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On the counting function for the Niven numbers

by

Jean-Marie De Koninck (Québec), Nicolas Doyon (Québec)
and Imre Kátai (Budapest)

1. Introduction. A positive integer n is said to be a Niven number (or
a Harshad number) if it is divisible by the sum of its decimal digits.

In 1984, Kennedy and Cooper [7] established that the set of Niven num-
bers is of zero density. In 1985, the same authors [1] showed that, given any
t > 0, we have N(x) ≥ logt x provided x is sufficiently large, where N(x)
stands for the number of Niven numbers not exceeding x, and in 1988, they
[2] obtained an asymptotic formula for the number of Niven numbers ≤ x
whose sum of digits equals k. In 1991, Vardi [9] proved that, for any given
ε > 0,

N(x)� x

(log x)1/2−ε

and that there exists a positive constant α such that

N(x) > α
x

(log x)11/2

for infinitely many integers x, namely for all sufficiently large x of the form
x = 1010k+n+2, k and n being positive integers satisfying 10n = 45k + 10.

Recently, De Koninck and Doyon [3] established that, given any fixed
ε > 0,

x1−ε � N(x)� x log log x
log x

,

and conjectured, using a heuristic argument, that, as x→∞,

N(x) = (η + o(1))
x

log x
with η =

14
27

log 10.(1)

More generally, given an integer q ≥ 2, we shall say that a positive integer
is a q-Niven number if it is divisible by the sum of its digits in base q.
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In this paper, we prove that (1) holds and moreover that, given any base
q ≥ 2, a similar result holds for Nq(x), the number of q-Niven numbers not
exceeding x. Hence, our main goal will be to prove the following result.

Theorem 1. As x→∞,

Nq(x) = (ηq + o(1))
x

log x
with ηq =

2 log q
(q − 1)2

q−1∑

j=1

(j, q − 1).(2)

Theorem 1 will follow from our results on the local distribution of α(n),
the sum of the digits of n, when n runs over an arithmetic progression with
growing modulus k. Similar techniques for the study of the sum of digits
function residue classes have been used by other authors, namely Delange
[4] and Gel’fond [6].

2. Notations and preliminary observations. Let N, N0, R and C
stand for the set of positive integers, non-negative integers, real numbers
and complex numbers, respectively.

Throughout this paper, let q ≥ 2 be a fixed integer. The q-ary expansion
of a non-negative integer n is defined as the unique sequence ε0(n), ε1(n), . . .
for which

n =
∞∑

j=0

εj(n)qj, εj(n) ∈ {0, 1, . . . , q − 1}.(3)

Let α(n) = αq(n) be the sum of the digits of n in base q, that is,

α(n) = ε0(n) + ε1(n) + . . .

Given x ∈ R, N ∈ N and z, w ∈ C, we set

S(x|z, w) :=
∑

0≤n<x
zα(n)wn and SN (z, w) := S(qN |z, w).(4)

It is clear that

SN (z, w) =
N−1∏

l=0

(q−1∑

j=0

zj wjq
l
)
.(5)

Let also

U(x|z, k, l) :=
∑

0≤n<x
n≡l (mod k)

zα(n) and UN (z, k, l) := U(qN |z, k, l).(6)

Observe that, using the standard notation e(y) := e2πiy, we have

U(x|z, k, l) =
1
k

k−1∑

s=0

e(−ls/k)S(x|z, e(s/k)).(7)
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Furthermore, if we set

A(x|k, l, t) := #{n < x : n ≡ l (modk) and α(n) = t},(8)

then

A(x|k, l, t) =
1�

0

U(x|e(ξ), k, l)e(−tξ) dξ.(9)

A function g : N0 → C is said to be q-multiplicative if g(0) = 1 and

g(n) =
∞∏

j=0

g(εj(n)qj) (n = 1, 2, . . .).

Now for a q-multiplicative function g, set M(x)=Mq(x)=
∑

0≤n<x g(n).
Given a positive integer x, write

x = b1q
N1 + b2q

N2 + . . .+ bsq
Ns ,(10)

where N1 > . . . > Ns, bj ∈ {1, . . . , q − 1}. Set

x0 = x,

x1 = b2q
N2 + . . .+ bsq

Ns ,

x2 = b3q
N3 + . . .+ bsq

Ns ,
...

xs−1 = bsq
Ns ,

xs = 0

and

ξj =
bj−1∑

c=0

g(cqNj) (j = 1, . . . , s).

Using these notations, it is easy to observe that

M(x) = ξ1M(qN1) + g(b1qN1)M(x1),(11)

and by iteration,

M(x) = ξ1M(qN1) + g(b1qN1)ξ2M(qN2) + g(b1qN1)g(b2qN2)ξ3M(qN3)(12)

+ . . .+ g(b1q
N1) . . . g(bs−1q

Ns−1)ξsg(bsqNs).

Note that S(x|z, w) is such a function.

3. Preliminary lemmas. For y ∈ R, let ‖y‖ be the distance of y to
the closest integer. Let ξ ∈ [0, 1) be fixed.

Lemma 1. Let R ∈ N. Given two coprime positive integers s < k with
(k, q) = 1 and k - q − 1, assume that
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∥∥∥∥ξ +
s

k
qu
∥∥∥∥ <

1
8q

for u = h, h+ 1, . . . , h+R.(13)

Then qR ≤ k/4.

Proof. From (13), it follows that

(14)

∥∥∥∥
s

k
qu(q − 1)

∥∥∥∥ ≤
∥∥∥∥
(
ξ +

s

k
qu+1

)
−
(
ξ +

s

k
qu
)∥∥∥∥ <

1
4q

(u = h, h+ 1, . . . , h+R− 1).

Since k - q−1, the left hand side of (14) is non-zero and therefore it is ≥ 1/k.
Now from (14), we have

∥∥∥∥
s

k
qu+1(q − 1)

∥∥∥∥ = q

∥∥∥∥
s

k
qu(q − 1)

∥∥∥∥ (u = h, h+ 1, . . . , h+R− 2),(15)

and therefore ∥∥∥∥
s

k
qR−1+h(q − 1)

∥∥∥∥ = qR−1
∥∥∥∥
s

k
qh(q − 1)

∥∥∥∥ <
1
4q
.(16)

Hence combining this with our observation that the left hand side of (14)
must be ≥ 1/k, we conclude that

1
k
≤
∥∥∥∥
s

k
qh(q − 1)

∥∥∥∥ <
1

4qR
,

that is qR ≤ k/4, as claimed.

Lemma 2. Let A(x|k, l, t) be as in (8) and S(x|z, w) as in (4). Then
∣∣∣∣A(x|k, l, t)− 1

k
A(x|1, 0, t)

∣∣∣∣ ≤ max
1≤s≤k−1

max
|z|=1

|S(x|z, e(s/k))|.

Proof. This follows immediately from (9) and (7).

Now for 1 ≤ s < k, set

sh = max
0≤j≤q−1

∥∥∥∥jξ + qh
s

k

∥∥∥∥.

Lemma 3. There exists a constant c = c(q) such that
∣∣∣∣
1
q

q−1∑

j=0

e(ξj)e
(
s

k
qhj

)∣∣∣∣ ≤ q−csh .

Proof. This follows immediately from the definition of sh.

4. Local distribution of α(n) as n runs through a congruence
class l (modk)

4.1. We first consider the case (k, q(q − 1)) = 1.
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Theorem 2. Assume that (k, q(q − 1)) = 1. Then, for each integer
l ∈ [0, k − 1] and t ∈ N, we have

∣∣∣∣A(x|k, l, t)− 1
k
A(x|1, 0, t)

∣∣∣∣ ≤ xe
−c1 log x

log 2k ,(17)

where c1 = c1(c, q) is a suitable positive constant independent of k, l and t.

Proof. Let x be written as in (10). Then, from (12), we have

|S(x|z, e(s/k))| ≤ q
s∑

j=1

|SNj (z, e(s/k))|.

To estimate each expression |SNj (z, e(s/k))|, we use Lemmas 1–3.
For k = 2, 3, 4, we set R = 0, while for each k ≥ 5, we set

R =
[

log(kq/4)
log q

]
.

From Lemma 1, we know that

max
h≤u≤h+R

su ≥
1
8q
.

Therefore

|SNj (z, e(s/k))| ≤ qNj · q−
c
8q

[
Nj
R+1

]
,

which completes the proof of Theorem 2.

Remark. It is interesting to observe that the following assertion is also
true:

If (k, q(q − 1)) = 1, then

max
|z|=1

∣∣∣∣
∑

n<x
n≡l (mod k)

zα(n) − 1
k

∑

n<x

zα(n)
∣∣∣∣ ≤ xe

−c1 log x
log 2k .

4.2. We now consider the case (k, q) > 1. Actually we shall reduce this
case to the one of Section 4.1. Indeed, let k = k1k2, where k1 is the largest
divisor of k coprime to q and k2 = k/k1. Further let h be the smallest
positive integer such that k2 | qh. Then the congruence class l (modk) can
be written as the union of some congruence classes mod k1q

h, namely

{n : n ≡ l (modk)} =
qh/k2⋃

j=1

{n : n ≡ l(j) (modk1q
h)}.(18)

First define l(j)1 and l
(j)
2 implicitly by

l(j) = l
(j)
1 + qhl

(j)
2 , 0 ≤ l(j)1 < qh,
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and then write a positive integer n ≡ l(j) (modk1q
h) as

n = l
(j)
1 + qhm ≡ l(j)1 + qhl

(j)
2 (modk1q

h),

which is equivalent to
m ≡ l(j)2 (modk1).(19)

Using this setup, we obtain the following result.

Lemma 4. We have

∑

n<x
n≡l (mod k)

zα(n) =
qh/k2∑

j=1

zα(l(j)1 )
∑

m<x/qh

m≡l(j)2 (mod k1)

zα(m)(20)

and

A(x|k, l, t) =
qh/k2∑

j=1

A

(
x

qh

∣∣∣∣k1, l
(j)
2 , t− α(l(j)1 )

)
.(21)

4.3. We now consider the case k = k1k2, where (k, q) = 1, (k1, q−1) = 1
and all the prime factors of k2 are divisors of q − 1.

Lemma 5. We have

U(x|z, k, l) =
1
k

k2∑

τ=1

e(−lτ/k2)S(x|z, e(τ/k2)) +O(xe−c1
log x
log 2k )(22)

and

U(x|z, k, l) =
1
k1
U(x|z, k2, l) +O(xe−c1

log x
log 2k ).(23)

Proof. It is clear that (23) follows from (22) and (7). Therefore we only
need to prove (22). Recall the representation of U(x|z, k, l) given by (7). For
each 1 ≤ s < k, write s/k = s∗/k∗, where (s∗, k∗) = 1. If k∗ has a prime
factor which does not divide k2, then arguing as in the proof of Theorem 2,
we obtain

|S(x|z, e(s/k))| ≤ xe−c1
log x
log 2k .

Therefore, it remains only to consider those s which are multiples of k1, in
which case we simply write s = τk1, where τ = 0, 1, . . . , k2 − 1, and the
proof is complete.

Corollary. If k = k1k2 with (k, q) = 1, (k1, q − 1) = 1 and all the
prime factors of k2 are divisors of q − 1, then

A(x|k, l, t) =
1
k1
A(x|k2, l, t) +O(xe−c1

log x
log 2k ).(24)

4.4. Assume now that the prime divisors of k divide q−1. For each pos-
itive integer m, let κ(m) = (m, q − 1) and set K = k/κ(k). Then, repeating
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the argument used above and again using Lemmas 1–3, we can conclude
that

A(x|k, l, t) =
1
K
A(x|κ(k), l, t) +O(xe−c1

log x
log 2k ).

4.5. Assume finally that k | q − 1. Since in this case, we have qν ≡ 1
(modk) for each ν ∈ N0, it follows that n ≡ l (modk) implies that α(n) ≡ l
(modk). Consequently,

A(x|k, l, t) =
{

#{n < x : α(n) = t} if t ≡ l (modk),
0 otherwise.

(25)

We now have the proper setup to build the proof of Theorem 1.

5. The proof of Theorem 1. Given x, define Nx as the unique integer
satisfying qNx ≤ x < qNx+1, so that Nx =

[ log x
log q

]
.

Further define

B(x|t) := #{n < x : α(n) = t with t |n},
a(x|t) := A(x|1, 0, t) = #{n < x : α(n) = t}.

Using Theorem 6, Chapter VII, of V. V. Petrov [8] on local distribution of
sums of identically distributed random variables, and by an easy computa-
tion we obtain the following.

Lemma 6. Let

m =
q − 1

2
and σ2 =

1
q

q−1∑

j=1

j2 −m2 =
q2 − 1

12
.

Then

a(x|t) =
x√
Nx

ϕ

(
t−mNx

σ
√
Nx

)
+O

(
x(logNx)3/2

Nx

)
(26)

uniformly in t, where ϕ(y) = (1/
√

2π)e−y
2/2 is the density function of the

Gaussian law.

Remark. For a similar result in a more general setup, see Drmota and
Gajdosik [5].

Now, x being fixed, we define the interval I as follows:

I =
[
q − 1

2
Nx −

Nx

log2Nx
,
q − 1

2
Nx +

Nx

log2Nx

]
.

A simple probabilistic argument shows that

#{n < x : α(n) 6∈ I} � x

log x log log x
.(27)
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Therefore, it is clear that

Nq(x) =
∑

t∈I
B(x|t) +O

(
x

log x log log x

)
.(28)

Let us factorise each t ∈ I as t = t1t2t3, where (t1, q(q − 1)) = 1, the prime
factors of t2 divide q, and the prime factors of t3 divide q − 1.

Fixing t ∈ I, let h be the smallest positive integer such that t2 | qh. Note
that

qh < N c3
x for a suitable positive constant c3 = c3(q).(29)

To see this, first observe that t2 must have a divisor to the h-th power,
and therefore Nx > t2 ≥ 2h, which means that h < logNx/log 2. Hence
qh < qlogNx/log 2 < N c3

x , which proves (29).
Using (21), we obtain

A(x|t, 0, t) =
qh/t2∑

j=1

A

(
x

qh

∣∣∣∣t1t3, l
(j)
2 , t− α(l(j)1 )

)
,(30)

where

l(j) := (t1t3)t2j = l
(j)
1 + qhl

(j)
2 (0 ≤ l(j)1 < qh).(31)

Using (24), we have

(32) A

(
x

qh

∣∣∣∣t1t3, l
(j)
2 , t− α(l(j)1 )

)

=
1
t1
A

(
x

qh

∣∣∣∣t3, l
(j)
2 , t− α(l(j)1 )

)
+O

(
x

qh
e
− c12 ·

log x
log 2t

)
.

Since κ(t3) divides t and l(j), α(l(j)1 ) ≡ l(j)1 (modκ(k3)), l(j) = l
(j)
1 +qhl(j)2

and qh ≡ 1 (modκ(t3)), it follows that

t ≡ α(l(j)1 ) ≡ l(j)2 (modκ(t3)).

Therefore the main term on the right hand side of (32) is, because of (25),

1
t1
· κ(t3)
t3

a

(
x

qh

∣∣∣∣t− α(l(j)1 )
)
.

Consequently, using (30), we obtain

A(x|t, 0, t) =
κ(t3)
t1t3

qh/t2∑

j=1

a

(
x

qh

∣∣∣∣t− α(l(j)1 )
)

+O(xe−
c1
2 ·

log x
log 2t ).(33)
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Using Lemma 6, and after observing that

l
(j)
1 < qh < N c3

x ,

α(l(j)1 ) = O(log l(j)1 ) = O(logNx),

|ϕ(ξ1)− ϕ(ξ2)| � |ξ1 − ξ2|,
(34)

we find that, for each t ∈ I,

a

(
x

qh

∣∣∣∣t− α(l(j)1 )
)

= a

(
x

qh

∣∣∣∣t
)

+O

(
x

qh
· (logNx)3/2

Nx

)
.(35)

Therefore, using (33),

A(x|t, 0, t) =
qhκ(t3)

t
a

(
x

qh

∣∣∣∣t
)

+O

(
x

t
· (logNx)3/2

Nx

)
.(36)

Furthermore, by Lemma 6, we have

(37)

∣∣∣∣qha
(
x

qh

∣∣∣∣t
)
− a(x|t)

∣∣∣∣

�
∣∣∣∣

x√
Nx − h

ϕ

(
t−m(Nx − h)
σ
√
Nx − h

)
− x√

Nx
ϕ

(
t−mNx

σ
√
Nx

)∣∣∣∣

+O

(
x

Nx
(logNx)3/2

)
.

But the expression | . . . | on the right hand side of (37) is no larger than the
error term, which implies that

∣∣∣∣qha
(
x

qh

∣∣∣∣t
)
− a(x|t)

∣∣∣∣�
x

Nx
(logNx)3/2.(38)

Hence, using (36) and (38), we obtain

A(x|t, 0, t) =
κ(t3)
t

a(x|t) +O

(
x

tNx
(logNx)3/2

)
.(39)

From (28) and (39), we then have, since Nx = [logx/log q],

Nq(x) =
∑

t∈I

κ(t3)
t

a(x|t) +O

(
x

Nx log2Nx
(logNx)3/2

)
(40)

=
2

Nx(q − 1)

∑

t∈I
κ(t3)a(x|t) +O

(
x

(log x)(log log x)1/2

)

=
2 log q
log x

· 1
q − 1

∑

t∈I
κ(t3)a(x|t) +O

(
x

(log x)(log log x)1/2

)
.

Since a(x|t) = (1 + o(1))a(x|t + 1) uniformly for t ∈ I, κ(t3) = κ(t), and
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κ(t) is periodic mod q − 1, it follows that

∑

t∈I
κ(t3)a(x|t) =

1
q − 1

(1 + o(1))
∑

t∈I
κ(t)

q−2∑

j=0

a(x|t− j)(41)

= (1 + o(1))
∑

r∈I
a(x|r) · 1

q − 1

q−2∑

j=0

κ(r + j) + E(x),

where E(x) � ∑′ a(x|s), where this last sum runs over those s such that
|s− Ii| ≤ q − 1, the Ii’s being the endpoints of I, that is, I = [I1, I2]. Since
max a(x|t)� x/

√
log x and since the number of s’s counted in

∑′ a(x|s) is
bounded by a multiple of q, it follows that

E(x)� x√
log x

.(42)

Moreover, observe that, because of (27),
∑

r∈I
a(x|r) = x+O

(
x

log x log log x

)
.(43)

Finally, observe that

1
q − 1

q−2∑

j=0

κ(r + j) =
1

q − 1

q−1∑

j=1

κ(j)(44)

is a constant.
Therefore, it follows from (40)–(44) that

Nq(x) = (1 + o(1))
2x

log x
· 1

(q − 1)2

q−1∑

j=1

κ(j),

which implies (2). The proof of Theorem 1 is thus complete.

6. Final remark. A similar result can be established if one replaces
α(n) by a q-additive function f(n) taking integer values and satisfying
f(bqj) = f(b) for all positive integers j.
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Québec G1K 7P4, Canada
E-mail: jmdk@mat.ulaval.ca

doyon@dms.umontreal.ca

Computer Algebra Department
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