRk. In fact the quadrinomials have a zero constant term
and have therefore only three non-zero terms. The problem is more diffi-
cult for polynomials with non-zero constant terms. For every k ≥ 2 Győry
and Schinzel [2] also gave a P 6∈ PRk which divides infinitely many stan-
dard quintinomials over Q with non-zero constant terms. They proposed
the following problem instead of the disproved conjecture of Posner and
Rumsey.

Let k be an integer with k ≥ 4. Is it true that a polynomial P ∈ Q[x]
with P (0) 6= 0 divides infinitely many standard k-nomials with non-zero
constant terms if and only if either P ∈ PRk, or P divides a standard
[(k + 1)/2]-nomial?

For k ≥ 6 Hajdu [3] gave a negative answer to this question, provid-
ing other kinds of counterexamples. He proposed to modify the problem of
Győry and Schinzel as follows.

Let k be an integer with k ≥ 4. Is it true that a polynomial P ∈ Q[x] with
P (0) 6= 0 divides infinitely many standard k-nomials with non-zero constant
terms if and only if either P ∈ PRk, or P divides a standard (k− 2)-nomial
which divides infinitely many standard k-nomials over Q?

Recently Schlickewei and Viola [6] described a so-called “proper” family
Fk of standard k-nomials such that if a polynomial P having only simple
roots divides more than C2(k) elements of Fk, then P ∈ PRk (cf. Lemma 2).

In this paper we give necessary and sufficient conditions for a polyno-
mial P ∈ Q[x] having only simple roots to divide infinitely many standard
quadrinomials or standard quintinomials over Q. Moreover, we present a
polynomial which yields negative answers to the questions of Győry and
Schinzel and of Hajdu for k = 5.

Theorem 1. A polynomial P ∈ Q[x] with only simple roots and with
P (0) 6= 0 divides infinitely many standard quadrinomials with non-zero con-
stant terms over Q if and only if either P ∈ PR4, or P divides over Q two
different standard quadrinomials with the same exponent quadruple.
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Remark. We note that the tools in the proof of Theorem 1 can be used
to derive the following effective version:

For every positive integer d there exists an explicitly computable constant
C(d), depending only on d, such that a polynomial P ∈ Q[x] of degree d
with only simple roots and with P (0) 6= 0 divides more than C(d) standard
quadrinomials with non-zero constant terms over Q if and only if either
P ∈ PR4, or P divides over Q two different standard quadrinomials with
the same exponent quadruple.

Theorem 2. A polynomial P ∈ Q[x] with only simple roots and with
P (0) 6= 0 divides infinitely many standard quintinomials with non-zero con-
stant terms over Q if and only if one of the following conditions holds:

(i) P ∈ PR5,
(ii) P divides over Q two different standard quintinomials with the same

exponent quintuple,
(iii) there exist integers M1,M2,M3,M4 such that P divides over Q

infinitely many standard quintinomials QM of the form

QM (x) = xM1+2M + aMx
M2+M + bMx

M3+M + cMx
M4+M + dM ,

with M ∈ N and aM , bM , cM , dM ∈ Q.

Remark 1. The condition that the constant terms are non-zero involves
no serious restriction. Let k be an integer with k ≥ 2, P ∈ Q[x] with
P (0) = 0 be a polynomial and write P (x) = xtQ(x) with t ≥ 1 andQ(0) 6= 0.
Then P divides infinitely many standard k-nomials over Q if and only if Q
divides a standard (k− 1)-nomial over Q. On the other hand, a polynomial
P ∈ Q[x] with P (0) 6= 0 divides over Q infinitely many standard k-nomials
with constant term zero if and only if P divides a standard (k − 1)-nomial
over Q. The proofs of these statements are trivial.

Remark 2. We conjecture that in Theorem 1 the second condition im-
plies the first, i.e. if some polynomial P ∈ Q[x] divides over Q two dif-
ferent standard quadrinomials with the same exponent quadruple, then
P ∈ PR4. However, the similar condition (ii) in Theorem 2 does not im-
ply that P ∈ PR5. This follows from the following proposition. The fact
that P does not divide any standard trinomial over Q yields a negative
answer to the questions of Győry and Schinzel [2] and of Hajdu [3].

Proposition. The polynomial P (x) = x5 − 8x2 − 16x + 16 divides in-
finitely many standard quintinomials over Q with the same exponent quin-
tuple, but P 6∈ PR5 and P does not divide any standard trinomial over Q.

Remark 3. We do not know any example of a polynomial P which sat-
isfies condition (iii) of Theorem 2 without satisfying (i) or (ii). It is therefore
not excluded that Theorem 2 is also valid if (iii) is omitted. It is even possible
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that for any k ≥ 5 a polynomial P ∈ Q[x] with P (0) 6= 0 divides infinitely
many standard k-nomials with non-zero constant terms over Q if and only if
either P ∈ PRk or P divides over Q two standard k-nomials with the same
exponent k-tuple.

2. Two basic lemmas. To prove Theorem 1 we need the following
two lemmas, which play important roles also in the proof of Theorem 2. To
formulate the first lemma, we need some preliminaries.

Let K be an algebraic number field and αij ∈ K∗ for 1 ≤ i ≤ m, 1 ≤
j ≤ n, where m,n are positive integers. Moreover, let ai ∈ K (1 ≤ i ≤ m).
For i = 1, . . . ,m and x ∈ Zn with x = (x1, . . . , xn) briefly write αi

x =
αx1
i1 . . . α

xn
in . Consider the equation

(1)
m∑

i=1

aiαi
x = 0 in x ∈ Zn.

Let P be a partition of the set Λ = {1, . . . ,m}, and consider the system of
equations

(1.P)
∑

i∈λ
aiαi

x = 0 (λ ∈ P) in x ∈ Zn,

which is a refinement of (1). Let S(P) denote the set of those solutions of
(1.P) which are not solutions of any (1.Q), where Q is a proper refinement

of P. Set i1
P∼ i2 if i1 and i2 are in the same class of P, and put

G(P) = {z ∈ Zn : αi1
z = αi2

z for any i1, i2 with i1
P∼ i2}.

Lemma 1. With the above notation, there exists an explicitly computable
constant C(m,n), depending only on m and n, such that if P is any partition
of Λ with

|S(P)| ≥ C(m,n),

then there are different solutions z′ and z′′ of (1.P) such that z′ − z′′ ∈
G(P).

Proof. By induction, the statement is a simple consequence of Theo-
rem 1.1 of [1].

Lemma 2. Let P ∈ Q[x] be a polynomial with only simple roots and
let A be a set of standard k-nomials having the following property : for
any two standard k-nomials in A with exponent k-tuples (m1, . . . ,mk) and
(m′1, . . . ,m

′
k), respectively , and for any j1, j2, j3 ∈ {1, . . . , k} with j1 < j2 <

j3 the ordered pairs

(mj1 −mj3 ,mj2 −mj3) and (m′j1 −m′j3 ,m′j2 −m′j3)

are distinct. If |A| ≥ 2 exp((6k!)3k!) and P divides all the k-nomials in A,
then P ∈ PRk.
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Proof. The statement is a reformulation of the main result of Schlickewei
and Viola [6].

3. The quadrinomial case

Proof of Theorem 1. If for some P ∈ Q[x] we have P ∈ PR4, then P
divides infinitely many standard quadrinomials over Q (see [4, pp. 339 and
348]). Moreover, if P divides two standard quadrinomials Q1 and Q2 having
the same exponent quadruple, then P divides all the standard quadrinomials
of the form

a

a+ b
Q1 +

b

a+ b
Q2

for every pair (a, b) of positive rationals. Thus the “if” part of the theorem
is proved.

Suppose that P divides infinitely many standard quadrinomials with
non-zero constant terms over Q, and let A be an infinite set of such stan-
dard quadrinomials. If there are infinitely many trinomials in A, then the
statement of the theorem is a simple consequence of the Theorem of [5].
Hence we may assume that there are no trinomials in A. Moreover, in view
of the second condition of the theorem, we may suppose that the exponent
quadruples of the quadrinomials in A are all distinct. Furthermore, omit-
ting some elements of A if necessary, we may also assume that the exponent
quadruples of all the polynomials in A are of the form

(X,M2,M3, 0) or (M1 +X,M2 +X,M3 +X, 0),

where M1, M2 and M3 are fixed integers. To verify this, first observe that
for every m, there are only finitely many Q ∈ A of degree m, since the
exponent quadruples of the quadrinomials in A are distinct. Thus we may
assume, discarding some elements of A if necessary, that there are no two
polynomials in A of the same degree. If P ∈ PR4, then the theorem holds.
Otherwise let B be a maximal subset of A such that for any Q,Q∗ in B
with exponent quadruples (m1,m2,m3, 0) and (m∗1,m

∗
2,m

∗
3, 0), respectively,

we have

(m2,m3) 6= (m∗2,m
∗
3) and (m1 −m3,m2 −m3) 6= (m∗1 −m∗3,m∗2 −m∗3).

Using Lemma 2 we obtain |B| < 2 exp(14472). Then by the box principle
we infer that for some Q0 ∈ B, with exponent quadruple (M1,M2,M3, 0)
say, there are infinitely many polynomials R in A such that their exponent
quadruples (m1,m2,m3, 0) satisfy

(m2,m3) = (M2,M3) or (m1 −m3,m2 −m3) = (M1 −M3,M2 −M3),

and our claim follows.
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Assume first that infinitely many Q ∈ A have exponent quadruples of
the form (X,M2,M3, 0) with M2,M3 fixed. Omit every polynomial from A
which does not have this property.

We may suppose that P has four pairwise non-equivalent roots α1, α2,
α3, α4 under the relation introduced in the previous chapter, since otherwise
we immediately obtain P ∈ PR4. As P divides all the standard quadrino-
mials in A over Q, the equation∣∣∣∣∣∣∣∣∣

αX1 αX2 αX3 αX4
αM2

1 αM2
2 αM2

3 αM2
4

αM3
1 αM3

2 αM3
3 αM3

4

1 1 1 1

∣∣∣∣∣∣∣∣∣
= 0

has infinitely many solutions in integers X with X > M2. By letting

Di1i2i3 =

∣∣∣∣∣∣∣

αM2
i1

αM2
i2

αM2
i3

αM3
i1

αM3
i2

αM3
i3

1 1 1

∣∣∣∣∣∣∣
for all {i1, i2, i3} with 1 ≤ i1 < i2 < i3 ≤ 4, the previous equation can be
rewritten as

(2) D234α
X
1 −D134α

X
2 +D124α

X
3 −D123α

X
4 = 0.

Suppose that in (2) at least one of the subdeterminants Di1i2i3 does not
vanish. Note that as the αi’s are non-zero, at least two such determinants do
not vanish in this case. Choose a partition P of the left hand side of (2) into
subsums which vanish for infinitely many X (belonging to the Q’s in A),
but have proper vanishing subsums only in finitely many instances. Omit
all the Q’s from A for which these subsums either do not vanish, or have
proper vanishing subsums. Observe that we still have |A| = ∞. Applying
Lemma 1 to the partition P, we find that for some non-zero integer z1 and
some indices i1, i2 with 1 ≤ i1 < i2 ≤ 4,

αz1i1 = αz1i2 ,

which contradicts the non-equivalence of αi1 and αi2 . This shows that all
the determinants Di1i2i3 in (2) must vanish.

However, this yields that for some polynomials

Fj(x) = xM2 + ajx
M3 + bj (j = 1, 2, 3, 4)

with aj , bj ∈ K, (aj , bj) 6= (0, 0) we have

Fj(αi) = 0 for i, j ∈ {1, 2, 3, 4}, i 6= j,

where K is the splitting field of P . Observe that if Fj 6= Fj′ for some j, j′,
then there exist two αi’s which are roots of the same binomial Fj(x)−Fj′(x),
whence their ratio is a root of unity. This contradiction implies that F1 =
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F2 = F3 = F4, whence α1, α2, α3, α4 are roots of F1. Note that F1 is deter-
mined by D234, which does not contain α1. If we take any other quadruple
of pairwise non-equivalent αi’s, the whole argument given above remains
valid. We deduce by induction that every quadruple of non-equivalent αi’s
yield the same trinomial F1. Hence, as P has only simple roots, we may
conclude that P (x) |F1(x) over K. Suppose now that σ(F1) 6= F1 for some
automorphism σ of K. As clearly σ(P ) = P , this implies P |σ(F1) whence

P | (F1 − σ(F1))

over K. However, the last polynomial is a binomial, and we deduce that the
ratio of each pair of roots of P is a root of unity, which is a contradiction.
Hence we may assume that σ(F1) = F1 for all the automorphisms of K. This
immediately implies that F1 ∈ Q[x]. If we observe that for any Q ∈ A the
polynomial Q + F1 is a standard quadrinomial having the same exponent
quadruple as Q, and that P |Q+ F1, the theorem follows in this case.

Assume now that infinitely many Q ∈ A have exponent quadruples of
the form (M1 +X,M2 +X,M3 +X, 0) with M1,M2,M3 fixed. This means
that the polynomial P divides standard quadrinomials of the shape

xM1+X + aXx
M2+X + bXx

M3+X + cX with cX 6= 0

for infinitely many X > 0. This is equivalent to saying that the polyno-
mial P ∗(x) = xdeg(P )P (1/x) divides standard quadrinomials of the form
xM1+X + (bX/cX)xM1−M3 + (aX/cX)xM1−M2 + 1/cX for infinitely many
X with M1 + X > M1 −M3. However, for such polynomials P ∗ the the-
orem has already been proved. Hence either P ∗ ∈ PR4 or P ∗ divides two
different standard quadrinomials having the same exponent quadruple
(m1,m2,m3, 0). In the former case we infer that also P ∈ PR4, since the
non-zero algebraic numbers α1, α2, α3, α4 are pairwise non-equivalent if and
only if 1/α1, 1/α2, 1/α3, 1/α4 are pairwise non-equivalent. In the latter case
we obtain that P divides two different standard quadrinomials with the same
exponent quadruple (m1,m1 −m3,m1 −m2, 0) over Q.

4. The quintinomial case

Lemma 3. Let p and q be integers with p 6= 0, q 6= 0 and p 6= −q, and
Π the set of the different permutations of (p, q, 0, 0, 0). Let (i1, i2, i3, i4, i5)
be any permutation of (1, 2, 3, 4, 5), and put

S1 = {(i1, i2, i3), (i1, i2, i4), (i1, i3, i4), (i2, i3, i4)},
S2 = {(i1, i2, i3), (i1, i2, i4), (i1, i2, i5), (i3, i4, i5)},
S3 = {(i1, i2, i3), (i1, i2, i4), (i1, i3, i5)}.

Let S be any (possibly empty) subset of one of the sets Si (i = 1, 2, 3), and
let Π∗ be the set of those different permutations of (p, q, 0, 0, 0) in which
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the index-triplets of the places of the 0’s belong to S. Put T = Π \Π∗, and
let T1, . . . , Tt be any partition of T with |Ti| ≥ 2 (1 ≤ i ≤ t). Let H be
the subspace of Q5 generated by the set of quintuples

⋃t
i=1

⋃
u,v∈Ti{u − v}

over Q. Then H contains a quintuple having exactly two non-zero entries.

Proof. Note that if the statement is true for some choice of (i1, i2, i3,
i4, i5), then it is clearly true for the other permutations of (1, 2, 3, 4, 5).
Throughout the proof, we call a quintuple nice if it has exactly two non-zero
entries. We split the proof of the lemma into several parts.

Assume that p = q. Clearly, without loss of generality we may suppose
that p = q = 1. If two elements from T are in some Ti with one 1 at the same
place, then we are done. Since there are only five entries, we are also done if
|Ti| ≥ 3 for some i. So |Ti| = 2 for every i and |T | cannot be odd. By sym-
metry we may assume that T1 = {(1, 1, 0, 0, 0), (0, 0, 1, 1, 0)} with difference
vector v1 = (1, 1,−1,−1, 0). If there is another class with elements having
0’s at the last entry, then we may assume without loss of generality that
T2 = {(1, 0, 1, 0, 0), (0, 1, 0, 1, 0)} with difference vector v0 = (1,−1, 1,−1, 0)
and then v1 + v0 = (2, 0, 0,−2, 0) is a nice quintuple in H. Otherwise we
can permute the entries in such a way that T2 = {(1, 0, 0, 0, 1), (0, 1, 1, 0, 0)}
with difference vector v2 = (1,−1,−1, 0, 1). Since |S| ≤ 4, we know that
there is a third class T3. There are only five possible additional classes,
yielding the difference vectors v3 = (1,−1, 1, 0,−1), v4 = (1, 0, 1,−1,−1),
v5 = (1,−1, 0, 1,−1), v6 = (1, 0,−1, 1,−1), v7 = (0, 1,−1, 1,−1), respec-
tively. In the first case v2 + v3 is nice, and in the fourth case 2v1 − v2 − v6

is nice. In the remaining three cases the places of the 0’s do not belong to
S1 or S2. We conclude that |S| ≤ 3, |T | ≥ 7 and there should be a fourth
pair. However, the quintuples v1− 3v2− 2v4 + 4v5, 3v1− v2− 2v4− 4v7 and
v1 + v2 − 2v5 − 2v7 are all nice. This proves the lemma in the case of p = q.

Suppose now that p 6= q and that the subspace H does not contain any
nice quintuple. Clearly, we may assume that p > |q| and gcd(p, q) = 1.
Observe that for any (x1, x2, x3, x4, x5) ∈ H we have

(3) x1 + x2 + x3 + x4 + x5 = 0.

If the dimension of H is 4, then starting from a basis of H over Q, by
Gaussian elimination we can obtain a nice vector inH. Thus we may suppose
that another linear relation is also valid for the elements of H, i.e.

(4) λ1x1 + λ2x2 + λ3x3 + λ4x4 + λ5x5 = 0

holds for every (x1, x2, x3, x4, x5) ∈ H, where λi ∈ Q (i = 1, . . . , 5), and
these coefficients are not all equal. Plainly, we may assume that λi ∈ Z
(i = 1, . . . , 5) and gcd(λ1, λ2, λ3, λ4, λ5) = 1, moreover, that max |λi−λj | is
minimal among all such coefficient quintuples. Put

I = {i ∈ {1, 2, 3, 4, 5} : yi 6= 0 for some (y1, y2, y3, y4, y5) ∈ T}.
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Let now Y = (y1, y2, y3, y4, y5) and Z = (z1, z2, z3, z4, z5) be two quin-
tuples from the same class of T , and suppose that yi = zj = q. If i = j,
then Y − Z is a nice quintuple in H. If i 6= j, then from Y − Z ∈ H by
gcd(p, q) = 1 we have λi ≡ λj mod p. Now if all the λi with i ∈ I belong to
the same residue class r mod p, then by the relations (3) and (4) we deduce
that ∑

i∈I
(λi − r)xi = 0

is valid for every (x1, x2, x3, x4, x5) ∈ H. However, after dividing by the
gcd of the coefficients (which is ≥ p), we get a coefficient quintuple
(λ′1, λ

′
2, λ
′
3, λ
′
4, λ
′
5), for which (4) is valid and

max |λ′i − λ′j | < max |λi − λj |,
which is a contradiction. Thus the set I splits over two classes I1 and I2
with |I2| ≥ |I1| ≥ 2, such that if i, j ∈ Ik, then λi ≡ λj mod p (k = 1, 2).
Moreover, using (3) if necessary, we may assume that λi ≡ 0 mod p for every
i ∈ I2.

Suppose that |I| ≤ 4. Then S = S1 for some permutation (i1, i2, i3, i4, i5)
of (1, 2, 3, 4, 5). Without loss of generality we may assume that (i1, i2, i3, i4, i5)
= (1, 2, 3, 4, 5) and

(5) λ1 ≡ λ2 6≡ λ3 ≡ λ4 ≡ 0 mod p.

Observe that in this case |T | = 12. It is also clear that every class Tj has
two elements. Without loss of generality we may assume

T1 = {(q, p, 0, 0, 0), (0, q, p, 0, 0)}.
If

T2 = {(q, 0, p, 0, 0), (p, q, 0, 0, 0)},
then we have a class

T3 = {(q, 0, 0, p, 0), (0, q, 0, p, 0)},
and we get the nice vector

(q,−q, 0, 0, 0) = (q, 0, 0, p, 0)− (0, q, 0, p, 0)

in H. Thus we may suppose that

T2 = {(q, 0, p, 0, 0), (0, q, 0, p, 0)} and T3 = {(q, 0, 0, p, 0), (p, q, 0, 0, 0)}.
Applying (4) for the difference of the vectors in T2, we get

λ1q − λ2q + λ3p− λ4p = 0.

By (5) and gcd(p, q) = 1 this implies λ1 ≡ λ2 mod p2. On the other hand,
for the difference of the vectors in T1, (4) yields

λ1q + λ2(p− q)− λ3p = 0.
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With the use of λ1 ≡ λ2 mod p2 and (5), this gives λ2 ≡ 0 mod p, which is
a contradiction.

So we may assume that |I| = 5 and

(6) λ1 ≡ λ2 6≡ λ3 ≡ λ4 ≡ λ5 ≡ 0 mod p.

Clearly,
|T | = #1 + #2 + #3 + #4 + #5,

where #i denotes the number of quintuples in T with q at the ith position
(i = 1, . . . , 5). As we consider quintuples, plainly #i ≤ 4. Moreover, observe
that 4−#i equals the number of triplets in S in which i does not occur.

By (6), #1 = #2. We claim that #1+#2 ≤ 4. To prove this, suppose that
there are two classes T1 and T2, in which the places of the q belong to {1, 2},
in T1 a p occurs at a position from {1, 2}, and the other p’s in T1 and T2 are
at positions from {3, 4, 5}. Applying (4) for the difference of the quintuples
in T2 and using gcd(p, q) = 1 and (6), we obtain λ1 ≡ λ2 mod p2. If we now
apply (4) for the difference of the vectors in T1, by gcd(p, q) = 1 and (6)
the previous congruence yields λ1 ≡ λ2 ≡ 0 mod p, which is a contradiction.
Thus, if #1 + #2 ≥ 6, then without loss of generality we may assume that
three classes are given by

T1 = {(q, 0, p, 0, 0), (0, q, 0, p, 0)}, T2 = {(q, 0, 0, p, 0), (0, q, 0, 0, p)},
T3 = {(q, 0, 0, 0, p), (0, q, p, 0, 0)}.

However, now the sum of the three difference vectors provided by T1, T2, T3

gives a nice quintuple in H. This proves #1 + #2 ≤ 4. Hence |T | ≤ 16 and
|S| ≥ 2.

Suppose that |T | = 16. Then #3 + #4 + #5 = 12. This implies #i = 4
for i = 3, 4, 5, whence i ∈ s for every triplet s ∈ S (i = 3, 4, 5). However, as
|S| > 1, this is impossible. Thus |T | ≤ 14 and |S| ≥ 3.

Suppose |T | = 14. As we just proved that #3 +#4 +#5 = 12 is impossi-
ble, we must have #3 + #4 + #5 = 10. This implies that in the triplets of S,
3, 4, 5 altogether are missing exactly twice. Thus without loss of generality
we may assume that S is given by one of the sets

{(3, 4, 5), (1, 3, 5), (2, 3, 5)}, {(3, 4, 5), (1, 3, 5), (1, 4, 5)},
{(3, 4, 5), (1, 3, 5), (2, 4, 5)}.

In the first case the quintuples with q at places 1 or 2 are given by
(q, 0, p, 0, 0), (q, 0, 0, 0, p), (0, q, p, 0, 0), (0, q, 0, 0, p).

It is easy to check that no matter how we distribute these vectors into two
classes T1 and T2, we get a nice quintuple in H.

In the second case the quintuples with q at the places 1 or 2 are given by
(q, 0, p, 0, 0), (q, 0, 0, p, 0), (q, 0, 0, 0, p), (0, q, 0, 0, p),

and one of the difference vectors is nice.
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The third case is somewhat more complicated. In fact now we have S =
S3 with (i1, i2, i3, i4, i5) = (5, 3, 4, 2, 1). Observe that two classes must be
given by

T1 = {(q, 0, 0, p, 0), (0, q, 0, 0, p)}, T2 = {(q, 0, 0, 0, p), (0, q, p, 0, 0)}.
Thus the quintuple

1
p

[(q, 0, 0, p, 0)− (0, q, 0, 0, p) + (0, q, p, 0, 0)− (q, 0, 0, 0, p)] = (0, 0, 1, 1,−2)

is in H. Further, consider the classes T3 and T4 that contain the quintuples
(0, 0, p, 0, q) and (0, 0, 0, p, q), respectively. If one of the vectors

(p, 0, 0, 0, q), (0, p, 0, 0, q)

belongs to T3 or T4, then we get a nice difference vector. If any of the
quintuples

(0, 0, q, p, 0), (0, 0, q, 0, p), (0, 0, p, q, 0), (0, 0, 0, q, p)

of T is either in T3 or T4, then with the help of (0, 0, 1, 1,−2) ∈ H and
p > |q| we again obtain a nice vector in H. So we have either

T3 = {(0, 0, p, 0, q), (0, p, q, 0, 0)} and T4 = {(0, 0, 0, p, q), (p, 0, 0, q, 0)},
or

T3 = {(0, 0, p, 0, q), (p, 0, 0, q, 0)} and T4 = {(0, 0, 0, p, q), (0, p, q, 0, 0)}.
In the first case T1 and T2 yield a vector (2q,−2q,−p, p, 0) ∈ H, and T3

and T4 a vector (p,−p, p − q, q − p, 0) ∈ H. A linear combination of these
quintuples is given by the nice vector

(0, 0, p2 + 2pq − 2q2,−p2 − 2pq + 2q2, 0) ∈ H.
In the second case we obtain a nice quintuple in H in a similar way. Thus
|T | ≤ 12 and |S| ≥ 4.

We conclude that |T | = 12 and |S| = 4. Since S = S1 is already excluded,
we have S = S2 for some permutation (i1, i2, i3, i4, i5) of (1, 2, 3, 4, 5). By
#1 + #2 ≤ 4, we find 1, 2 ∈ {i3, i4, i5}. Because of symmetry we may
assume without loss of generality that (i1, i2, i3, i4, i5) = (4, 5, 1, 2, 3). Hence
the quintuples with q at the places 1 or 2 are given by

(q, 0, 0, p, 0), (q, 0, 0, 0, p), (0, q, 0, p, 0), (0, q, 0, 0, p).

It is easy to check that no matter how we distribute these vectors into two
classes, we get a nice quintuple in H.

In the proof of the following statement we need some concepts of graph
theory. In what follows, V will denote a graph, and sometimes also the set
of vertices of this graph. If V ′ is a set of vertices of V , the restriction of V
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to V ′ means the graph with vertices in V ′ and with those edges of V for
which there is a corresponding edge in V ′.

Lemma 4. Let P ∈ Q[x] with P (0) 6= 0 be a polynomial having only
simple roots and assume that among these roots there are at least five which
are pairwise non-equivalent. Suppose that P divides over Q infinitely many
standard quintinomials with distinct exponent quintuples and non-zero con-
stant terms, and let A be an infinite set of such standard quintinomials.
Furthermore, suppose that for the exponent quintuples (m1,m2,m3,m4, 0)
and (m′1,m

′
2,m

′
3,m

′
4, 0) of any pair Q1, Q2 ∈ A we have

m1 6= m′1, m2 6= m′2,
and either

(i) (m3,m4) = (m′3,m
′
4),

or

(ii) m2 −m′2 = m3 −m′3 = m4 −m′4,
m1 −m′1
m2 −m′2

6∈ {1, 2}.

Put (r1, r2) = (m3,m4) and (r1, r2) = (m2 − m4,m3 − m4) in case (i)
and (ii), respectively. Define the graph V in the following way. Let the
vertices of V be the non-ordered triplets {αi1 , αi2 , αi3} of pairwise non-
equivalent roots of P for which the determinant

∣∣∣∣∣∣

αr1i1 αr1i2 αr1i3
αr2i1 αr2i2 αr2i3
1 1 1

∣∣∣∣∣∣

vanishes. Connect two vertices v1 and v2 by an edge if and only if |v1 ∩ v2|
= 2. Then the graph V is connected and for every root α of P there exists
a v ∈ V such that α ∈ v.

Proof. Observe that to prove the statement, it is sufficient to verify that
under the assumptions of the lemma the following three conditions hold:

(a) for any set of pairwise non-equivalent roots L = {α1, α2, α3, α4, α5}
of P the subgraph VL of V whose vertices are the triplets of V with entries
from L has the property that for every i with 1 ≤ i ≤ 5 there exists a v ∈ VL
such that αi ∈ v,

(b) the above-defined subgraphs VL are all connected,
(c) if both sets L = {α1, α2, α3, α4, α5} and M = {α∗1, α2, α3, α4, α5}

consist of pairwise non-equivalent roots of P , then the restriction of V to
VL ∪ VM is connected.

Indeed, (a) implies that for every root α of P there is some v ∈ V such
that α ∈ v, while (b) and (c) together yield that V is connected.

Moreover, (c) can be replaced by the condition
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(c′) for any set of pairwise non-equivalent roots L = {α1, α2, α3, α4, α5}
of P the corresponding subgraph VL satisfies

VL 6= {{αi1 , αi2 , αi3}, {αi1 , αi2 , αi4}, {αi1 , αi3 , αi5}}
for any permutation (i1, i2, i3, i4, i5) of (1, 2, 3, 4, 5).

To prove this, assume that (a), (b) and (c′) are true for both L =
{α1, α2, α3, α4, α5} and M = {α∗1, α2, α3, α4, α5} consisting of pairwise non-
equivalent roots of P , but (c) does not hold. Suppose that there is a v ∈ VM
of the form v = {αj1 , αj2 , αj3} with 2 ≤ j1 < j2 < j3 ≤ 5. Then v ∈ VL, and
(c) holds. Thus to avoid (c),

VM ⊆
⋃

(j2,j3)
2≤j2<j3≤5

{{α∗1, αj2 , αj3}}

and by symmetry,

VL ⊆
⋃

(j2,j3)
2≤j2<j3≤5

{{α1, αj2 , αj3}}

must be valid. To preserve (a) and (b) but avoid (c), here

VM = {{α∗1, αj2 , αj3}, {α∗1, αj2 , αj5}, {α∗1, αj4 , αj5}}
together with

VL = {{α1, αj2 , αj4}, {α1, αj3 , αj5}, {α1, αj3 , αj4}}
should hold, where {j2, j3, j4, j5} = {2, 3, 4, 5}. However, in this case we find
that (c′) is not valid for VL by choosing

(i1, i2, i3, i4, i5) = (1, j3, j4, j5, j2).

This shows that (a), (b) and (c′) together imply (c).
We prove the lemma under the assumption (i) first. Put (M3,M4) =

(m3,m4). Assume that one of the conditions (a), (b) or (c′) does not hold,
and fix a set L = {α1, α2, α3, α4, α5} of pairwise non-equivalent roots of P
such that this happens also for this set. For all {i1, i2, i3} with 1 ≤ i1 < i2 <
i3 ≤ 5 put

Di1i2i3 =

∣∣∣∣∣∣∣

αM3
i1

αM3
i2

αM3
i3

αM4
i1

αM4
i2

αM4
i3

1 1 1

∣∣∣∣∣∣∣
.

Suppose first that (a) is not valid, that is, for some i with 1 ≤ i ≤ 5
and for every element v of the corresponding subgraph VL of V , we have
αi 6∈ v. Without loss of generality we may assume that here i = 5. By our
assumptions we have

VL ⊆ {{α1, α2, α3}, {α1, α2, α4}, {α1, α3, α4}, {α2, α3, α4}}.
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Let I be the set of the index-triplets of the vanishing determinants Di1i2i3 .
We clearly have

I ⊆ {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}.
At this point we split our proof into two parts.

1) Suppose that we also have

m1 −m2 6= m′1 −m′2
for every pair Q1, Q2 in A, up to finitely many exceptions. Note that we
may also assume that

m1 +m2 6= m′1 +m′2

for all Q1, Q2 ∈ A. Indeed, for every N ∈ N there can be at most finitely
many Q1 ∈ A with m1 +m2 = N , otherwise there would be infinitely many
polynomials in A with the same exponent quintuple.

The fact that P divides all the standard quintinomials in A means that
the equation ∣∣∣∣∣∣∣∣∣∣∣∣

αM1
1 αM1

2 αM1
3 αM1

4 αM1
5

αM2
1 αM2

2 αM2
3 αM2

4 αM2
5

αM3
1 αM3

2 αM3
3 αM3

4 αM3
5

αM4
1 αM4

2 αM4
3 αM4

4 αM4
5

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

has infinitely many solutions in integers M1,M2 with M1 > M2 > M3, for
any fixed set {α1, α2, α3, α4, α5} of pairwise non-equivalent roots of P . The
equation can be rewritten as

∑

{i1,i2,i3,i4,i5}={1,2,3,4,5}
i3<i4<i5

(−1)i1+i2+1 sgn(i2 − i1)Di3i4i5α
M1
i1
αM2
i2

= 0.

Let

(7)
∑∗

{i1,i2,i3,i4,i5}={1,2,3,4,5}
i3<i4<i5

(−1)i1+i2+1 sgn(i2 − i1)Di3i4i5α
M1
i1
αM2
i2

= 0

be the equation obtained by removing the terms with Di3i4i5 = 0. Choose
a system P of subsums of the left hand side of (7) such that each sub-
sum in P vanishes for infinitely many exponent quintuples corresponding to
the polynomials in A simultaneously, but all the proper subsums of these
subsums do not vanish. Remove all other polynomials from A. Clearly,
we still have |A| = ∞. Applying Lemma 1 to the partition P, we obtain
G(P) 6= {0}. Hence for some z = (z1, z2) ∈ Z2 with (z1, z2) 6= (0, 0) and for
all (i1, i2), (j1, j2) we see that if αM1

i1
αM2
i2

and αM1
j1
αM2
j2

occur in the same
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class of P, then
αz1i1 α

z2
i2

= αz1j1α
z2
j2
.

Thus we obtain a lot of multiplicative relations among the αi’s, and to get
a contradiction it suffices to prove that these relations imply that the ratio
of two such roots is a root of unity. Put p = z1 and q = z2, and observe that
by our assumptions

m1 6= m′1, m2 6= m′2, m1 −m2 6= m′1 −m′2 and m1 +m2 6= m′1 +m′2,

as (z1, z2) comes from the difference of two distinct solutions (M1,M2) and
(M ′1,M

′
2) of (7), we may suppose that

p 6= 0, q 6= 0, p 6= q and p 6= −q.
We apply Lemma 3 with S = S1 to the partition P = {T1, . . . , Tt} corre-
sponding to our vanishing subsums in (7). Note that the inequality p 6= q
implies that |Π| = 20. We deduce that from our multiplicative relations it is
possible to derive a relation in which exactly two roots are involved, and we
may assume that their exponents are integers. Moreover as the sum of the
entries of every vector in H (defined in Lemma 3) is zero, in this relation the
sum of the two non-zero exponents equals 0. Hence the ratio of the two roots
is a root of unity. This contradiction shows that (a) must hold in case 1).

2) Suppose that for infinitely many polynomials in A we have

m1 −m2 = m′1 −m′2.
Remove all the other standard quintinomials from A. For the remaining
polynomials in A put (M3,M4) = (m3,m4) and M = m1−m2, and observe
that the equation

∣∣∣∣∣∣∣∣∣∣∣∣

αM2+M
1 αM2+M

2 αM2+M
3 αM2+M

4 αM2+M
5

αM2
1 αM2

2 αM2
3 αM2

4 αM2
5

αM3
1 αM3

2 αM3
3 αM3

4 αM3
5

αM4
1 αM4

2 αM4
3 αM4

4 αM4
5

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

has infinitely many solutions in integers M2 with M2 > M3. The equation
can be rewritten as

∑

{i1,i2,i3,i4,i5}={1,2,3,4,5}
i1<i2, i3<i4<i5

(−1)i1+i2+1(αMi1 − αMi2 )Di3i4i5(αi1αi2)M2 = 0.

Observe that for any 1 ≤ i1 < i2 ≤ 5, the non-equivalence of αi1 and αi2
implies that

αMi1 − αMi2 6= 0.
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Let

(8)
∑∗

{i1,i2,i3,i4,i5}={1,2,3,4,5}
i1<i2, i3<i4<i5

(−1)i1+i2+1(αMi1 − αMi2 )Di3i4i5(αi1αi2)M2 = 0

be the equality obtained after removing the terms with Di3i4i5 = 0. Choose
a system P of subsums of the left hand side of (8) such that each sub-
sum in P vanishes for infinitely many exponent quintuples corresponding to
the polynomials in A simultaneously, but all the proper subsums of these
subsums do not vanish. Remove all the other polynomials from A. Clearly,
we still have |A| = ∞. Applying Lemma 1 to the partition P, we obtain
G(P) 6= {0}. Hence for some z1 ∈ Z with z1 6= 0 and for all (i1, i2), (j1, j2),
if the terms involving (αi1αi2)M2 and (αj1αj2)M2 occur in the same class
of P, then

(αi1αi2)z1 = (αj1αj2)z1 .

We again use Lemma 3 with S1 to get a contradiction in this case. Put
p = q = z1, and observe that by our assumptions

m1 6= m′1 and m2 6= m′2,

as z1 is the difference of two distinct solutions M2 and M ′2 of (8), we may
suppose that

p 6= 0 and q 6= 0.

We apply Lemma 3 to the partition P = {T1, . . . , Tt} corresponding to our
vanishing subsums in (8). Note that by p = q we now have |Π| = 10 in
Lemma 3. Just as in part 1) of the proof, we see that the ratio of two of the
above αi’s is a root of unity. This contradiction yields that (a) must hold
also in case 2).

Suppose now that (a) is valid but (b) is not. Hence some subgraph VL
of V is disconnected. By an analysis of the possibilities we see that without
loss of generality we may assume that

VL ⊆ {{α1, α2, α3}, {α1, α2, α4}, {α1, α2, α5}, {α3, α4, α5}}.
Thus for the set I of the index-triplets of the vanishing determinants Di3i4i5

we obtain
I ⊆ {{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {3, 4, 5}}.

Now we can repeat the whole argument above, and by the help of Lemmas 1
and 3 with S = S2, we get a contradiction also in this case.

Suppose now that (a) and (b) are valid but (c′) is not, i.e. some subgraph
VL of V is of that special form. Without loss of generality we may assume
that

VL ⊆ {{α1, α2, α3}, {α1, α2, α4}, {α1, α3, α5}}.
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Thus for the set I of the index-triplets of the vanishing determinants Di3i4i5

we obtain
I ⊆ {{1, 2, 3}, {1, 2, 4}, {1, 3, 5}}.

We can repeat the whole process again, this time with case S3 of Lemma 3,
and arrive at a contradiction. The proof of the lemma is now complete in
the case of (i).

Suppose now that (ii) holds. Choose any Q ∈ A with exponent quintuple
(m1,m2,m3,m4, 0) and put (M2,M3,M4) = (m2,m3,m4). The fact that P
divides all the standard quintinomials in A means that the equation

∣∣∣∣∣∣∣∣∣∣∣∣

αM1
1 αM1

2 αM1
3 αM1

4 αM1
5

αM2+M
1 αM2+M

2 αM2+M
3 αM2+M

4 αM2+M
5

αM3+M
1 αM3+M

2 αM3+M
3 αM3+M

4 αM3+M
5

αM4+M
1 αM4+M

2 αM4+M
3 αM4+M

4 αM4+M
5

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

for any fixed set {α1, α2, α3, α4, α5} of pairwise non-equivalent roots of P
has infinitely many solutions in integers M1,M with M1 > M2. If we put

Di1i2i3 =

∣∣∣∣∣∣∣

αM2
i1

αM2
i2

αM2
i3

αM3
i1

αM3
i2

αM3
i3

αM4
i1

αM4
i2

αM4
i3

∣∣∣∣∣∣∣

for all {i1, i2, i3} with 1 ≤ i1 < i2 < i3 ≤ 5, the previous equation can be
rewritten as∑

{i1,i2,i3,i4,i5}={1,2,3,4,5}
i3<i4<i5

(−1)i1+i2 sgn(i2 − i1)Di3i4i5α
M1
i1

(αi3αi4αi5)M = 0,

hence after dividing by (α1α2α3α4α5)M and omitting the terms with Di3i4i5

= 0, as

(9)
∑∗

{i1,i2,i3,i4,i5}={1,2,3,4,5}
i3<i4<i5

(−1)i1+i2+1 sgn(i2 − i1)Di3i4i5α
M1−M
i1

α−Mi2 = 0.

If Q1, Q2 are any two polynomials in A with exponent quintuples (M1,
M2 + M,M3 + M,M4 + M, 0) and (M ′1,M2 + M ′,M3 + M ′,M4 + M ′, 0),
respectively, then any of the equalities

M1 −M = M ′1 −M ′, −M = −M ′,
(M1 −M)− (M ′1 −M ′) = ±(−M − (−M ′))

would contradict our assumptions concerning these exponent quintuples.
Now we can apply the whole process used to prove the lemma in case 1) of
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(i) to (9). By the help of Lemmas 1 and 3, our result also follows in this
case. Note that by the impossibility of the previous equations we have

p 6= 0, q 6= 0, p 6= ±q,
whence |Π| = 20 in Lemma 3 in this case.

It will be convenient to deal with a special case of Theorem 2 in the
following lemma separately.

Lemma 5. Using the notation of Theorem 2, let A be an infinite set of
standard quintinomials divisible by P over Q. Suppose that all the polyno-
mials in A have exponent quintuples of the form (m1,M2,M3,M4, 0) with
the same fixed M2,M3,M4. Then either condition (i) or (ii) of Theorem 2
is valid for P .

Proof. WriteX = m1, and observe that as P divides the standard quinti-
nomials in A over Q, the equation

∣∣∣∣∣∣∣∣∣∣∣∣

αX1 αX2 αX3 αX4 αX5
αM2

1 αM2
2 αM2

3 αM2
4 αM2

5

αM3
1 αM3

2 αM3
3 αM3

4 αM3
5

αM4
1 αM4

2 αM4
3 αM4

4 αM4
5

1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

= 0

has infinitely many solutions in integers X with X > M2. If we put

Di1i2i3i4 =

∣∣∣∣∣∣∣∣∣∣

αM2
i1

αM2
i2

αM2
i3

αM2
i4

αM3
i1

αM3
i2

αM3
i3

αM3
i4

αM4
i1

αM4
i2

αM4
i3

αM4
i4

1 1 1 1

∣∣∣∣∣∣∣∣∣∣

for all {i1, i2, i3, i4} with 1 ≤ i1 < i2 < i3 < i4 ≤ 5, the previous equation
can be rewritten as

(10) D2345α
X
1 −D1345α

X
2 +D1245α

X
3 −D1235α

X
4 +D1234α

X
5 = 0.

Suppose that in (10) at least one of the subdeterminants Di1i2i3i4 does
not vanish. Note that as the αi’s are non-zero, at least two such determinants
do not vanish in this case. Choose a partition P of the left hand side of (10)
into subsums which vanish for infinitely many X (belonging to the Q’s in A),
but have proper vanishing subsums only in finitely many instances. Omit
all the Q’s from A for which these subsums either do not vanish, or have
proper vanishing subsums. Observe that we still have |A| = ∞. Applying
Lemma 1 to the partition P, we immediately obtain G(P) 6= {0}. Hence for
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some non-zero integer z1 and indices i1, i2 with 1 ≤ i1 < i2 ≤ 5 we have

αz1i1 = αz1i2 ,

which contradicts the non-equivalence of αi1 and αi2 . This shows that all
the determinants Di1i2i3i4 must vanish in (10).

Hence for some polynomials

Fj(x) = xM2 + ajx
M3 + bjx

M4 + cj (j = 1, 2, 3, 4, 5)

with aj , bj , cj ∈ K and (aj , bj , cj) 6= (0, 0, 0) we have

Fj(αi) = 0 for i, j ∈ {1, 2, 3, 4, 5}, i 6= j.

Observe that if for some j and j′ we have Fj 6= Fj′ , then there exist three αi’s
such that they are roots of the distinct standard quadrinomials Fj and Fj′ ,
both having exponent quadruple (M2,M3,M4, 0). Without loss of generality
we may assume that these αi’s are α1, α2, α3 and j = 4, j′ = 5. Further,
we may assume that a4 6= a5, otherwise α1, α2, α3 would be roots of the
same binomial F4 − F5, whence all their ratios would be roots of unity. So
α1, α2, α3 are also roots of the standard trinomial

F6(x) :=
1

a4 − a5
(F4(x)− F5(x)).

Recalling that, for infinitely many positive integers m1, P divides some stan-
dard quintinomial Qm1(x) having exponent quintuple (m1,M2,M3,M4, 0),
we find that the polynomial

P0(x) = (x− α1)(x− α2)(x− α3)

divides over K infinitely many standard trinomials of the form

Qm1(x)− C1F4(x)− C2F6(x),

where C1 and C2 are appropriately chosen numbers from K. Now by The-
orem 1 of [2], for some positive integer r and some polynomial R ∈ K[x] of
degree at most two, P0 divides R(xr) over K. (We note that this assertion
is proved only for K = Q in [2], but as mentioned by the authors, this more
general statement is also valid.) Hence for some 1 ≤ i1 < i2 ≤ 3 the ratio
αi1/αi2 is a root of unity. However, this contradicts the non-equivalence of
these roots. Thus we obtain

Fj = Fj′ , j, j′ ∈ {1, 2, 3, 4, 5}.
However, if we take any other system of non-equivalent αi’s, the whole
argument given above remains valid. Hence, as P has only simple roots,
we may conclude that P |F1 over K.

Suppose now that σ(F1) 6= F1 for some automorphism σ of K. As clearly
σ(P ) = P , this implies P |σ(F1), whence

P (x) | (F1(x)− σ(F1(x))) =: c0F0(x)
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over K, where c0 is the leading coefficient of the polynomial F1 − σ(F1).
Observe that F0(x) is a standard trinomial with exponent triple (M3,M4, 0)
and with coefficients from K. Thus if F0 6∈ Q[x], then repeating the previous
argument with F0 in place of F1, we deduce that P divides a binomial overK.
This would yield that the ratio of each pair of roots of P is a root of unity,
which is a contradiction. Hence we may assume that either σ(F1) = F1 for
all the automorphisms of K, whence F1 ∈ Q[x], or F0(x) ∈ Q[x]. Hence we
have

P |F1 or P |F0

over Q. In the first case put G = F1, otherwise let G = F0. By the fact that
for any Q ∈ A the polynomial Q+G is a standard quintinomial having the
same exponent quintuple as Q, and clearly P |Q+G, the lemma follows.

Proof of Theorem 2. The “if” part of the theorem can be proved by the
same argument as in the case of Theorem 1.

To prove the “only if” part, suppose that P divides infinitely many
standard quintinomials with non-zero constant terms over Q. Let A be an
infinite set of such standard quintinomials. If there are infinitely many stan-
dard quadrinomials in A, then our statement is an immediate consequence
of Theorem 1. Hence we may assume that there are no standard quadrino-
mials in A. Moreover, we may suppose that the exponent quintuples of the
standard quintinomials in A are all distinct, otherwise the theorem follows.
Finally, we may also assume that one of the three statements

(m3,m4) = (m′3,m
′
4) for all Q1, Q2 ∈ A,

(m2 −m4,m3 −m4) = (m′2 −m′4,m′3 −m′4) for all Q1, Q2 ∈ A,
(m1 −m3,m2 −m3) = (m′1 −m′3,m′2 −m′3) for all Q1, Q2 ∈ A

holds, where (m1,m2,m3,m4, 0) and (m′1,m
′
2,m

′
3,m

′
4, 0) are the exponent

quintuples of Q1 and Q2, respectively. Indeed, otherwise by a similar argu-
ment as in the case of quadrinomials, using Lemma 2 we would get P ∈ PR5,
which would prove the theorem. Denote the splitting field of the polynomial
P by K.

(A) Assume that for any Q1, Q2 ∈ A with exponent quintuples (m1,m2,
m3,m4, 0) and (m′1,m

′
2,m

′
3,m

′
4, 0), respectively, we have

(m3,m4) = (m′3,m
′
4).

Put (M3,M4) = (m3,m4). We may assume that the roots of P belong to at
least five equivalence classes, otherwise we immediately have P ∈ PR5.

We will use Lemma 4 to derive the theorem in this case. Suppose first
that there are infinitely many polynomials in A with the same exponent m1

or the same exponent m2.
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In the former case P divides infinitely many standard quintinomials of
the same degree, hence divides two such polynomials with the same exponent
quintuple.

In the latter case P divides infinitely many standard quintinomials hav-
ing exponent quintuples of the form (m1,M2,M3,M4, 0), with the same
fixed M2,M3,M4. Hence Lemma 5 implies the theorem in this case.

So there is an infinite subset of A, which we will still call A in what fol-
lows, such that for all the polynomials Q1, Q2 ∈ A with exponent quintuples
(m1,m2,m3,m4, 0) and (m′1,m

′
2,m

′
3,m

′
4, 0), respectively, we have

m1 6= m′1 and m2 6= m′2.

Observe that now all the assumptions of Lemma 4(i) are satisfied. We note
that the determinant ∣∣∣∣∣∣∣

αM3
i1

αM3
i2

αM3
i3

αM4
i1

αM4
i2

αM4
i3

1 1 1

∣∣∣∣∣∣∣
vanishes if and only if αi1 , αi2 , αi3 are the roots of some standard trinomial
having coefficients from K, and with exponent triple (M3,M4, 0). Since the
three corresponding roots of P are pairwise non-equivalent, none of these
trinomials is a binomial. We claim that all these standard trinomials co-
incide. Suppose to the contrary that for some triplets {αi1 , αi2 , αi3} and
{αj1 , αj2 , αj3} consisting of pairwise non-equivalent roots of P , the corre-
sponding standard trinomials are different. By Lemma 4 we deduce that
the corresponding graph V is connected, whence there exist two triplets
{α′i1 , α′i2 , α′i3} and {α′j1 , α′j2 , α′j3} such that they are neighbours in V , and
the standard trinomials corresponding to them, say F1 and F2, respectively,
are different. However, then by the definition of V ,

|{α′i1 , α′i2 , α′i3} ∩ {α′j1 , α′j2 , α′j3}| = 2.

Thus P has two non-equivalent roots, which are also roots of the binomial
F1 − F2, but this is a contradiction. It shows that all these standard trino-
mials coincide. As every root of P is contained in some vertex of V and P
has only simple roots, we see that P divides a standard trinomial F ∈ K[x]
over K. Suppose that the coefficients of F are not rational. Then there exists
an automorphism σ of K such that σ(F ) 6= F . This together with σ(P ) = P
yields P | (F − σ(F )), whence the roots of P are roots of a binomial. How-
ever, this contradicts our assumption that the roots of P belong to at least
five equivalence classes. Thus F ∈ Q[x]. Finally, observe that any standard
trinomial having rational coefficients divides over Q infinitely many stan-
dard quintinomials with the same exponent quintuple. In fact the trinomial
xn1 + a1x

n2 + a2 divides the quintinomial (xn1 + a1x
n2 + a2)(xn2 + b) for

every b ∈ Q. Thus the proof of the theorem is complete in case (A).
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(B) Omitting all the other polynomials, now suppose that for any Q1, Q2

with exponent quintuples (m1,m2,m3,m4, 0) and (m′1,m
′
2,m

′
3,m

′
4, 0), re-

spectively, in the infinite set A we have

(m2 −m4,m3 −m4) = (m′2 −m′4,m′3 −m′4).

Observe that under the assumption

m1 6= m′1, m2 6= m′2 and
m1 −m2

m′1 −m′2
6∈ {1, 2}

we can use Lemma 4 again, and by repeating the argument given in case (A),
the theorem follows also in this case (B). So assume that in the case of any
Q1 and Q2 as above, we also have

m1 = m′1, m2 = m′2 or
m1 −m′1
m2 −m′2

∈ {1, 2}.

By applying the box principle we may assume that all elements of A satisfy
the same relation.

In the case of m1 = m′1 we deduce that P divides infinitely many stan-
dard trinomials of the same degree, whence P divides two such polynomials
having the same exponent quintuple, and the theorem follows.

If m2 = m′2, then also m3 = m′3 and m4 = m′4, and by Lemma 5 we are
done.

If m1 −m′1 = 2(m2 −m′2), then for some integers M1,M2,M3,M4 the
exponent quintuples of Q1 and Q2 are of the forms

(M1 + 2M,M2 +M,M3 +M,M4 +M, 0)

and
(M1 + 2M ′,M2 +M ′,M3 +M ′,M4 +M ′, 0)

with some integers M and M ′, respectively. This implies condition (iii), and
the theorem follows.

Suppose that
m1 −m2 = m′1 −m′2.

This means that also m1−m3 = m′1−m′3 and m1−m4 = m′1−m′4, whence
P divides over Q infinitely many standard trinomials of the form

QM (x) = xM1+M + aMx
M2+M + bMx

M3+M + cMx
M4+M + dM ,

where dM 6= 0, M is a positive integer and M1,M2,M3,M4 are fixed integers
with M1 > M2 > M3 > M4 > 0. Put P ∗(x) = xdeg(P )P (1/x). Observe that
P ∗ divides all the standard quintinomials

xM1+M + (cM/dM )xM1−M4

+ (bM/dM )xM1−M3 + (aM/dM )xM1−M2 + 1/dM
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over Q. However, for such polynomials P ∗ we already proved the statement
in Lemma 5, so we infer that either P ∗ ∈ PR5, or P ∗ divides two quintino-
mials with the same exponent quintuple. Now just as at the end of the proof
of Theorem 1, we conclude that the same is true also for P , which verifies
our statement in case (B).

(C) Finally suppose that after omitting all the other polynomials, for
any Q1, Q2 with exponent quintuples (m1,m2,m3,m4, 0) and (m′1,m

′
2,m

′
3,

m′4, 0), respectively, in some infinite set A we have

(m1 −m3,m2 −m3) = (m′1 −m′3,m′2 −m′3).

Put P ∗ = xdeg(P )P (1/x) and write the polynomials Qi ∈ A (i ∈ N) in the
form

Qi(x) = xm
(i)
1 + aix

m
(i)
2 + bix

m
(i)
3 + cix

m
(i)
4 + di.

Note that di 6= 0 for all Qi, and put P ∗(x) = xdeg(P )P (1/x). Observe that
P ∗ divides all the standard quintinomials

xm
(i)
1 + (ci/di)xm

(i)
1 −m

(i)
4 + (bi/di)xm

(i)
1 −m

(i)
3 + (ai/di)xm

(i)
1 −m

(i)
2 + 1/di

over Q. However, for such polynomials P ∗ we already proved the theorem
in part (A). So we infer that either P ∗ ∈ PR5, or P ∗ divides two quintino-
mials with the same exponent quintuple. Just as at the end of the proof of
Theorem 1, we conclude that the same is true also for P , which verifies our
statement in case (C).

5. The necessity of condition (ii)

Proof of the Proposition. Let P (x) = x5 − 8x2 − 16x+ 16. Observe that
the degree of P is prime, that P is irreducible over Q and that P has two
roots of different absolute values. By Lemma 2 of [3] these properties imply
that P 6∈ PR5.

To prove that P does not divide any trinomial over Q, consider the roots

α1 = −0.6128676243 . . .+ i · 2.209220116 . . . ,

α2 = −1.799759775 . . . , α3 = 0.7400417854 . . .

of P . Suppose that P divides a standard trinomial over Q having exponent
triple (m1,m2, 0). Then m1 ≥ 6 and the determinant

∣∣∣∣∣∣∣

αm1
1 αm1

2 αm1
3

αm2
1 αm2

2 αm2
3

1 1 1

∣∣∣∣∣∣∣

must vanish. After dividing by αm1
1 αm2

2 , we obtain
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1 +
(
α2

α1

)m1
(
α3

α2

)m2

+
(
α2

α1

)m1−m2
(
α3

α2

)m1

−
(
α3

α1

)m1

−
(
α3

α2

)m2

−
(
α2

α1

)m1−m2

= 0.

However, if we observe that max(m2,m1 − m2) ≥ 3, a simple calculation
shows that

1−
∣∣∣∣
α2

α1

∣∣∣∣
m1
∣∣∣∣
α3

α2

∣∣∣∣
m2

−
∣∣∣∣
α2

α1

∣∣∣∣
m1−m2

∣∣∣∣
α3

α2

∣∣∣∣
m1

−
∣∣∣∣
α3

α1

∣∣∣∣
m1

−
∣∣∣∣
α3

α2

∣∣∣∣
m2

−
∣∣∣∣
α2

α1

∣∣∣∣
m1−m2

> 0.

This contradiction yields that P cannot divide any standard trinomial overQ.
Finally, one can readily verify that P divides Q = x12−3328x2−3072x+

4096, hence Q+ aP for all a ∈ Q.
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