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Limit shape of Jarńık’s polygonal curve is a circle

by

Jovǐsa Žunić (Cardiff and Belgrade)

1. Introduction. In this paper we consider a class of convex lattice
polygons which have the minimum possible Euclidean perimeter with respect
to their number of vertices. In other words, if per(P ) denotes the Euclidean
perimeter of P , and p(n) is defined as

p(n) = min{per(P ) : P is a convex lattice n-gon}
then a convex lattice n-gon P is said to be optimal if its perimeter is equal
to p(n). Such a polygon will be denoted by Pn, i.e., per(Pn) = p(n).

Jarńık introduced a special subsequence Pn(t) of the (previously defined)
optimal polygons for a different reason. He was looking for a strictly convex
curve of length at most s containing the maximum number f(s) of points
of Z2 and his main aim was to find the magnitude of f(s) when s tends to
infinity. He shown that if G is a strictly convex curve of a length s, then the
maximum number of integer points lying on G is equal to

3
3
√

2π
s2/3 +O(s1/3).

The exponent and constant are best possible.
In this paper our attention is focused on convex lattice polygons and

not on strictly convex curves passing through their vertices. Our purpose
is to show the existence and to describe the limit shape of an arbitrary
sequence of optimal polygons Pn when n → ∞. Precisely, we show that
after the normalization applied to an arbitrary sequence of optimal convex
lattice polygons, Pn, n = 3, 4, . . . , the resulting sequence of normalized
convex n-gons P ′n tends to a circle as n → ∞. The normalization is made
with respect to the diameter taken in the sense of the l∞-metric—i.e., if a
shape S is given and ∆(S) denotes the diameter of S taken in the sense
of the l∞-metric then the normalized shape, denoted by S ′, is obtained by
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replacing every point (x, y) of S by (x/∆(S), y/∆(S)). In other words, we
set S′ = ∆(S)−1 ·S. In order to obtain an equation of the limit shape of the
sequences of optimal convex lattice polygons, we consider the coordinates
of vertices of normalized optimal polygons P ′n, given in a parametric form
(x̃(n, α), ỹ(n, α)) (α is a suitably chosen parameter), and show that the
limits

x = x(α) = lim
n→∞

x̃(n, α) and y = y(α) = lim
n→∞

ỹ(n, α)

exist independently of which sequence of optimal n-gons is taken (Pn and
P ′n are uniquely determined only for certain values of n). It will turn out
that those limits define a circle.

Roughly speaking, here we consider a “pointwise limit shape” of a se-
quence Pn when n→∞. Other types of limit shape theorems have been con-
sidered recently. Vershik has proved (see [9]) that almost all convex n−1 ·Z2-
lattice polygons lying in the square [−1, 1]2 are very close to a fixed curve as
n→∞. This curve is

√
|y|+

√
|x| = 1. Such a limit shape is of a statistical

nature—no sequence tending to the limit curve was pointed out. The central
limit theorem in the case of this statistical interpretation of the limit shape
is proved in [7]. We also refer to a more recent paper [2] which contains an
extension of the result from [9] (relating to [−1, 1]2) to every compact planar
set K with a nonempty interior—in addition it characterizes the limit shape
as the convex curve with the maximum affine perimeter among all convex
curves contained in K.

Let us mention here a few related results. In [8] it is shown that the expo-
nent 2/3 (in Jarńık’s result) can be decreased by imposing suitable smooth-
ness conditions on G. In particular, if G has a continuous third derivative
with a sensible bound, the best possible value of the exponent lies between
3/5 and 1/3 inclusive. The generalization of this result to higher dimen-
sions is given in [6]. Also (see [3]), if G is the graph of the function f then
the assumptions f ∈ Cd([0, N ]), |f | ≤ N , |f ′| ≤ 1, fd 6= 0 in [0, N ] im-
ply |G ∩ Z2| ≤ c(εd)N1/2+εd where εd → 0 as d → ∞. In particular, if
f ∈ C∞([0, 1]) is strictly convex then |t · G ∩ Z2| ≤ c(f, ε)t1/2+ε for every
ε > 0. In view of the example f(x) =

√
x the exponent 1/2 is best possible.

We continue with the necessary definitions and notations (Section 2) and
derive the limit shape theorem (Section 3) for a subsequence of the optimal
convex lattice polygons having n(t) = 4

∑t
s=1 U(s), t = 1, 2, . . . , vertices,

where U(s) is a partition function. The extension from Jarńık’s sequence
Pn(t) to the whole class of optimal convex lattice polygons Pn, n = 3, 4, . . . ,
is straightforward.

2. Preliminaries. A convex lattice polygon is a polygon whose vertices
all have integer coordinates and whose interior angles are all strictly less
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than π radians (no three vertices are collinear). A polygon with n vertices
will be called an n-gon.

The dilation of a set S by a given factor r is denoted by r · S.
If a and b are integers, then a ⊥ b means that a and b are relatively

prime (i.e., gcd(a, b) = 1).
U(n) is the partition function which counts the number of all positive

solutions of n = q2 + p2 where q and p are relatively prime integers and
the order of the numbers is taken into account. For example, U(170) = 4,
because of 12 + 132 = 132 + 12 = 72 + 112 = 112 + 72 = 170. U(1) is defined
to be 1.

µ(n) is the Möbius function ([1]).
For an edge e = [(x1, y1), (x2, y2)] the differences |x2 − x1| and |y2 − y1|

are denoted by x(e) and y(e), respectively. For practical reasons, we define
the slope of e as y(e)/x(e). For a given integer t we define the set S(t) in
the following way:

S(t) = {p/q : p2 + q2 ≤ t, p ⊥ q, p and q are positive integers}.
The Euclidean norm of a point x ∈ R2 will be denoted by |x|.

It is useful to introduce a (non-strictly) increasing, unbounded, integer
sequence ([5])

n(t) = 4
t∑

s=1

U(s) =
6
π
t+O(

√
t).(1)

A convex lattice polygon P has at most four edges with the same slope
(where the edge slope is as defined previously). Therefore, for any inte-
ger s, P has at most 4U(s) edges with Euclidean length

√
s, if x(e)⊥y(e)

is assumed for any edge e. Consequently, a lower bound for the Euclidean
perimeter of a convex lattice n-gon can be obtained by taking:

• 4U(j) edges with length
√
j (1 ≤ j ≤ t− 1),

• n− n(t− 1) = n− 4
∑t−1

s=1 U(s) edges with length
√
t.

Since the above lower bound is established in a “greedy manner” it will be
called the greedy lower bound and will be denoted by glb(n). Precisely,

glb(n) = (n− n(t− 1))
√
t+ 4

t−1∑

s=1

√
sU(s)(2)

where t is uniquely determined by n(t− 1) ≤ n < n(t).
Trivially, glb(n) ≤ p(n) = per(Pn), and if for n = n(t) the equality

glb(n) = p(n) can be reached only by the above described manner, this
implies the uniqueness of Pn(t), for any integer t.
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Let A0, A1, . . . , An = A0 be the counterclockwise ordered vertices of a
convex lattice n-gon P , and e1 = [A0A1], e2 = [A1A2], . . . , en = [An−1An]
be the vectors determined by consecutive vertices of P . Then e1, e2, . . . , en
can be arranged into: south-east, north-east, north-west and south-west arc,
in a natural way. Only the vertices of the south-east arc will be considered
throughout the rest of the paper. Extension of the results to the other arcs
is straightforward. The south-east arc vertices are A0, A1, . . . , Ak, if A0 is
chosen from the vertices having the minimum y-coordinate, such that it has
the minimum x-coordinate (the “left lowest” point) while the vertex Ak is
one of the vertices having the maximum x-coordinate, which has the min-
imum y-coordinate (the “lowest outermost right” point). For convenience
and without loss of generality, we will assume A0 = (0, 0).

In the rest of the paper (x(n, α), y(n, α)) will denote the endpoint of
the south-east arc edge of Pn having slope α, while (x̃(n, α), ỹ(n, α)) is the
corresponding vertex of the normalized polygon P ′n.

3. Limit shape of the sequence Pn(t), t = 1, 2, . . . In this section
we derive the limit shape theorem for the sequence P ′n(t) of the normalized
optimal convex lattice polygons which are introduced by Jarńık [5]. This is
the crucial case. Extension of the result to an arbitrary sequence P ′n follows
easily from the fact that the number of edges of Pn which are longer than√
t is O(

√
t log t) where t is determined by n(t− 1) ≤ n < n(t).

We start with the asymptotic behavior of x(n(t), α) and y(n(t), α).

Lemma 3.1. Let (x(n(t), α), y(n(t), α)) be the endpoint of the edge of the
south-east arc of Pn(t) with slope α. If A0 is the origin then

x(n(t), α) =
2t
√
t α

π2
√
α2 + 1

+O(t log t),

y(n(t), α) =
2t
√
t

π2

(
1− 1√

α2 + 1

)
+O(t log t).

Proof. The set of the slopes of the edges of the south-east arc of Pn(t)

coincides with the set S(t) = {p/q : p2 + q2 ≤ t, p ⊥ q}. Also, the edges
are arranged in the increasing order of their slopes, since Pn(t) is convex. If
Ai = (x(n(t), α), y(n(t), α)), i = 1, 2, . . . , n(t)/4, is a vertex of the south-east
arc of Pn(t) and α is the slope of ei = [Ai−1Ai], then

x(n(t), α) =
∑

p⊥q
p2+q2≤t
p/q≤α

q and y(n(t), α) =
∑

p⊥q
p2+q2≤t
p/q≤α

p.
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Let us estimate x(n(t), α). The cardinality of the lattice point set

N (v) =
{

(q, p, r) ∈ Z3 : q2 + p2 ≤ v, q > 0, p > 0, p⊥q, p
q
≤ α, q

√
t√
v
≥ r
}

will be denoted by N(v). An important remark is N(t) = x(n(t), α).
Next, let B(v) denote the number of lattice points belonging to the 3D

body

B(v) =
{

(x, y, z) ∈ R3 : x2 + y2 ≤ v, x > 0, y > 0,
y

x
≤ α, x

√
t√
v
≥ z
}
.

Due to Davenport’s result ([4]), for arbitrary t ≥ 0, v ≥ 0, and α ∈ [0, 2π],
we have

(3) |B(v)− volume(B(v))|

≤ 1 +
√
v +

√
α2v

1 + α2 +
√
t+

√
vt

2
+
αv

2
+

√
α2vt

1 + α2 .

Since

volume(B(v)) =
v
√
t α

3
√
α2 + 1

,

by setting v = t/n2 we have (from (3)) the following estimate:

B

(
t

n2

)
=

t
√
t α

3n2
√
α2 + 1

+O
(
t

n

)

for n = 1, . . . , b
√
tc.

Further, for any (a, b, c) belonging to B(v) ∩ Z3 the integer j satisfying
(a, b, c) ∈ j2 · N (v/j2) exists uniquely (precisely j = gcd(a, b)). So, we con-
clude that B(v)∩Z3 equals the union of the nonoverlaping sets i2 · N (v/i2)
for i = 1, . . . , b√vc. In other words

B(v) ∩ Z3 = N (v) ∪ 22 · N
(
v

22

)
∪ . . . ∪ b

√
tc2 · N

(
v

b
√
tc2
)
,

with i 6= j ⇒ i2 · N (v/i2) ∩ j2 · N (v/j2) = ∅.
Consequently,

B(v) = N(v) +N

(
v

22

)
+N

(
v

32

)
+ . . . =

b√vc∑

i=1

N

(
v

i2

)

because N(v/i2) = 0 for i = b√vc + 1, b√vc + 2, . . . Analogously, for v =
t/n2,

B

(
t

n2

)
=
∞∑

m=1

N

(
t

n2m2

)
=
b
√
t/n2c∑

m=1

N

(
t

n2m2

)
.
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Finally, by a standard technique we have

x(n(t), α) = N(t)

=
b
√
tc∑

l=1

N

(
t

l2

)(∑

n|l
µ(n)

)
=
b
√
tc∑

n=1

(
µ(n)

b
√
t/n2c∑

m=1

N

(
t

n2m2

))

=
b
√
tc∑

n=1

µ(n)B
(
t

n2

)
=
b
√
tc∑

n=1

µ(n)
(

t
√
t α

3n2
√
α2 + 1

+O
(
t

n

))

=
t
√
t α

3
√
α2 + 1

b
√
tc∑

n=1

µ(n)
n2 +O

(
t

√
t∑

n=1

1
n

)

=
t
√
t α

3
√
α2 + 1

( ∞∑

n=1

µ(n)
n2 −

∞∑

n=b
√
tc+1

µ(n)
n2

)
+O

(
t

√
t�

1

dx

x

)

=
t
√
t α

3
√
α2 + 1

· 1
ζ(2)

+O(t log t) =
2t
√
t α

π2
√
α2 + 1

+O(t log t).

The asymptotic behavior of y(n(t), α) can be derived analogously—just
notice that the analogue for N(v), say Ñ(v), is the number of lattice points
(q, p, r) satisfying q2 + p2 ≤ v, p, q > 0, p ⊥ q, p/q ≤ α, p

√
t/
√
v ≥ r.

Now, we can prove the required limit shape theorem which shows that
the sequence of normalized optimal polygons P ′n(t) tends to a circle as t→∞
(or equivalently, as n(t)→∞).

Theorem 3.1. There is a positive constant c1 such that the suitable
translate P ′n(t) is contained in the ring of points x with

∣∣∣∣|x| −
1
2

∣∣∣∣ < c1t
−1/2 log t

for t large enough.

Proof. This is a direct consequence of the previous lemma. Noticing that
∆(Pn(t)) equals both 2x(n(t), α) and 2y(n(t), α), for α =∞, we have

∆(P (n(t))) =
4t
√
t

π2 +O(log t).

Further, if A0 = (0, 0) is assumed and P ′n(t) is translated by the vector
(0,−1/2), then the vertices (x̃(n(t), α), ỹ(n(t), α)) of P ′n(t) satisfy

x̃(n(t), α) =
α

2
√
α2 + 1

+O(t−1/2 log t),

ỹ(n(t), α) =
−1

2
√
α2 + 1

+O(t−1/2 log t).
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Consequently,
∣∣|(x̃(n(t), α), ỹ(n(t), α))|− 1

2

∣∣ < c1t
−1/2 log t for some constant

c1 > 0 and t large enough. Since

|e|
∆(Pn(t))

≤
√
t

∆(Pn(t))
= O(t−1)

for any edge e of Pn(t), we conclude that all edges of P ′n(t) belong to the
same ring, as well.
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