On the counting function for the Niven numbers

by
Jean-Marie De Koninck (Québec), Nicolas Doyon (Québec) and Imre Kátai (Budapest)

1. Introduction. A positive integer n is said to be a Niven number (or a Harshad number) if it is divisible by the sum of its decimal digits.

In 1984, Kennedy and Cooper [7] established that the set of Niven numbers is of zero density. In 1985, the same authors [1] showed that, given any $t>0$, we have $N(x) \geq \log ^{t} x$ provided x is sufficiently large, where $N(x)$ stands for the number of Niven numbers not exceeding x, and in 1988, they [2] obtained an asymptotic formula for the number of Niven numbers $\leq x$ whose sum of digits equals k. In 1991, Vardi [9] proved that, for any given $\varepsilon>0$,

$$
N(x) \ll \frac{x}{(\log x)^{1 / 2-\varepsilon}}
$$

and that there exists a positive constant α such that

$$
N(x)>\alpha \frac{x}{(\log x)^{11 / 2}}
$$

for infinitely many integers x, namely for all sufficiently large x of the form $x=10^{10 k+n+2}, k$ and n being positive integers satisfying $10^{n}=45 k+10$.

Recently, De Koninck and Doyon [3] established that, given any fixed $\varepsilon>0$,

$$
x^{1-\varepsilon} \ll N(x) \ll \frac{x \log \log x}{\log x}
$$

and conjectured, using a heuristic argument, that, as $x \rightarrow \infty$,

$$
\begin{equation*}
N(x)=(\eta+o(1)) \frac{x}{\log x} \quad \text { with } \quad \eta=\frac{14}{27} \log 10 \tag{1}
\end{equation*}
$$

More generally, given an integer $q \geq 2$, we shall say that a positive integer is a q-Niven number if it is divisible by the sum of its digits in base q.

[^0]In this paper, we prove that (1) holds and moreover that, given any base $q \geq 2$, a similar result holds for $N_{q}(x)$, the number of q-Niven numbers not exceeding x. Hence, our main goal will be to prove the following result.

Theorem 1. As $x \rightarrow \infty$,

$$
\begin{equation*}
N_{q}(x)=\left(\eta_{q}+o(1)\right) \frac{x}{\log x} \quad \text { with } \quad \eta_{q}=\frac{2 \log q}{(q-1)^{2}} \sum_{j=1}^{q-1}(j, q-1) . \tag{2}
\end{equation*}
$$

Theorem 1 will follow from our results on the local distribution of $\alpha(n)$, the sum of the digits of n, when n runs over an arithmetic progression with growing modulus k. Similar techniques for the study of the sum of digits function residue classes have been used by other authors, namely Delange [4] and Gel'fond [6].
2. Notations and preliminary observations. Let $\mathbb{N}, \mathbb{N}_{0}, \mathbb{R}$ and \mathbb{C} stand for the set of positive integers, non-negative integers, real numbers and complex numbers, respectively.

Throughout this paper, let $q \geq 2$ be a fixed integer. The q-ary expansion of a non-negative integer n is defined as the unique sequence $\epsilon_{0}(n), \epsilon_{1}(n), \ldots$ for which

$$
\begin{equation*}
n=\sum_{j=0}^{\infty} \epsilon_{j}(n) q^{j}, \quad \epsilon_{j}(n) \in\{0,1, \ldots, q-1\} . \tag{3}
\end{equation*}
$$

Let $\alpha(n)=\alpha_{q}(n)$ be the sum of the digits of n in base q, that is,

$$
\alpha(n)=\epsilon_{0}(n)+\epsilon_{1}(n)+\ldots
$$

Given $x \in \mathbb{R}, N \in \mathbb{N}$ and $z, w \in \mathbb{C}$, we set

$$
\begin{equation*}
S(x \mid z, w):=\sum_{0 \leq n<x} z^{\alpha(n)} w^{n} \quad \text { and } \quad S_{N}(z, w):=S\left(q^{N} \mid z, w\right) . \tag{4}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
S_{N}(z, w)=\prod_{l=0}^{N-1}\left(\sum_{j=0}^{q-1} z^{j} w^{j q^{l}}\right) . \tag{5}
\end{equation*}
$$

Let also

$$
\begin{equation*}
U(x \mid z, k, l):=\sum_{\substack{0 \leq n<x \\ n \equiv l(\bmod k)}} z^{\alpha(n)} \text { and } U_{N}(z, k, l):=U\left(q^{N} \mid z, k, l\right) . \tag{6}
\end{equation*}
$$

Observe that, using the standard notation $e(y):=e^{2 \pi i y}$, we have

$$
\begin{equation*}
U(x \mid z, k, l)=\frac{1}{k} \sum_{s=0}^{k-1} e(-l s / k) S(x \mid z, e(s / k)) . \tag{7}
\end{equation*}
$$

Furthermore, if we set

$$
\begin{equation*}
A(x \mid k, l, t):=\#\{n<x: n \equiv l(\bmod k) \text { and } \alpha(n)=t\} \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
A(x \mid k, l, t)=\int_{0}^{1} U(x \mid e(\xi), k, l) e(-t \xi) d \xi \tag{9}
\end{equation*}
$$

A function $g: \mathbb{N}_{0} \rightarrow \mathbb{C}$ is said to be q-multiplicative if $g(0)=1$ and

$$
g(n)=\prod_{j=0}^{\infty} g\left(\epsilon_{j}(n) q^{j}\right) \quad(n=1,2, \ldots)
$$

Now for a q-multiplicative function g, set $M(x)=M_{q}(x)=\sum_{0 \leq n<x} g(n)$. Given a positive integer x, write

$$
\begin{equation*}
x=b_{1} q^{N_{1}}+b_{2} q^{N_{2}}+\ldots+b_{s} q^{N_{s}} \tag{10}
\end{equation*}
$$

where $N_{1}>\ldots>N_{s}, b_{j} \in\{1, \ldots, q-1\}$. Set

$$
\begin{aligned}
x_{0} & =x \\
x_{1} & =b_{2} q^{N_{2}}+\ldots+b_{s} q^{N_{s}} \\
x_{2} & =b_{3} q^{N_{3}}+\ldots+b_{s} q^{N_{s}} \\
& \vdots \\
x_{s-1} & =b_{s} q^{N_{s}}, \\
x_{s} & =0
\end{aligned}
$$

and

$$
\xi_{j}=\sum_{c=0}^{b_{j}-1} g\left(c q^{N_{j}}\right) \quad(j=1, \ldots, s)
$$

Using these notations, it is easy to observe that

$$
\begin{equation*}
M(x)=\xi_{1} M\left(q^{N_{1}}\right)+g\left(b_{1} q^{N_{1}}\right) M\left(x_{1}\right) \tag{11}
\end{equation*}
$$

and by iteration,

$$
\begin{align*}
M(x)= & \xi_{1} M\left(q^{N_{1}}\right)+g\left(b_{1} q^{N_{1}}\right) \xi_{2} M\left(q^{N_{2}}\right)+g\left(b_{1} q^{N_{1}}\right) g\left(b_{2} q^{N_{2}}\right) \xi_{3} M\left(q^{N_{3}}\right) \tag{12}\\
& +\ldots+g\left(b_{1} q^{N_{1}}\right) \ldots g\left(b_{s-1} q^{N_{s-1}}\right) \xi_{s} g\left(b_{s} q^{N_{s}}\right)
\end{align*}
$$

Note that $S(x \mid z, w)$ is such a function.
3. Preliminary lemmas. For $y \in \mathbb{R}$, let $\|y\|$ be the distance of y to the closest integer. Let $\xi \in[0,1)$ be fixed.

Lemma 1. Let $R \in \mathbb{N}$. Given two coprime positive integers $s<k$ with $(k, q)=1$ and $k \nmid q-1$, assume that

$$
\begin{equation*}
\left\|\xi+\frac{s}{k} q^{u}\right\|<\frac{1}{8 q} \quad \text { for } u=h, h+1, \ldots, h+R . \tag{13}
\end{equation*}
$$

Then $\quad q^{R} \leq k / 4$.
Proof. From (13), it follows that

$$
\left.\begin{array}{r}
\left\|\frac{s}{k} q^{u}(q-1)\right\| \leq\left\|\left(\xi+\frac{s}{k} q^{u+1}\right)-\left(\xi+\frac{s}{k} q^{u}\right)\right\| \tag{14}
\end{array}\right)<\frac{1}{4 q} .
$$

Since $k \nmid q-1$, the left hand side of (14) is non-zero and therefore it is $\geq 1 / k$.
Now from (14), we have

$$
\begin{equation*}
\left\|\frac{s}{k} q^{u+1}(q-1)\right\|=q\left\|\frac{s}{k} q^{u}(q-1)\right\| \quad(u=h, h+1, \ldots, h+R-2) \tag{15}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\left\|\frac{s}{k} q^{R-1+h}(q-1)\right\|=q^{R-1}\left\|\frac{s}{k} q^{h}(q-1)\right\|<\frac{1}{4 q} . \tag{16}
\end{equation*}
$$

Hence combining this with our observation that the left hand side of (14) must be $\geq 1 / k$, we conclude that

$$
\frac{1}{k} \leq\left\|\frac{s}{k} q^{h}(q-1)\right\|<\frac{1}{4 q^{R}}
$$

that is $q^{R} \leq k / 4$, as claimed.
Lemma 2. Let $A(x \mid k, l, t)$ be as in (8) and $S(x \mid z, w)$ as in (4). Then

$$
\left|A(x \mid k, l, t)-\frac{1}{k} A(x \mid 1,0, t)\right| \leq \max _{1 \leq s \leq k-1} \max _{|z|=1}|S(x \mid z, e(s / k))| .
$$

Proof. This follows immediately from (9) and (7).
Now for $1 \leq s<k$, set

$$
s_{h}=\max _{0 \leq j \leq q-1}\left\|j \xi+q^{h} \frac{s}{k}\right\|
$$

Lemma 3. There exists a constant $c=c(q)$ such that

$$
\left|\frac{1}{q} \sum_{j=0}^{q-1} e(\xi j) e\left(\frac{s}{k} q^{h} j\right)\right| \leq q^{-c s_{h}} .
$$

Proof. This follows immediately from the definition of s_{h}.

4. Local distribution of $\alpha(n)$ as n runs through a congruence class $l(\bmod k)$

4.1. We first consider the case $(k, q(q-1))=1$.

Theorem 2. Assume that $(k, q(q-1))=1$. Then, for each integer $l \in[0, k-1]$ and $t \in \mathbb{N}$, we have

$$
\begin{equation*}
\left|A(x \mid k, l, t)-\frac{1}{k} A(x \mid 1,0, t)\right| \leq x e^{-c_{1} \frac{\log x}{\log 2 k}} \tag{17}
\end{equation*}
$$

where $c_{1}=c_{1}(c, q)$ is a suitable positive constant independent of k, l and t.
Proof. Let x be written as in (10). Then, from (12), we have

$$
|S(x \mid z, e(s / k))| \leq q \sum_{j=1}^{s}\left|S_{N_{j}}(z, e(s / k))\right|
$$

To estimate each expression $\left|S_{N_{j}}(z, e(s / k))\right|$, we use Lemmas 1-3.
For $k=2,3,4$, we set $R=0$, while for each $k \geq 5$, we set

$$
R=\left[\frac{\log (k q / 4)}{\log q}\right] .
$$

From Lemma 1, we know that

$$
\max _{h \leq u \leq h+R} s_{u} \geq \frac{1}{8 q}
$$

Therefore

$$
\left|S_{N_{j}}(z, e(s / k))\right| \leq q^{N_{j}} \cdot q^{-\frac{c}{8 q}\left[\frac{N_{j}}{R+1}\right]}
$$

which completes the proof of Theorem 2.
REmark. It is interesting to observe that the following assertion is also true:

If $(k, q(q-1))=1$, then

$$
\max _{|z|=1}\left|\sum_{\substack{n<x \\ n \equiv l(\bmod k)}} z^{\alpha(n)}-\frac{1}{k} \sum_{n<x} z^{\alpha(n)}\right| \leq x e^{-c_{1} \frac{\log x}{\log 2 k}}
$$

4.2. We now consider the case $(k, q)>1$. Actually we shall reduce this case to the one of Section 4.1. Indeed, let $k=k_{1} k_{2}$, where k_{1} is the largest divisor of k coprime to q and $k_{2}=k / k_{1}$. Further let h be the smallest positive integer such that $k_{2} \mid q^{h}$. Then the congruence class $l(\bmod k)$ can be written as the union of some congruence classes $\bmod k_{1} q^{h}$, namely

$$
\begin{equation*}
\{n: n \equiv l(\bmod k)\}=\bigcup_{j=1}^{q^{h} / k_{2}}\left\{n: n \equiv l^{(j)}\left(\bmod k_{1} q^{h}\right)\right\} \tag{18}
\end{equation*}
$$

First define $l_{1}^{(j)}$ and $l_{2}^{(j)}$ implicitly by

$$
l^{(j)}=l_{1}^{(j)}+q^{h} l_{2}^{(j)}, \quad 0 \leq l_{1}^{(j)}<q^{h}
$$

and then write a positive integer $n \equiv l^{(j)}\left(\bmod k_{1} q^{h}\right)$ as

$$
n=l_{1}^{(j)}+q^{h} m \equiv l_{1}^{(j)}+q^{h} l_{2}^{(j)}\left(\bmod k_{1} q^{h}\right)
$$

which is equivalent to

$$
\begin{equation*}
m \equiv l_{2}^{(j)}\left(\bmod k_{1}\right) \tag{19}
\end{equation*}
$$

Using this setup, we obtain the following result.
Lemma 4. We have

$$
\begin{equation*}
\sum_{\substack{n<x \\ n \equiv l(\bmod k)}} z^{\alpha(n)}=\sum_{j=1}^{q^{h} / k_{2}} z^{\alpha\left(l_{1}^{(j)}\right)} \sum_{\substack{m<x / q^{h} \\ m \equiv l_{2}^{(j)}\left(\bmod k_{1}\right)}} z^{\alpha(m)} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
A(x \mid k, l, t)=\sum_{j=1}^{q^{h} / k_{2}} A\left(\left.\frac{x}{q^{h}} \right\rvert\, k_{1}, l_{2}^{(j)}, t-\alpha\left(l_{1}^{(j)}\right)\right) \tag{21}
\end{equation*}
$$

4.3. We now consider the case $k=k_{1} k_{2}$, where $(k, q)=1,\left(k_{1}, q-1\right)=1$ and all the prime factors of k_{2} are divisors of $q-1$.

Lemma 5. We have

$$
\begin{equation*}
U(x \mid z, k, l)=\frac{1}{k} \sum_{\tau=1}^{k_{2}} e\left(-l \tau / k_{2}\right) S\left(x \mid z, e\left(\tau / k_{2}\right)\right)+O\left(x e^{-c_{1} \frac{\log x}{\log 2 k}}\right) \tag{22}
\end{equation*}
$$

and

Proof. It is clear that (23) follows from (22) and (7). Therefore we only need to prove (22). Recall the representation of $U(x \mid z, k, l)$ given by (7). For each $1 \leq s<k$, write $s / k=s^{*} / k^{*}$, where $\left(s^{*}, k^{*}\right)=1$. If k^{*} has a prime factor which does not divide k_{2}, then arguing as in the proof of Theorem 2, we obtain

$$
|S(x \mid z, e(s / k))| \leq x e^{-c_{1} \frac{\log x}{\log 2 k}}
$$

Therefore, it remains only to consider those s which are multiples of k_{1}, in which case we simply write $s=\tau k_{1}$, where $\tau=0,1, \ldots, k_{2}-1$, and the proof is complete.

Corollary. If $k=k_{1} k_{2}$ with $(k, q)=1,\left(k_{1}, q-1\right)=1$ and all the prime factors of k_{2} are divisors of $q-1$, then

$$
\begin{equation*}
A(x \mid k, l, t)=\frac{1}{k_{1}} A\left(x \mid k_{2}, l, t\right)+O\left(x e^{-c_{1} \frac{\log x}{\log 2 k}}\right) \tag{24}
\end{equation*}
$$

4.4. Assume now that the prime divisors of k divide $q-1$. For each positive integer m, let $\kappa(m)=(m, q-1)$ and set $K=k / \kappa(k)$. Then, repeating
the argument used above and again using Lemmas 1-3, we can conclude that

$$
A(x \mid k, l, t)=\frac{1}{K} A(x \mid \kappa(k), l, t)+O\left(x e^{-c_{1} \frac{\log x}{\log 2 k}}\right) .
$$

4.5. Assume finally that $k \mid q-1$. Since in this case, we have $q^{\nu} \equiv 1$ $(\bmod k)$ for each $\nu \in \mathbb{N}_{0}$, it follows that $n \equiv l(\bmod k)$ implies that $\alpha(n) \equiv l$ $(\bmod k)$. Consequently,

$$
A(x \mid k, l, t)= \begin{cases}\#\{n<x: \alpha(n)=t\} & \text { if } t \equiv l(\bmod k) \tag{25}\\ 0 & \text { otherwise }\end{cases}
$$

We now have the proper setup to build the proof of Theorem 1.
5. The proof of Theorem 1. Given x, define N_{x} as the unique integer satisfying $q^{N_{x}} \leq x<q^{N_{x}+1}$, so that $N_{x}=\left[\frac{\log x}{\log q}\right]$.

Further define

$$
\begin{aligned}
B(x \mid t) & :=\#\{n<x: \alpha(n)=t \text { with } t \mid n\} \\
a(x \mid t) & :=A(x \mid 1,0, t)=\#\{n<x: \alpha(n)=t\}
\end{aligned}
$$

Using Theorem 6, Chapter VII, of V. V. Petrov [8] on local distribution of sums of identically distributed random variables, and by an easy computation we obtain the following.

Lemma 6. Let

$$
m=\frac{q-1}{2} \quad \text { and } \quad \sigma^{2}=\frac{1}{q} \sum_{j=1}^{q-1} j^{2}-m^{2}=\frac{q^{2}-1}{12} .
$$

Then

$$
\begin{equation*}
a(x \mid t)=\frac{x}{\sqrt{N_{x}}} \varphi\left(\frac{t-m N_{x}}{\sigma \sqrt{N_{x}}}\right)+O\left(\frac{x\left(\log N_{x}\right)^{3 / 2}}{N_{x}}\right) \tag{26}
\end{equation*}
$$

uniformly in t, where $\varphi(y)=(1 / \sqrt{2 \pi}) e^{-y^{2} / 2}$ is the density function of the Gaussian law.

Remark. For a similar result in a more general setup, see Drmota and Gajdosik [5].

Now, x being fixed, we define the interval I as follows:

$$
I=\left[\frac{q-1}{2} N_{x}-\frac{N_{x}}{\log ^{2} N_{x}}, \frac{q-1}{2} N_{x}+\frac{N_{x}}{\log ^{2} N_{x}}\right] .
$$

A simple probabilistic argument shows that

$$
\begin{equation*}
\#\{n<x: \alpha(n) \notin I\} \ll \frac{x}{\log x \log \log x} \tag{27}
\end{equation*}
$$

Therefore, it is clear that

$$
\begin{equation*}
N_{q}(x)=\sum_{t \in I} B(x \mid t)+O\left(\frac{x}{\log x \log \log x}\right) \tag{28}
\end{equation*}
$$

Let us factorise each $t \in I$ as $t=t_{1} t_{2} t_{3}$, where $\left(t_{1}, q(q-1)\right)=1$, the prime factors of t_{2} divide q, and the prime factors of t_{3} divide $q-1$.

Fixing $t \in I$, let h be the smallest positive integer such that $t_{2} \mid q^{h}$. Note that

$$
\begin{equation*}
q^{h}<N_{x}^{c_{3}} \quad \text { for a suitable positive constant } c_{3}=c_{3}(q) \tag{29}
\end{equation*}
$$

To see this, first observe that t_{2} must have a divisor to the h-th power, and therefore $N_{x}>t_{2} \geq 2^{h}$, which means that $h<\log N_{x} / \log 2$. Hence $q^{h}<q^{\log N_{x} / \log 2}<N_{x}^{c_{3}}$, which proves (29).

Using (21), we obtain

$$
\begin{equation*}
A(x \mid t, 0, t)=\sum_{j=1}^{q^{h} / t_{2}} A\left(\left.\frac{x}{q^{h}} \right\rvert\, t_{1} t_{3}, l_{2}^{(j)}, t-\alpha\left(l_{1}^{(j)}\right)\right) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
l^{(j)}:=\left(t_{1} t_{3}\right) t_{2} j=l_{1}^{(j)}+q^{h} l_{2}^{(j)} \quad\left(0 \leq l_{1}^{(j)}<q^{h}\right) \tag{31}
\end{equation*}
$$

Using (24), we have

$$
\begin{align*}
A\left(\left.\frac{x}{q^{h}} \right\rvert\, t_{1} t_{3}, l_{2}^{(j)}\right. & \left., t-\alpha\left(l_{1}^{(j)}\right)\right) \tag{32}\\
& =\frac{1}{t_{1}} A\left(\left.\frac{x}{q^{h}} \right\rvert\, t_{3}, l_{2}^{(j)}, t-\alpha\left(l_{1}^{(j)}\right)\right)+O\left(\frac{x}{q^{h}} e^{-\frac{c_{1}}{2} \cdot \frac{\log x}{\log 2 t}}\right)
\end{align*}
$$

Since $\kappa\left(t_{3}\right)$ divides t and $l^{(j)}, \alpha\left(l_{1}^{(j)}\right) \equiv l_{1}^{(j)}\left(\bmod \kappa\left(k_{3}\right)\right), l^{(j)}=l_{1}^{(j)}+q^{h} l_{2}^{(j)}$ and $q^{h} \equiv 1\left(\bmod \kappa\left(t_{3}\right)\right)$, it follows that

$$
t \equiv \alpha\left(l_{1}^{(j)}\right) \equiv l_{2}^{(j)}\left(\bmod \kappa\left(t_{3}\right)\right)
$$

Therefore the main term on the right hand side of (32) is, because of (25),

$$
\frac{1}{t_{1}} \cdot \frac{\kappa\left(t_{3}\right)}{t_{3}} a\left(\left.\frac{x}{q^{h}} \right\rvert\, t-\alpha\left(l_{1}^{(j)}\right)\right)
$$

Consequently, using (30), we obtain

$$
\begin{equation*}
A(x \mid t, 0, t)=\frac{\kappa\left(t_{3}\right)}{t_{1} t_{3}} \sum_{j=1}^{q^{h} / t_{2}} a\left(\left.\frac{x}{q^{h}} \right\rvert\, t-\alpha\left(l_{1}^{(j)}\right)\right)+O\left(x e^{-\frac{c_{1}}{2} \cdot \frac{\log x}{\log 2 t}}\right) \tag{33}
\end{equation*}
$$

Using Lemma 6, and after observing that

$$
\begin{align*}
& l_{1}^{(j)}<q^{h}<N_{x}^{c_{3}} \\
& \alpha\left(l_{1}^{(j)}\right)=O\left(\log l_{1}^{(j)}\right)=O\left(\log N_{x}\right) \tag{34}\\
& \left|\varphi\left(\xi_{1}\right)-\varphi\left(\xi_{2}\right)\right| \ll\left|\xi_{1}-\xi_{2}\right|
\end{align*}
$$

we find that, for each $t \in I$,

$$
\begin{equation*}
a\left(\left.\frac{x}{q^{h}} \right\rvert\, t-\alpha\left(l_{1}^{(j)}\right)\right)=a\left(\left.\frac{x}{q^{h}} \right\rvert\, t\right)+O\left(\frac{x}{q^{h}} \cdot \frac{\left(\log N_{x}\right)^{3 / 2}}{N_{x}}\right) . \tag{35}
\end{equation*}
$$

Therefore, using (33),

$$
\begin{equation*}
A(x \mid t, 0, t)=\frac{q^{h} \kappa\left(t_{3}\right)}{t} a\left(\left.\frac{x}{q^{h}} \right\rvert\, t\right)+O\left(\frac{x}{t} \cdot \frac{\left(\log N_{x}\right)^{3 / 2}}{N_{x}}\right) \tag{36}
\end{equation*}
$$

Furthermore, by Lemma 6, we have

$$
\begin{align*}
& \left|q^{h} a\left(\left.\frac{x}{q^{h}} \right\rvert\, t\right)-a(x \mid t)\right| \tag{37}\\
& \ll\left|\frac{x}{\sqrt{N_{x}-h}} \varphi\left(\frac{t-m\left(N_{x}-h\right)}{\sigma \sqrt{N_{x}-h}}\right)-\frac{x}{\sqrt{N_{x}}} \varphi\left(\frac{t-m N_{x}}{\sigma \sqrt{N_{x}}}\right)\right| \\
& \\
& \quad+O\left(\frac{x}{N_{x}}\left(\log N_{x}\right)^{3 / 2}\right)
\end{align*}
$$

But the expression $|\ldots|$ on the right hand side of (37) is no larger than the error term, which implies that

$$
\begin{equation*}
\left|q^{h} a\left(\left.\frac{x}{q^{h}} \right\rvert\, t\right)-a(x \mid t)\right| \ll \frac{x}{N_{x}}\left(\log N_{x}\right)^{3 / 2} . \tag{38}
\end{equation*}
$$

Hence, using (36) and (38), we obtain

$$
\begin{equation*}
A(x \mid t, 0, t)=\frac{\kappa\left(t_{3}\right)}{t} a(x \mid t)+O\left(\frac{x}{t N_{x}}\left(\log N_{x}\right)^{3 / 2}\right) \tag{39}
\end{equation*}
$$

From (28) and (39), we then have, since $N_{x}=[\log x / \log q]$,

$$
\begin{align*}
N_{q}(x) & =\sum_{t \in I} \frac{\kappa\left(t_{3}\right)}{t} a(x \mid t)+O\left(\frac{x}{N_{x} \log ^{2} N_{x}}\left(\log N_{x}\right)^{3 / 2}\right) \tag{40}\\
& =\frac{2}{N_{x}(q-1)} \sum_{t \in I} \kappa\left(t_{3}\right) a(x \mid t)+O\left(\frac{x}{(\log x)(\log \log x)^{1 / 2}}\right) \\
& =\frac{2 \log q}{\log x} \cdot \frac{1}{q-1} \sum_{t \in I} \kappa\left(t_{3}\right) a(x \mid t)+O\left(\frac{x}{(\log x)(\log \log x)^{1 / 2}}\right)
\end{align*}
$$

Since $a(x \mid t)=(1+o(1)) a(x \mid t+1)$ uniformly for $t \in I, \kappa\left(t_{3}\right)=\kappa(t)$, and
$\kappa(t)$ is periodic $\bmod q-1$, it follows that

$$
\begin{align*}
\sum_{t \in I} \kappa\left(t_{3}\right) a(x \mid t) & =\frac{1}{q-1}(1+o(1)) \sum_{t \in I} \kappa(t) \sum_{j=0}^{q-2} a(x \mid t-j) \tag{41}\\
& =(1+o(1)) \sum_{r \in I} a(x \mid r) \cdot \frac{1}{q-1} \sum_{j=0}^{q-2} \kappa(r+j)+E(x)
\end{align*}
$$

where $E(x) \ll \sum^{\prime} a(x \mid s)$, where this last sum runs over those s such that $\left|s-I_{i}\right| \leq q-1$, the I_{i} 's being the endpoints of I, that is, $I=\left[I_{1}, I_{2}\right]$. Since $\max a(x \mid t) \ll x / \sqrt{\log x}$ and since the number of s^{\prime} s counted in $\sum^{\prime} a(x \mid s)$ is bounded by a multiple of q, it follows that

$$
\begin{equation*}
E(x) \ll \frac{x}{\sqrt{\log x}} . \tag{42}
\end{equation*}
$$

Moreover, observe that, because of (27),

$$
\begin{equation*}
\sum_{r \in I} a(x \mid r)=x+O\left(\frac{x}{\log x \log \log x}\right) . \tag{43}
\end{equation*}
$$

Finally, observe that

$$
\begin{equation*}
\frac{1}{q-1} \sum_{j=0}^{q-2} \kappa(r+j)=\frac{1}{q-1} \sum_{j=1}^{q-1} \kappa(j) \tag{44}
\end{equation*}
$$

is a constant.
Therefore, it follows from (40)-(44) that

$$
N_{q}(x)=(1+o(1)) \frac{2 x}{\log x} \cdot \frac{1}{(q-1)^{2}} \sum_{j=1}^{q-1} \kappa(j),
$$

which implies (2). The proof of Theorem 1 is thus complete.
6. Final remark. A similar result can be established if one replaces $\alpha(n)$ by a q-additive function $f(n)$ taking integer values and satisfying $f\left(b q^{j}\right)=f(b)$ for all positive integers j.

Acknowledgements. The authors would like to thank the referee whose remarks helped improve the quality of this paper.

References

[1] C. N. Cooper and R. E. Kennedy, On an asymptotic formula for the Niven numbers, Internat. J. Math. Math. Sci. 8 (1985), 537-543.
[2] -, -, A partial asymptotic formula for the Niven numbers, Fibonacci Quart. 26 (1988), 163-168.
[3] J. M. De Koninck and N. Doyon, On the number of Niven numbers up to x, ibid., to appear.
[4] H. Delange, Sur les fonctions q-additives ou q-multiplicatives, Acta Arith. 21 (1972), 285-298.
[5] M. Drmota and J. Gajdosik, The distribution of the sum-of-digits function, J. Théor. Nombres Bordeaux 10 (1998), 17-32.
[6] A. O. Gel'fond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1967/1968), 259-265.
[7] R. E. Kennedy and C. N. Cooper, On the natural density of the Niven numbers, College Math. J. 15 (1984), 309-312.
[8] V. V. Petrov, Sums of Independent Random Variables, Springer, 1975.
[9] I. Vardi, Computational Recreations in Mathematics, Addison-Wesley, Redwood City, CA, 1991.

Département de Mathématiques
Université Laval
Québec G1K 7P4, Canada
E-mail: jmdk@mat.ulaval.ca
doyon@dms.umontreal.ca

Computer Algebra Department
Eötvös Loránd University
Müzeum Krt. 6-8
H-1088 Budapest, Hungary
E-mail: katai@compalg.inf.elte.hu

Received on 20.11.2001
and in revised form on 18.2.2002

[^0]: 2000 Mathematics Subject Classification: 11A25, 11A63, 11K65.
 The first author was supported by a grant from NSERC.

