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1. Introduction. In this paper we are interested in a curve of an abelian
scheme that contains infinitely many isogeny orbits of a finitely generated
group of a simple abelian variety. We prove that it is special. Zilber–Pink
have conjectured, roughly speaking, that a subvariety containing many spe-
cial points must be special. This generalizes many well-known problems
including conjectures of Mordell–Lang, Manin–Mumford and André–Oort.
Special points considered in this paper are isogeny orbits which are closely
related to the generalized Hecke orbits considered by Zilber–Pink. Therefore
our result fits into the context of their conjecture.

Let S be a smooth irreducible algebraic curve over Q, and π : A → S
be an abelian scheme. An abelian scheme A→ S refers to a smooth proper
group scheme with geometrically connected fibers. Then A can be regarded
as a smooth family of abelian varieties over S. Take an abelian variety A′

defined over Q and a finitely generated group Γ ⊂ A′(Q). We call a point
q ∈ At(Q), where t ∈ S(Q), special if there exist an isogeny φ : A′ → At and
γ ∈ Γ with φ(γ) = q. In this paper we prove

Theorem 1.1. Assume that A′ is simple and A is nonisotrivial. If an
irreducible Zariski closed algebraic curve X of A, over Q, dominates S and
contains infinitely many special points, then there exists a positive integer n
such that [n]X(Q) = 0.

Although not used in our proof, under our assumptions a theorem of
Orr [O] implies that X is indeed finite over a special curve. His result to-
gether with ours gives a more precise description of X. Moreover, a recent
work of Gao [G] touches this kind of problem by a different approach. In
particular, if Γ is rank 1 then our result is covered by his Theorem 1.6.

2010 Mathematics Subject Classification: Primary 11G18; Secondary 14K12, 11G50.
Key words and phrases: abelian variety, Siegel modular variety, isogeny, Faltings height,
canonical height, polyhedral reduction theory, Silverman’s specialization theorem.

DOI: 10.4064/aa170-2-4 [161] c© Instytut Matematyczny PAN, 2015



162 Q. Lin and M.-X. Wang

We cannot remove the condition that A′ is simple, because the general
version of Bertrand’s Lemma 3.1 does not readily provide a sufficient lower
bound for the canonical heights of all elements of the finitely generated
group. The proof of our result is based on the comparison of heights, for
which we need Bertrand’s lemma to quantify that the height of a nontorsion
special point gets bigger very fast as the degree of isogeny gets bigger. This
is not the case if A′ is not simple, where certain abelian subvarieties of A′

must be taken into account.

In the next section we prove a partially stronger result in the case of
a family of elliptic curves, and indicate two major obstructions preventing
that argument from working in the case of families of abelian varieties.
In Section 3 we use the polyhedral reduction theory to give a new proof
of the result of Bertrand, which is crucial for this paper. In Section 4 we
present the proof of the main theorem. The basic strategy of our paper is
to compare different heights in number theory, including geometric Faltings
height, Néron–Tate height and Weil height.

Throughout this paper hF (A) refers to the geometric Faltings height of
an abelian variety A over Q, hX,D : X(Q) → R refers to a Weil height

function of a variety over Q with respect to the divisor D, and ĥA,D :
A(Q)→ R refers to the canonical height function of an abelian variety over
Q with respect to a symmetric divisor D. Two linearly equivalent divisors,
respectively isomorphic line bundles, are connected by ∼, respectively ∼=.
The group of linear equivalence classes of divisors or line bundles of X is
Pic(X). For a complete nonsingular curve X over Q, we have a canonical
surjective homomorphism deg : Pic(X) → Z. Let L be an invertible sheaf
of an abelian variety A, χ(L) be its Euler characteristic, and λL be the
morphism from A(Q) to Pic(A). The subgroup Pic0(A) of Pic(A) consists
of invertible sheaves L for which λL ≡ 0. The Néron–Severi group of A is
denoted by NS(A). Points of the dual abelian or Picard variety A∨ of A
parametrize the elements of Pic0(A). A homomorphism of abelian varieties
φ : A→ B gives rise to a dual φ∨ : B∨ → A∨. Write End0(A) = End(A)⊗Q,
on which we have another deg function. The set of isomorphism classes of
pairs (A, λ) with A an abelian variety of dimension g and λ a polarization
of A of degree d = χ(λ) is parametrized by the Siegel modular variety Mg,d;
in particular M1,1 = A1. If Γ is a finitely generated abelian group then
we let Γt, respectively Γnt, be the torsion subgroup, respectively one of its
complements.

2. Isogeny orbits in a family of elliptic curves. In this section
we let S be a smooth irreducible algebraic curve over Q, and π : A → S
an abelian scheme of relative dimension one. Then A can be regarded as
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a smooth family of elliptic curves over S. Take an elliptic curve A′ defined
over Q and a p ∈ A′(Q). We call q ∈ At(Q), where t ∈ S(Q), special if
there exists either an isogeny φ : A′ → At with φ(p) = q, or an isogeny
φ : At → A′ with φ(q) = p. We prove

Proposition 2.1. Assume A is nonisotrivial. If an irreducible Zariski
closed algebraic curve X of A, over Q, contains infinitely many special
points, then either X is some special fiber At that is isogenous to A′, or
there exists a positive integer n such that [n]X(Q) = 0.

Proof. Firstly we assume that X is not any fiber At, otherwise there
is nothing to prove. Secondly we notice that it suffices to prove the result
under the assumption that X is the image of a section s : S → A of π :
A→ S. Indeed, in the general case let X ′ be a smooth resolution of X; then
A ×S X ′ → X ′ is also a smooth family of elliptic curves over X ′, and we
write f : X ′ → A to be the natural morphism.

X ′

f

  

id

&&

s

$$
A×S X ′

pr1
��

pr2
// X ′

π◦f
��

A
π // S

The above commutative diagram provides a section s : X ′ → A ×S X ′ of
A ×S X ′/X ′. Moreover, it is easy to check that s(X ′) ⊂ A ×S X ′ contains
infinitely many special points if and only if X ⊂ A does, and that [n]X = 0
if and only if ([n]◦s)X = 0. Therefore the general case reduces to the special
case that X comes from a section.

If p is a torsion point and A′ has complex multiplication, then our asser-
tion is a special case of a result of André [A] (see also [Pi]). If p is a torsion
point and A′ has no complex multiplication, then by a lemma of Habegger
[H, Lemma 5.8] there are only finitely many elliptic curves isogenous to A′

with bounded height (the proof of Habegger’s statement relies heavily on
the work of Szpiro and Ullmo). This makes André’s argument valid line by
line after replacing Poonen’s lemma [Po] by Habegger’s lemma. From here
on we assume that p is not torsion.

Given an elliptic curve E over Q we write ĥE : E(Q) → R≥0 for the
canonical height function with respect to the divisor given by the zero section
(0) of E/Q. For any other symmetric divisor D of E, the associated canonical
height function satisfies

ĥE,D = degD · ĥE ,
as D ∼ degD(0) for any symmetric divisor D of E. Before proceeding we
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notice that if φ : E′ → E is an isogeny of elliptic curves over Q with φ(a) = b,
where a, b are closed points, then

ĥE(b) = ĥE′,φ∗(0)(a) = deg(φ∗(0))ĥE′(a) = deg φ · ĥE′(a).

Let D be the divisor given by the zero section of the abelian scheme A/S.
Then the canonical height function on At(Q) with respect to degDt is

simply ĥAt , for any t ∈ S(Q). In view of the nonisotriviality of A, the
modular map j : S(Q) → A1(Q) is nonconstant. Without ambiguity we
write h : A1(Q)→ R for the standard Weil height function on A1 and h : s ∈
S(Q)→ h(j(s)) ∈ R for the Weil height function on S with respect to j∗((0)).

There are two types of special points: the back orbit of p and the forward
orbit of p. We first assume that X contains infinitely many back orbits
qi (i = 1, 2, . . .) of p. If qi ∈ Ati , where ti ∈ S(Q), then qi = s(ti). Let
φi : Ati → A′ be the isogeny that satisfies φi(qi) = p. Then

(2.1) ĥAti
(qi) =

ĥA′(p)

deg φi
.

The lemma of Habegger [H, Lemma 5.8] shows that there are only finitely
many elliptic curves over Q within the isogeny class of E′ with bounded
Weil height. Using the nonisotriviality of A, given any elliptic curve E1, we
see that there are only finitely many i such that Eti is isomorphic to E1

over Q. These two facts clearly lead to

(2.2) lim
i→∞

h(ti) =∞.

By Theorem B of [S1] there is a constant C such that

(2.3) lim
h(t)→∞

ĥAt(s(t))

h(t)
= C.

Because of (2.2) we can apply (2.3) to ti and obtain

lim
i→∞

ĥAt(qi)

h(ti)
= C.

Using (2.1) we have

lim
i→∞

ĥA′(p)

deg φi · h(ti)
= C.

As p is not torsion, we have hA′(p) > 0, and therefore the above identity gives
C = 0. Recall that in Silverman’s specialization theorem [S1] the constant
C being 0 means that the canonical height of X regarded as a point in the
abelian variety Aη over the generic point is zero. By the nonisotriviality of
A and the fact that A is of relative dimension one, the Q(S)/Q trace of A
is trivial. This implies that when X is regarded as a point of the abelian
variety Aη over the generic fiber, X must be a torsion point. There exists
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n ∈ Z>0 such that [n]X(Q) = 0, contrary to our assumption that p is not
torsion.

Now we assume that X contains infinitely many forward orbits {qi}∞i=1

of p. Let φi : A′ → Ati be the isogeny that satisfies φi(p) = qi. Then

(2.4) ĥAti
(qi) = deg φi · ĥA′(p).

The inequality of Faltings [F] implies that

(2.5) hF (Ati) ≤ hF (A′) + log(deg φi)/2.

We claim that limi→∞ deg φi = ∞. Otherwise there are infinitely many i
such that Ati are isomorphic to each other over Q, contradicting the fact
that A is nonisotrivial. We also claim that

lim
i→∞

hF (Ati)

h(ti)

is a positive constant. This follows from the property (2.2), the fact that
A is nonisotrivial and Proposition 2.1 of [S2]. These claims combined with

(2.4), (2.5) and ĥA′(p) > 0 lead to

lim
i→∞

ĥAti
(s(ti) = qi)

h(ti)
=∞.

Since (2.2) is still valid, this contradicts Silverman’s specialization theorem
(2.3).

The above argument does not work in the context of families of abelian
varieties for the following reasons. Firstly the relation between canonical
heights of points on isogenious abelian varieties is not as simple as in (2.1).
Secondly the lemma of Habegger is not known in the higher-dimensional
case. More precisely, we do not know whether within an isogeny class of
abelian varieties there are only finitely many ones with bounded height.
Without this result we have no validity of (2.2) in general, which is essential
if we want to directly apply Silverman’s specialization theorem.

3. Polyhedral reduction theory and canonical heights. In this
section we give a proof of Lemma 3.1 below, based on the polyhedral reduc-
tion theory [AMRY]. Actually this lemma is not new. G. Rémond pointed
out to us that it is equivalent to the main theorem of Bertrand [B] in the case
of simple abelian varieties, linked by the theorem of Mordell–Weil. We still
present the proof here, as our approach is rather distinct from Bertrand’s
original one.

Throughout this section, A is an abelian variety over Q. Any symmetric
line bundle L of A defines a canonical height function ĥA,L that is quadratic

on A(Q). We remark that ĥA,L depends only on the class of L in NS(A).
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Indeed, if a symmetric line bundle Lmaps to zero in the short exact sequence

0→ Pic0(A)→ Pic(A)→ NS(A)→ 0,

then L ∈ Pic0(A). This leads to [−1]∗L = L−1. Together with [−1]∗L = L
we have L2 = 0, and therefore ĥA,L ≡ 0. Hence ĥA,L is also a well-defined
function when L is an element in NS(A).

When A is a simple abelian variety, a recent result of Kawaguchi and
Silverman [KS] tells us that for any nonzero nef symmetric L ∈ Pic(A)⊗R
the canonical height ĥA,L(x) is zero if and only if x ∈ A(Q)t.

The endomorphism algebra End0(A) is semisimple and contains End(A)
as a lattice. The unit group (End0(A)⊗R)× is reductive, and Aut(A) is an
arithmetic group. The function deg extends to a homogeneous function of
degree 2g on End0(A)⊗ R.

For x ∈ A(Q) let Tx : A→ A be the translation induced by x on A. For
any line bundle L the theorem of square leads to a group homomorphism

λL : A(Q)→ A∨(Q)

which takes x to T ∗xL ⊗ L−1. It is an isogeny if and only if L is ample.

From here on we fix an ample line bundle N , which defines a Rosati
involution † of φ ∈ End0(A) by φ† = λ−1N ◦ φ∨ ◦ λN . The map

NS(A)Q → End0(A)

defined by L 7→ λ−1N ◦ λL identifies NS(A)Q with the subset of End0(A) of
elements fixed by †. Given φ ∈ Aut(A) and L ∈ Pic(A), it is straightforward
to check that λφ∗(L) = φ∨ ◦ λL ◦φ. This extends to an action of End0(A) on

NS(A)Q ⊂ End0(A) given by αφ = φ† ◦ α ◦ φ. The bilinear form

〈φ, ψ〉 7→ Tr(φ ◦ ψ†)

on End0(A)× End0(A) is positive definite.

As a finite-dimensional algebra over R with a positive involution,
End0(A)⊗R is isomorphic to

∏
iMri(R)×

∏
jMsj (C)×

∏
kMtk(H) where the

involution is given by conjugations. Under this identification the real vector
space N1(A) = NS(A) ⊗ R and the ample cone Amp(A) are isomorphic to∏
iHri(R)×

∏
j Hsj (C)×

∏
kHtk(H) and

∏
i Pri(R)×

∏
j Psj (C)×

∏
k Ptk(H)

respectively, where Hr is the space of symmetric, or respectively Hermitian
symmetric, matrices and Pr consists of the positive ones. Let G(Amp(A)) be
the automorphism group of the cone Amp(A), and G(Amp(A))0 its identity
component. The homomorphism (End0(A)⊗R)× → G(Amp(A))0 is surjec-
tive. Let Amp+(A) be the convex hull of the rational points of Amp(A),
which could be larger than Amp(A). According to Ash’s main result of
polyhedral reduction theory, there exists a (topologically closed) rational
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polyhedral cone F ⊂ Amp+(A) such that Aut(A) ·F = Amp+(A). For more
details we refer to [AMRY] and [Pr].

Using the theorem of Ash we give a new proof of

Lemma 3.1 (Bertrand). Let A be a simple abelian variety defined over Q,
and let Γ ⊂ A(Q) be a finitely generated group. Then there exists a constant
C > 0 depending on Γ and A such that for any symmetric ample divisor
M∈ Pic(A) and nontorsion x ∈ Γ ,

ĥA,M(x) ≥ C(χ(M))1/g.

Proof. It is well-known that End(A) is of finite rank, hence End(A)(Γ )
is also a finitely generated group. Therefore it suffices to prove the lemma
under the assumption that Γ is invariant under Aut(A).

By the polyhedral reduction theory [AMRY], there is a rational polyhe-
dral fundamental domain F ⊂ Amp+(A) under the action of Aut(A). The
rationality of F guarantees that there is a basis

{v1, . . . , vt} ⊂ NS(A) ∩Amp(A)

such that if w ∈ F ∩NS(A), then there are nonnegative real numbers ri with
w =

∑t
i=1 rivi.

We have Γ = Γt + Γnt. Because vi are nef, a result of Kawaguchi–
Silverman [KS] tells us that ĥA,vi is a positive bilinear function on the finitely
generated abelian Γnt, therefore there exists a positive constant c1 such that

(3.1) ĥA,vi(γ) ≥ c1
for all 1 ≤ i ≤ t and all nonzero γ ∈ Γnt. Furthermore for anyM∈ Amp(A)

and x = x1 + x2 ∈ Γ we have ĥA,M(x) = ĥA,M(x2). Consequently, the
inequality (3.1) is valid for all 1 ≤ i ≤ t and nontorsion γ ∈ Γ .

Take a symmetric ample divisor with image M ⊂ F . Then there are
nonnegative real numbers ri such thatM =

∑t
i=1 rivi. In particular for any

nontorsion γ ∈ Γ we have

(3.2) ĥA,M(γ) ≥ c1
t

max
i=1
{ri}.

The degree function deg : End0(A) ⊗ R → R is homogeneous of degree 2g.
Let degM be the degree of the image of M in End0(A)⊗ R. Then

(3.3) degM = (deg λM)/deg λN = c2χ(M)2

where c2 = 1/deg λN . The homogeneity of deg : End0(A) ⊗ R → R implies
that there is a positive constant c3 which depends only on vi but not onM
such that

(3.4) degM≤ c3
t∑
i=1

r2gi .
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Now (3.2)–(3.4) obviously yield a constant C > 0 such that

ĥA,M(γ) ≥ C(χ(M))1/g

for all M⊂ F ∩Amp(A) and nontorsion γ ∈ Γ .

For general M ∈ Amp(A), there exists σ ∈ Aut(A) with σ∗(M) ∈ F .
We have assumed that σ−1(x) ∈ Γ , and it is clear that χ(σ∗(M)) = χ(M).
Therefore, for any nontorsion γ ∈ Γ ,

ĥA,M(γ) = ĥA,σ∗(M)(σ
−1(γ)) ≥ C(χ(M))1/g,

which proves what has been claimed in the lemma.

Notice that the proof is completely geometric and makes no use of the
number field at all. Indeed, by this same proof we can even remove the con-
dition that Γ is defined over Q, with the usual height replaced by Moriwaki’s
arithmetic function height.

This approach might be generalized to give a proof of the full theorem
of Bertrand [B] on abelian varieties, and we shall come back to this point in
the near future.

4. Proof of the main theorem. It is unknown to us whether in an
isogeny class of abelian varieties there are only finitely many ones with
bounded height. Therefore we cannot directly use Silverman’s specialization
theorem as before. Instead we shall use some arguments of [S1] to prove our
main theorem.

Before going to the proof we point out that if the curve X in Theorem 1.1
is not finite over S, then Faltings’ theorem on the Mordell–Lang conjecture
easily implies that X is a translate of an algebraic subgroup of a special
fiber that is isogenous to A′. The simplicity of A′ forces A/S to be an
elliptic scheme, and then X goes to a special elliptic fiber of A/S.

Proof of Theorem 1.1. Firstly we may assume that Γ is invariant under
Aut(A′). Secondly by the same trick used in the proof of Proposition 2.1
we assume that X is the image of a section s : S → A of π : A → S.
We write ε : S → A for the zero section. Throughout the proof we shall
compare different kinds of heights that are constructed under some number
field as field of definition. It will be essential for us to check carefully that
all these heights and corresponding inequalities are indeed independent of
the number field chosen.

In the decomposition Γ = Γt + Γnt, Γt is finite, and so there exists a
positive integer n such that [n]Γt = 0. If there are infinitely many t ∈ S(Q)
such that there exists γt ∈ Γt and an isogeny φt : A′ → At with φt(xt) = s(t),
then we also have [n]s(t) = 0. This implies that [n]X(Q) intersects the zero
section infinitely many times. This leads to [n]X(Q) = 0.



Isogeny orbits in a family of abelian varieties 169

Now we assume that there are infinitely many distinct ti ∈ S(Q) (i ∈ N)
such that there exist γi ∈ Γ \ Γt and isogenies φi : A′ → Ati with φi(γi) =
s(ti).

By a theorem of Grothendieck [R2, Theorem XI.1.4], A is projective
over S (we thank the referee for this reference). Let L1 be a relatively ample
bundle on A/S, and ι : A→ A the map that sends x to −x. As everything is
defined over Q, there exists R ∈ A∨ such that R2 = ι∗L1 ⊗ L−11 . Replacing
L1 by a power of L1 ⊗ R we assume that L1 is a symmetric very ample
invertible sheaf on A. If we replace S by a suitable étale open set, there will
exist a symmetric theta structure. Multiplying the theta structure with a
power of two, we assume that all its elementary divisors are divisible by 4.
Let δ be the type of L1. Then by the theory of theta functions [I], [Mu] there
exists a canonical closed immersion

A ↪→ P(Vδ)× S
where Vδ is the vector space defined in [Mu]. Let A be the closure of A in
P(Vδ)× S and use i to denote the immersion

A ↪→ P(Vδ)× S.
Take L′ to be a very ample line bundle of S, and let πi be the projection of
P(Vδ) × S to its ith factor. We write L = i∗(π∗1(OP(1)) ⊗ π∗2(L′)), which is
very ample on A. Moreover, Ls at any s ∈ S is isomorphic to the symmetric
sheaf (L1)s. Later we shall apply Silverman’s arguments in [S1] and Lemma
3.1 to L and Ls.

The Euler characteristic χ(Lt) is a constant function of t ∈ S(Q), and
we denote it by d. Because A is nonisotrivial, the modular map j : S →Mg,d

is not constant. We claim that

lim
i→∞

deg φi =∞.

Indeed, otherwise there are infinitely many t ∈ S(Q) such that At are all
isomorphic to each other over Q. According to a geometric finiteness theorem
[Mi, Theorem 18.1], given any abelian variety A0 and d ∈ N there are only
finitely many isomorphism classes of polarized abelian varieties (A0, λ) with
λ of degree d. These two facts together force the modular map j : S →Mg,d

to be constant. This contradicts the nonisotriviality of A and proves the
claim.

Concerning isogenies φi of abelian varieties, Faltings’ inequality [F] gives

(4.1) hF (Ati) ≤ hF (A′) + log(deg φi)/2.

Under the isogeny, the canonical heights satisfy ĥAti ,Lti(s(ti))= ĥA′,φ∗i (Lti )(γi).

The Euler characteristics satisfy χ(φ∗i (Lti)) = deg φi · χ(Lti) = ddeg φi. We
apply the lemma in the last section to the fixed abelian variety A′ to find a
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positive constant c1 depending only on A′, L and Γ such that, for all i ∈ N,

(4.2) ĥAti ,Lti (s(ti)) ≥ c1(deg φi)
1/g.

As mentioned before, L gives a projective embedding of A. By this condi-
tion a theorem of Silverman–Tate [S1, Theorem A] applies, and consequently
there exist positive constants c2 and c3 depending only on A/S, L and s
such that for all i ∈ N,

(4.3) |ĥAti ,Lti (s(ti))− hA,L(s(ti))| < c2hS,ε∗(L)(ti) + c3.

Notice that Silverman’s theorem is over Q, and therefore the constants c2
and c3 can be chosen for all ti. Because hA,L(s(ti)) = hS,s∗(L)(ti) and because

both ε∗(L) and s∗(L) are ample, there exist positive constants c4 and c5 such
that

(4.4) hA,L(s(ti)) ≤ c4hS,ε∗(L)(ti) + c5.

Because this inequality is of geometric nature, the constants c4 and c5 can be
chosen independent of the points ti (i ∈ N) and of their fields of definition.

As indicated in [Z], Zarhin’s trick works for families, and therefore B =
(A×A∨)4 is an abelian scheme over S with principal polarization. Because
a constant family of abelian varieties contains no nonconstant subfamily,
B is also nonisotrivial. The modular map J : S →Mg,1 attached to B with
respect to this principal polarization is nonconstant. Let N be an ample line
bundle of the Baily–Borel compactification of Mg,1. By another inequality
(Lemma 4.1 below) of Faltings [F], there exist positive constants c̄1 and c̄2
such that for all i ∈ N,

(4.5) hS,J∗(N )(ti)− hF ((Ati ×A∨ti)
4) ≤ c̄1 + c̄2 log(max(1, hS,J∗(N )(ti))).

By a result of Raynaud [R1, Corollaire 2.1.3], for all i ∈ N,

(4.6) hF ((Ati ×A∨ti)
4) = 8hF (Ati).

The modular map J extends to a map from S to the Baily–Borel compact-
ification of Mg,1, and the zero section map ε extends to a map from S to A,
and both J∗(N ) and ε∗(L) are positive on S. By the fact that there exist
positive numbers c̄3 and c̄5 such that c̄3J

∗(N )− ε∗(L) and c̄5ε
∗(L)− J∗(N )

are ample, there exist real constants c̄4 and c̄6 such that for all i ∈ N,

hS,ε∗(L)(ti) < c̄3hS,J∗(N )(ti) + c̄4,(4.7)

hS,J∗(N )(ti) < c̄5hS,ε∗(L)(ti) + c̄6.(4.8)

With (4.7) applied to the first term of the left hand side of (4.5); (4.6)
applied to the second term of the left hand side of (4.5); and (4.8) applied to
the second term of the right hand side of (4.5), there exist positive constants
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c6, c7 and c8 such that for all i ∈ N,

(4.9) c6hS,ε∗(L)(ti)− hF (Ati) ≤ c7 + c8 log(max(1, hS,ε∗(L)(ti))).

Notice that although this is not explicitly mentioned in [F], one can check
carefully (or see the lemma below) that c8 is independent of the number
field K used there. Combining (4.2)–(4.4) shows that there exist positive
constants c9 and c10 such that for all i ∈ N,

(4.10) c9(deg φi)
1/g ≤ hS,ε∗(L)(ti) + c10.

Combining (4.1) and (4.9) implies that there exist positive constants c11,
c12 and c13 such that for all i ∈ N,

(4.11) hS,ε∗(L)(ti) ≤ c11 + c12 log(max(1, hS,ε∗(L)(ti))) + c13 log(deg φi).

It is clear that (4.10) contradicts (4.11) as deg φi goes to infinity.

Lastly we sketch a calculation to make sure that the positive constants
c3, c4 obtained in [F, p. 356] (we shall write c7 and c8 instead of c3 and c4
used there) are independent of the number fields. The referee has pointed
out that more concrete estimates comparing Faltings heights and certain
Weil heights have already appeared in the literature [Pa]. For our purpose
a slight modification of Faltings’ argument already suffices, and this remark
applies also to some more general schemes than the Siegel modular ones.

Lemma 4.1. Let X ⊂ PnZ be Zariski closed, Y ⊂ X closed, ‖ ‖ an Hermi-
tian metric on O(1)|(X(C)− Y (C)) with logarithmic singularities along Y ,
and ‖ ‖1 an Hermitian metric on O(1)|X(C). For x ∈ X(Q) − Y (Q) one
defines h(x) and h1(x) as in [F]. There exist positive constants c7 and c8
such that for all x ∈ X(Q)− Y (Q) we have

|h(x)− h1(x)| ≤ c7 + c8 log(max(1, h1(x))).

Proof. After replacing O(1) by O(s) with some positive integer s, we
may assume that Y is the intersection of X with a linear subspace, and the
set of common zeros of f1, . . . , fr ∈ Γ (X/Z,O(1)) is exactly Y (see [F]). By
multiplying the metric we assume ‖fi‖1 ≤ 1. A rational point x ∈ X(K)−
Y (K) corresponds to ρ : Spec(R) → X, where R is the integer ring of the
number field K. We assume f1(x) 6= 0. By definition we have

[K : Q]h1(x) ≥
∑
σ

− log ‖f1‖1(σ(x))

and [K : Q]|h(x) − h1(x)| = |
∑

σ log(‖f1‖/‖f1‖1)(σ(x))|, where σ runs
through all embeddings K ↪→ C. Because of logarithmic singularities of
the metric there exist positive constants c′7, c

′
8 such that for every number

field K and a K-rational point x,

[K : Q]|h(x)− h1(x)| ≤ c′7[K : Q] + c′8
∑
σ

log
(
− log ‖f1‖1(σ(x))

)
.
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Furthermore,∑
σ

log
(
− log ‖f1‖1(σ(x))

)
≤ log

(∑
σ

− log ‖f1‖1(σ(x))/[K : Q]
)[K:Q]

≤ [K : Q] log h1(x).

The above inequalities prove the desired claim.
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