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Polynomial quotients:
Interpolation, value sets and Waring’s problem

by

Zhixiong Chen (Putian) and Arne Winterhof (Linz)

1. Introduction. For an odd prime p and an integer uwith gcd(u, p)=1,
the Fermat quotient qp(u) is defined as the unique integer

qp(u) ≡ up−1 − 1

p
mod p with 0 ≤ qp(u) ≤ p− 1,

and

qp(kp) = 0, k ∈ Z.
An equivalent definition is

(1.1) qp(u) ≡ up−1 − up(p−1)

p
mod p.

Many number-theoretic and cryptographic questions as well as measures of
pseudorandomness have been studied for Fermat quotients and their gener-
alizations [1–3, 5–7, 9, 11, 13, 15, 17, 20, 21, 24, 28, 30–34].

In particular, for all positive integers w, we extend (1.1) to define

(1.2) qp,w(u) ≡ uw − uwp

p
mod p with 0 ≤ qp,w(u) ≤ p− 1, u ≥ 0,

which is called a polynomial quotient in [12]. In fact qp,p−1(u) = qp(u). We
have the following relation between qp,w(u) and qp(u):

(1.3) qp,w(u) ≡ −uwwqp(u) mod p

for all u ≥ 0 with gcd(u, p) = 1. In particular, we get qp,w(kp) = 0 if
w ≥ 2, and qp,w(kp) = k if w = 1. We estimated certain character sums
of polynomial quotients in [12]. Recently the first author (partly with other
coauthors) also applied polynomial quotients to construct pseudorandom
sequences with good cryptographic properties [8, 10, 16].

2010 Mathematics Subject Classification: Primary 11P05; Secondary 11T06, 11T24.
Key words and phrases: polynomial quotients, Fermat quotients, Waring problem, value
set, character sums, Cauchy–Davenport theorem.

DOI: 10.4064/aa170-2-2 [121] c© Instytut Matematyczny PAN, 2015



122 Z. X. Chen and A. Winterhof

In this paper, first we study interpolation polynomials of polynomial
quotients (including the number of fixed points of polynomial quotients) and
the size of value sets of polynomial quotients defined in (1.2). Then we apply
results on the size of value sets to study an analogue of the Waring problem
for polynomial quotients, that is, the question about the smallest positive
integer s, which is called the Waring number and denoted by g(w,N, p),
such that the equation

qp,w(u1) + · · ·+ qp,w(us) ≡ c mod p, 0 ≤ u1, . . . , us < N (≤ p),
is solvable for any c ∈ Fp. If such an s does not exist, or equivalently
qp,w(0) = · · · = qp,w(N − 1) = 0, we set g(w,N, p) = ∞. Let ` be the
smallest value with qp,w(`) 6≡ 0 mod p. Then the Waring number g(w,N, p)
always exists if N > `. Indeed, it is easy to see that g(w,N, p) ≤ p − 1
for N > `. For w = p − 1 (and thus for all w 6≡ 0 mod p by (1.3)), ` is
estimated in [3] by ` ≤ (log p)463/252+o(1) for all p, which has more recently
been improved to (log p)7829/4284+o(1) in [29].

Let us denote by F (w,N, p; f(x)) the number of solutions 0 ≤ u < N of
qp,w(u) ≡ f(u) for f(x) ∈ Fp[x]:

F (w,N, p; f(x)) = #{u ∈ {0, . . . , N − 1} : qp,w(u) ≡ f(u) mod p}, N ≤ p.
In particular, F (w,N, p;x) is the number of fixed points of qp,w. We prove
upper bounds on F (w,N, p; f(x)) in Section 2.

Denote by V (w,N, p) the size of the value set of qp,w(u) with 0 ≤ u < N :

V (w,N, p) = #{qp,w(u) : u = 0, . . . , N − 1}, N ≤ p.
If w = kp for any positive integer k, we have qp,kp(u) = 0 by (1.3), and thus
F (kp,N, p; f(x)) ≤ min{N, deg(f(x))}, V (kp,N, p)=1 and g(kp,N, p)=∞.

For any positive w with p - w, write w = w1 + w2(p− 1) with 1 ≤ w1 ≤
p− 1 and w2 ≥ 0. By (1.3) again one can get

qp,w1+w2(p−1)(u) ≡ −uw1(w1 − w2)qp(u)

≡ w−11 (w1 − w2)qp,w1(u) mod p, 0 ≤ u < p,

and thus for N ≤ p,
F (w1 + w2(p− 1), N, p; f(x)) = F (w1, N, p;w1(w1 − w2)

−1f(x)),

V (w1 + w2(p− 1), N, p) = V (w1, N, p),

g(w1 + w2(p− 1), N, p) = g(w1, N, p).

(Note that w1 6≡ w2 mod p since p - w.) Hence, we may restrict ourselves to
1 ≤ w ≤ p− 1 from now on.

We recall that the classical Waring problem is an important research field
in number theory that investigates the smallest s such that every element
of R is a sum of s kth powers in R, where R is an algebraic structure such
as the integers, a finite field, the residue ring modulo m, a polynomial ring,
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a function field, etc. (see e.g. [23, 36–38]). Recently, the second author and
other coauthors considered the Waring problem for Dickson polynomials in
finite fields [19, 25, 26].

2. Interpolation of polynomial quotients. In this section we prove
bounds on F (w,N, p; f(x)). We start with a result which is nontrivial if
either w is very large, or gcd(w, p− 1) is moderately large.

Theorem 2.1. For 1 ≤ w < p and f(x) ∈ Fp[x] of degree d, let

F (w,N, p; f(x)) = #{u ∈ {0, . . . , N−1} : qp,w(u) ≡ f(u) mod p}, N ≤ p.

Then

F (w,N, p; f(x))

� min

{
(p− 1− w + d)1/4N1/2p1/3, (p− 1− w + d)1/8N1/2p3/8,

1

gcd(w, p− 1)
d1/4N1/2p4/3,

1

gcd(w, p− 1)
d1/8N1/2p11/8

}
.

Proof. By applying (1.3) we reduce the problem for any w to the case
w = p − 1 (the interpolation of Fermat quotients), i.e., we only need to
estimate the number of 0 ≤ u < N satisfying

(2.1) −uwwqp(u) ≡ f(u) mod p.

We prove two different bounds.

Bound 1. By (2.1) we have qp(u) ≡ −w−1up−1−wf(u) mod p. We get

F (w,N, p; f(x))

�
{(

deg(xp−1−wf(x))
)1/4

N1/2p1/3, 1 ≤ deg(xp−1−wf(x)) ≤ p1/3,(
deg(xp−1−wf(x))

)1/8
N1/2p3/8, p1/3 < deg(xp−1−wf(x)) < p

}
,

by [14, Theorem 1]. We remark that the proof of [14, Lemma 1] (which deals
only with N = p) can be easily extended to N ≤ p. The bound is nontrivial
only for p− w = o(p).

Bound 2. The values attained by uw mod p for all 0 ≤ u < p are the
same as the values ugcd(w,p−1) mod p. For a fixed primitive element γ ∈ Fp,

we consider the cyclotomic classes of order p−1
gcd(w,p−1) :

(2.2) Cj = {γj+
i(p−1)

gcd(w,p−1) mod p : 0 ≤ i < gcd(w, p− 1)},

where j = 0, 1, . . . , p−1
gcd(w,p−1) − 1. In fact, the Cj ’s give a partition of F∗p.

For each u ∈ Cj , we always have uw = γjw, and the number of solutions



124 Z. X. Chen and A. Winterhof

u ∈ Cj ∩ {0, . . . , N − 1} of (2.1) (hence qp(u) ≡ −w−1γ−jwf(u) mod p) is
bounded by

�
{(

deg(f(x))
)1/4

N1/2p1/3, 1 ≤ deg(f(x)) ≤ p1/3,(
deg(f(x))

)1/8
N1/2p3/8, p1/3 < deg(f(x)) < p

}
by [14, Theorem 1] again. So we have

F (w,N, p; f(x))

� p− 1

gcd(w, p− 1)
min

{(
deg(f(x))

)1/4
N1/2p1/3,

(
deg(f(x))

)1/8
N1/2p3/8

}
� 1

gcd(w, p− 1)
min

{(
deg(f(x))

)1/4
N1/2p4/3,

(
deg(f(x))

)1/8
N1/2p11/8

}
since there are p−1

gcd(w,p−1) Cj ’s. This bound is nontrivial only if gcd(w, p− 1)

≥ p5/6.

Corollary 2.2. For 1 ≤ w < p, the number

F (w,N, p) = #{u ∈ {0, . . . , N − 1} : qp,w(u) ≡ u mod p}, N ≤ p,
of fixed points of polynomial quotients satisfies

F (w,N, p)� min

{
(p−w)1/4N1/2p1/3, (p−w)1/8N1/2p3/8,

N1/2p4/3

gcd(w, p− 1)

}
.

Besides the cases when p − w = o(p) and gcd(w, p − 1) ≥ p5/6, there is
another nontrivial result if gcd(w − 1, p − 1) ≥ p1/2+ε, which includes the
important case w = 1.

Theorem 2.3. For 1 ≤ w < p,

F (w,N, p)� p3/2+ε

gcd(w − 1, p− 1)
, N ≤ p.

Proof. Define

C̃j = {γj+
i(p−1)

gcd(w−1,p−1) mod p : 0 ≤ i < gcd(w − 1, p− 1)},

where j = 0, 1, . . . , p−1
gcd(w−1,p−1) − 1. The number of solutions u ∈ C̃j ∩

{0, . . . , N − 1} of

qp(u) ≡ −w−1u−(w−1) ≡ −w−1γ−j(w−1) mod p

is bounded by O(p1/2+ε) by [18, Proposition 2.1]. So we have

F (w,N, p)� p− 1

gcd(w − 1, p− 1)
p1/2+ε,

which completes the proof.
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Remark. The bound is nontrivial only for gcd(w − 1, p − 1) � p1/2+ε

and N � p1/2+ε. However, if N < p2/s for some integer s ≥ 3, the proof
of [18, Proposition 2.1] can be easily modified, and the bound O(p1/2+ε) on
the number of solutions 0 ≤ u < N with qp(u) = c can be improved to
O(p1/s+ε). Using this in the proof of Theorem 2.3 we get

F (w,N, p)� p1+1/s+ε

gcd(w − 1, p− 1)
, N < p2/s.

3. Size of value sets. First we prove a bound on V (p − 1, N, p), the
size of the value set of Fermat quotients qp (see [24, Theorem 13]) for
N = p. Then we estimate V (w,N, p) for general 1 ≤ w ≤ p− 2 in terms of
V (p− 1, N, p) by (1.3).

Lemma 3.1. Let V (p− 1, N, p) = #{qp(u) : u = 0, . . . , N − 1}. Then

V (p− 1, N, p)� N2

p log2N
, N ≤ p.

Proof. For N < p, one can get the desired result the same way as for
N = p; see the proof of [24, Theorem 13]. For the convenience of the reader,
we sketch the proof here.

Let Q(N, a) be the number of primes l smaller than N with qp(l) = a.
Clearly

p−1∑
a=0

Q(N, a) = π(N − 1),

where π(x) denotes the number of primes l ≤ x. The number of prime

number pairs (l, r) with 0 ≤ l, r ≤ N−1 and qp(l) = qp(r) is
∑p−1

a=0Q(N, a)2.

According to the fact that qp : Z∗p2 → Zp is a group homomorphism with

kernel ker(qp) of size p − 1, we see that l/r ∈ ker(qp) for each pair (l, r)
above. Now for each u ∈ ker(qp), there are π(N − 1) pairs (l, l) such that
1 ≡ l/l mod p2 if u = 1, and at most one pair (l, r) such that u ≡ l/r mod p2

if u 6= 1, since otherwise u ≡ l1/r1 ≡ l2/r2 mod p2 leads to l1 = r1, l2 = r2
or l1 = l2, r1 = r2. So we get

p−1∑
a=0

Q(N, a)2 ≤ π(N − 1) + #ker(qp)− 1 = π(N − 1) + p− 2.

On the other hand, only at most V (p− 1, N, p) of the Q(N, a) are nonzero
for 0 ≤ a ≤ p− 1, so by the Cauchy–Schwarz inequality we have( p−1∑

a=0

Q(N, a)
)2
≤ V (p− 1, N, p)

p−1∑
a=0

Q(N, a)2.
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Putting everything together, we obtain

V (p− 1, N, p)� π(N − 1)2p−1,

which concludes the proof.

Remark. For N<p1/s we can also study the number of primes l1, . . . , ls,
r1, . . . , rs < N with qp(l1) = · · · = qp(ls) = qp(r1) = · · · = qp(rs) to improve
Lemma 3.1.

As in Section 2, we prove different bounds on V (w,N, p) which are non-
trivial if either gcd(w, p− 1), or gcd(w − 1, p− 1) is large enough.

Theorem 3.2. For 1 ≤ w < p let V (w,N, p) = #{qp,w(u) : u =
0, . . . , N − 1}. Then

V (w,N, p)� gcd(w, p− 1)

(
N

p logN

)2

, N ≤ p.

Proof. The values assumed by uw mod p for all 0 ≤ u < p are the same
as the values ugcd(w,p−1) mod p. For a fixed primitive element γ ∈ Fp, we

consider the cyclotomic classes of order p−1
gcd(w,p−1) defined by (2.2). Let U

be the biggest subset of {0, . . . , N − 1} such that qp(u) 6= qp(v) for any
u 6= v ∈ U . It is easy to see that #U = V (p − 1, N, p). Then for any
u1, u2 ∈ (Cj ∩ U) and any j, using (1.3) we always have

uw1 ≡ uw2 mod p and qp,w(u1) 6= qp,w(u2).

By the pigeonhole principle we see that there exists some j with

Cj ∩ U ≥
#U

(p− 1)/gcd(w, p− 1)
.

So we have

V (w,N, p) ≥ #U

(p− 1)/gcd(w, p− 1)
� gcd(w, p− 1)N2

p2 log2N

by Lemma 3.1.

The bound in Theorem 3.2 is trivial if gcd(w, p − 1) � log2N . Below
we consider the cases of large gcd(w− 1, p− 1) (including w = 1) and get a
nontrivial bound using a different method.

Theorem 3.3. For 1 ≤ w < p,

V (w,N, p)� gcd(w − 1, p− 1)
N1/2

p4/3
, N ≤ p.

Proof. We first prove the case w = 1, and then reduce to it the general
case w > 1. The proof follows [14, Section 2], which deals with the case
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N = p. Define

Md = #{u ∈ {0, . . . , N − 1} : qp,1(u) = d}
for some d. We first give an upper bound on Md.

For 0 ≤ a < N and 1 ≤ b < N , suppose that (a, a + b mod N) is a pair
of points satisfying

qp,1(a) = qp,1(a+ b mod N) = d.

We note that there are Md(Md − 1) such pairs. (Note that Md = 1 if no
such b exists.) Now we fix any 1 ≤ b < N and estimate the number of a. For
each pair (a, b), set c = b if a+ b < N , and c = b−N otherwise. Hence for
a given b there are two possible choices of c such that (a, a+ c) satisfy

(3.1) qp,1(a) = qp,1(a+ c) = d

for some a. For given c we estimate the number of a.

If (a, a + c) is a pair satisfying (3.1), using (1.3) and the definition of
qp(u) we get

d = qp,1(a+ c) ≡ −(a+ c)qp(a+ c) ≡ −aqp(a)− cqp(c)− c
p−1∑
i=1

(
p
i

)
p

(ac−1)i

≡ qp,1(a) + qp,1(c) + c

p−1∑
i=1

(−ac−1)i

i
mod p,

and thus

qp,1(c) + c

p−1∑
i=1

(−a−1c)i

i
≡ 0 mod p.

Substituting a ≡ −cx mod p for x ∈ Fp we get

qp,1(c)c
−1 +

p−1∑
i=1

xi

i
≡ 0 mod p.

Now by [22, Lemma 4] the number of x (which is not smaller than the
number of a since 0 ≤ a < N) for fixed c is bounded by O(p2/3), and we
obtain

Md(Md − 1)� (N − 1) min{p2/3, N},
and thus Md � N1/2p1/3 if N � p2/3, which implies that

V (1, N, p)� N1/2

p1/3
.

From (1.3) again, we have

qp,w(u) ≡ −uwwqp(u) ≡ uw−1wqp,1(u) mod p,



128 Z. X. Chen and A. Winterhof

and hence

V (w,N, p) ≥ V (1, N, p)

(p− 1)/gcd(w − 1, p− 1)

following the proof of Theorem 3.2.

Remark. Ostafe and Shparlinski [24] stated the problem of finding a
nontrivial lower bound on V (1, N, p) for N ≤ p. In particular, Theorem 3.3
implies

V (1, N, p)� N1/2p−1/3,

which is nontrivial for N � p2/3.

4. Bounds on the Waring number

4.1. Bound derived from additive character sums. We first present
a bound on character sums of polynomial quotients, which is a special case
of [12, Theorem 3]. In this subsection, we will exploit these character sums
to estimate the Waring number g(w,N, p).

Lemma 4.1. Let qp,w(u) be defined by (1.2) with 1 ≤ w < p. For any
nontrivial additive character ψ of Fp we have∣∣∣N−1∑

u=0

ψ(qp,w(u))
∣∣∣� 1

gcd(w, p− 1)
N1/2p11/8, N ≤ p.

As noted in [22, Theorem 2], the exponent ε in [12, Theorem 3] can be re-
moved when the modulus k of (multiplicative) characters equals p2 since the
Burgess bound contains a factor k3/16+ε (see [4, Theorems 2 and 3]). Lemma
4.1 is only nontrivial for N ≥ p3/4. However, using the precise Theorem 3
in [12] we can derive bounds which are nontrivial for N ≥ p1/2+o(1).

Theorem 4.2. For 1 ≤ w < p, we have

g(w,N, p) ≤ s

if gcd(w, p− 1)s−1 � p11s/8+1/4N−s/2−1 log2N , s ≥ 3 and N ≤ p.

Proof. Without loss of generality we restrict ourselves to the case
g(w,N, p) ≥ 3.

Let ψ be a nontrivial additive character of Fp. For s ≥ 3 and y ∈ Fp, the
number Ns(y) of solutions (v1, v2, u1, . . . , us−2) of the equation

y ≡ v1 + v2 + qp,w(u1) + · · ·+ qp,w(us−2) mod p,
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where v1, v2 ∈ V (w,N, p), 0 ≤ u1, . . . , us−2 < N , is

Ns(y) =
1

p

∑
a∈Fp

∑
v1,v2∈V (w,N,p)

∑
0≤uj<N
1≤j≤s−2

ψ
(
a
(
v1 + v2 +

s−2∑
i=1

qp,w(ui)− y
))

=
V (w,N, p)2N s−2

p
+

1

p

∑
a∈F∗

p

ψ(−ay)
∑

v1,v2∈V (w,N,p)

ψ(a(v1 + v2))

×
∑

0≤uj<N
1≤j≤s−2

ψ
(
a

s−2∑
i=1

qp,w(ui)
)
.

By Lemma 4.1, we have∣∣∣∣Ns(y)− V (w,N, p)2N s−2

p

∣∣∣∣
≤ 1

p

∑
a∈F∗

p

∣∣∣ ∑
v∈V (w,N,p)

ψ(av)
∣∣∣2∣∣∣ ∑

0≤u<N

ψ
(
aqp,w(u)

)∣∣∣s−2
� 1

p

(
N1/2p11/8

gcd(w, p− 1)

)s−2 ∑
a∈F∗

p

∣∣∣ ∑
v∈V (w,N,p)

ψ(av)
∣∣∣2

≤ 1

p

(
N1/2p11/8

gcd(w, p− 1)

)s−2 ∑
a∈Fp

∑
v1,v2∈V (w,N,p)

ψ(a(v1 − v2))

≤ V (w,N, p)

(
N1/2p11/8

gcd(w, p− 1)

)s−2
.

The number Ns(y) is positive for all y ∈ Fp if

V (w,N, p) > p

(
p11/8

gcd(w, p− 1)N1/2

)s−2
,

and thus g(w,N, p) ≤ s under this condition.

Remark. It is clear that g(p− 1, p, p) ≤ 3, which is the Waring number
for Fermat quotients. Theorem 4.2 is only nontrivial if gcd(w, p− 1)� p7/8

andN≥p3/4. Very recently, Harman and Shparlinski [21] proved g(p−1, N, p)

≤ 9 for any N ≥ p1/(2e1/2)+ε and sufficiently large p.

4.2. Bound derived from the Cauchy–Davenport theorem. In
this subsection we prove a bound on g(w,N, p) based on the Cauchy–
Davenport theorem (see e.g., [35, Theorem 5.4]), which is rather moderate
but nontrivial if gcd(w, p− 1)� log2 p or gcd(w − 1, p− 1)� p5/6.
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Lemma 4.3 (Cauchy–Davenport theorem). Let A,B be nonempty sub-
sets of Fp. Then

#(A+B) ≥ min{#A+ #B − 1, p},
where A+B = {a+ b : a ∈ A, b ∈ B}.

Theorem 4.4. For 1 ≤ w < p, we have

g(w,N, p)� min

{
p3 log2 p

N2 gcd(w, p− 1)
,

p7/3

N1/2 gcd(w − 1, p− 1)

}
, N ≤ p.

Proof. For s ≥ 1 define

Ws = {qp,w(u1) + · · ·+ qp,w(us) : 0 ≤ u1, . . . , us < N}.
Since Ws = Ws−1 +W1 for s ≥ 2, by Lemma 4.3 we have

#Ws ≥ min{#Ws−1 + #W1 − 1, p}, s ≥ 2,

and get by induction

#Ws ≥ min{s(#W1 − 1) + 1, p}, s ≥ 1.

Hence

s ≤
⌈

p− 1

#W1 − 1

⌉
,

and then the desired result follows from Theorems 3.2 and 3.3.

5. Final remarks. 1. The bounds in this paper are nontrivial if
gcd(w, p− 1) or gcd(w − 1, p− 1) is “large”. It is challenging to study gen-
eral w.

2. The bound in Lemma 4.1 does not cover the cases of small w. In
particular, it is an interesting problem to estimate the character sums

N−1∑
u=0

ψ(qp,1(u)).

3. In [32], Shparlinski considered for Fermat quotients the smallest num-
ber Λp such that

{qp(u) : u ∈ {1, . . . , Λp}} = Fp

by estimating Λp ≤ p463/252+o(1). It would be interesting to extend this result
to qp,w.

4. In [34], Shparlinski and the second author introduced the polynomial
Fermat quotients in polynomial rings over finite fields. Let Fq be a finite
field of prime power order q = pr. Then for a fixed irreducible polynomial
P ∈ Fq[X] of degree n ≥ 2 and A ∈ Fq[X], the polynomial Fermat quotient
is defined by

qP (A) ≡ Aqn−1 − 1

P
mod P, deg(qP (A)) < n, if gcd(A,P ) = 1,
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and qP (A) = 0 if gcd(A,P ) = P . The properties, such as the number of fixed
points and the image size, of the polynomial Fermat quotient are investigated
in [34].

Like the definition of polynomial quotients modulo p, one can define

qP,w(A) ≡ Aw −Awqn

P
mod P, deg(qP,w(A)) < n,

for integers w ≥ 1. In particular, −qP,1(A) has been introduced in [27]. Since
qP,1 is a linear map with kernel of dimension dn/pe, we have

#{A : qP,1(A) = B, deg(A) < n} = qdn/pe

for any fixed B = qP,1(A0) for some A0, and hence

#{qP,1(A) : deg(A) < n} = qn−dn/pe.

(See also the proof of [34, Lemma 6].)
Here we present some lower bounds on the image size of qP,w for w > 1.

We only consider the case p - w, since otherwise qP,w is a zero map. Firstly
from

qP,w(A) ≡ −wAwqP (A) mod P,

we reduce the problem to the image size of qP (see [34, Theorem 5]) and
obtain

#{qP,w(A) : deg(A) < n} � gcd(w, qn − 1)

qn2

by using the proof technique of Theorem 3.2. Secondly from

(5.1) qP,w(A) ≡ wAw−1qP,1(A) mod P

we obtain a lower bound similarly in terms of the image size of qP,1 above:

#{qP,w(A) : deg(A) < n} � gcd(w − 1, qn − 1)

qdn/pe
.

Finally from (5.1) again, since there are exactly qn−1
gcd(w−1,qn−1) + 1 different

Aw−1 modulo P for all A with deg(A) < n, we see that there exists a B
such that at least

( qn−1
gcd(w−1,qn−1) + 1

)
/qn−dn/pe A satisfy qP,1(A) = B, but

Aw−1 mod P are different for all such A. Thus we obtain another lower
bound:

#{qP,w(A) : deg(A) < n} � qdn/pe

gcd(w − 1, qn − 1)
.

About the Waring problem for qP,w we cannot say anything more. The
Cauchy–Davenport theorem is not true for arbitrary finite fields in general
and we do not have any results on character sums of qP,w, so we cannot
deal with the Waring problem using the methods in Section 4. But for qP,1
the Waring number does not exist, since qP,1 is a linear map with kernel of
dimension dn/pe, and hence the image of qP,1 is a proper linear subspace of
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Fq[X]/〈P 〉. That is, there does exist an element in Fq[X]/〈P 〉 which cannot
be represented as a sum of qP,1.
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