Another look at real quadratic fields of relative class number 1

by

Debopam Chakraborty and Anupam Saikia (Guwahati)

1. Introduction. A real quadratic field K is necessarily of the form $\mathbb{Q}(\sqrt{m})=\{a+b \sqrt{m} \mid a, b \in \mathbb{Q}\}$ for some square-free natural number m. The discriminant d of K is m if $m \equiv 1(\bmod 4)$, otherwise $d=4 m$. In the former case, the ring \mathcal{O}_{K} of integers of K is $\{a+b(1+\sqrt{m}) / 2 \mid a, b \in \mathbb{Z}\}$, and in the latter case, $\mathcal{O}_{K}=\{a+b \sqrt{m} \mid a, b \in \mathbb{Z}\}$. By Dirichlet's Unit Theorem, the units of \mathcal{O}_{K} are given by $\pm \xi_{m}^{i}(i \in \mathbb{Z})$ where ξ_{m} is called the fundamental unit. The relative class number of K for a conductor f is the ratio $H_{d}(f)$ of the class numbers of $\mathcal{O}_{f}=\mathbb{Z}+f \mathcal{O}_{K}$ and \mathcal{O}_{K}. It was Dirichlet who obtained a nice formula for the relative class number (see [1]):

Result 1.1. Let $\theta(f)$ be the smallest positive integer such that $\xi_{m}^{\theta(f)} \in \mathcal{O}_{f}$ and

$$
\psi(f)=f \prod_{q \mid f}\left(1-\left(\frac{d}{q}\right) \frac{1}{q}\right)
$$

where $\left(\frac{d}{q}\right)$ denotes the "Kronecker residue symbol" of d modulo a prime q. Then the relative class number for conductor f is given by

$$
\begin{equation*}
H_{d}(f)=\frac{\psi(f)}{\theta(f)} \tag{1.1}
\end{equation*}
$$

Recall that the Kronecker residue symbol $\left(\frac{d}{q}\right)$ is the same as the Legendre symbol when q is an odd prime. For $q=2$ and d odd, $\left(\frac{d}{q}\right)$ is 1 if $d \equiv \pm 1$ $(\bmod 8)$, and -1 if $d \equiv \pm 3(\bmod 8)$. The relative class number is always an integer (see [1), hence $\theta(f)$ always divides $\psi(f)$. We will always write the fundamental unit of \mathcal{O}_{K} as

$$
\xi_{m}=\alpha_{0}+\beta_{0} \sqrt{m}, \quad 2 \alpha_{0}, 2 \beta_{0} \in \mathbb{Z} .
$$

[^0]It is well known that $\xi_{m}^{3} \in \mathbb{Z}[\sqrt{m}]$ and, when $m \not \equiv 5(\bmod 8), \alpha_{0}$ and β_{0} are integers. For the rest of the paper, we will use the following notation:

$$
\tilde{\beta}_{0}=\beta_{0}, \quad \tilde{\alpha}_{0}=\alpha_{0} \quad \text { if } \xi_{m} \in \mathbb{Z}[\sqrt{m}], \quad \tilde{\beta}_{0}=2 \beta_{0}, \quad \tilde{\alpha}_{0}=2 \alpha_{0} \quad \text { if } \xi_{m} \notin \mathbb{Z}[\sqrt{m}] .
$$

Observe that if $\tilde{\beta}_{0}$ is divisible by a prime q, then $\theta(q)=1$. When the square-free integer m does not divide $\tilde{\beta}_{0}$, there exists a prime q dividing m such that $\tilde{\beta}_{0}$ is not divisible by q. Taking $f=q$ in Dirichlet's formula, we find that $\psi(q)=q$ and $\theta(q) \neq 1$ is a factor of $\psi(q)$. Hence $\theta(q)=\psi(q)=q$, and $H_{d}(q)=1$. Now we consider $m=1817$ and $f=2$. As $1817 \equiv 1(\bmod 8)$, we find that $H_{d}(2)=1$. But m divides $\tilde{\beta}_{0}$ in this case (see [4]). In other words, non-divisibility of $\tilde{\beta}_{0}$ by m is a sufficient condition for existence of f such that $H_{d}(f)=1$ but it is not a necessary condition. Later, we will obtain a necessary and sufficient condition for existence of f with $H_{d}(f)=1$ when ξ_{m} has norm 1 . We will mostly consider prime conductors $f=p$, and try to determine the smallest exponent $\theta(p)$ that takes the fundamental unit ξ_{m} of $\mathbb{Q}(\sqrt{m})$ into the order \mathcal{O}_{p} of conductor p.
2. Powers of ξ_{m} in \mathcal{O}_{p}. The fundamental unit $\xi_{m}=\alpha_{0}+\beta_{0} \sqrt{m}$ has norm either 1 or -1 , and accordingly, we have $\xi_{m}^{-1}=\alpha_{0}-\beta_{0} \sqrt{m}$ or $\xi_{m}^{-1}=$ $-\left(\alpha_{0}-\beta_{0} \sqrt{m}\right)$. In the following two sections we assume that ξ_{m} has norm 1. We need the next two propositions.

Proposition 2.1. If ξ_{m} has norm 1, then $\xi_{m}^{\left(p-\left(\frac{d}{p}\right)\right) / 2} \in \mathcal{O}_{p}$ for any odd prime p not dividing m.

In fact, one can obtain the following sharper result.
Proposition 2.2. Let p be an odd prime not dividing m. If 2^{s} divides $p-\left(\frac{d}{p}\right)$ and $\xi_{m}^{\left(p-\left(\frac{d}{p}\right)\right) / 2^{s-1}} \equiv 1(\bmod p)$ then $\xi_{m}^{\left(p-\left(\frac{d}{p}\right)\right) / 2^{s}} \in \mathcal{O}_{p}$.

The propositions above can be derived easily by considering congruence. The essential idea lies in the following lemma.

LEMMA 2.3. $\xi_{m}^{p-\left(\frac{d}{p}\right)} \equiv 1(\bmod p)$ for any odd prime p not dividing m.
Proof. Modulo $p \mathcal{O}_{K}$ we have $\xi_{m}^{p} \equiv \alpha_{0}^{p}+\beta_{0}^{p} m^{(p-1) / 2} \sqrt{m} \equiv \alpha_{0}+\left(\frac{m}{p}\right) \beta_{0} \sqrt{m}=\left(\alpha_{0}+\beta_{0} \sqrt{m}\right)^{\left(\frac{m}{p}\right)}=\xi_{m}^{\left(\frac{m}{p}\right)}$. As ξ_{m} is a unit and $\left(\frac{d}{p}\right)=\left(\frac{m}{p}\right)$, it follows that $\xi_{m}^{p-\left(\frac{d}{p}\right)} \equiv 1 \bmod p \mathcal{O}_{K}$.

Proof of Proposition 2.1. Let $\xi_{m}^{\left(p-\left(\frac{d}{p}\right)\right) / 2}=\alpha_{1}+\beta_{1} \sqrt{m}$. It is obvious that $\xi_{m}^{-\left(p-\left(\frac{d}{p}\right)\right) / 2}=\alpha_{1}-\beta_{1} \sqrt{m}$. Now,

$$
2 \beta_{1} \sqrt{m}=\xi_{m}^{-\left(p-\left(\frac{d}{p}\right)\right) / 2}\left(\xi_{m}^{p-\left(\frac{d}{p}\right)}-1\right) \in p \mathcal{O}_{K}
$$

When $\left(\frac{m}{p}\right)=-1, p \mathcal{O}_{K}$ is a prime ideal. As m is not divisible by p, \sqrt{m} does not belong to $p \mathcal{O}_{K}$. Therefore, $2 \beta_{1} \in p \mathbb{Z}$, i.e.,

$$
\xi_{m}^{\left(p-\left(\frac{d}{p}\right)\right) / 2}=\alpha_{1}+\beta_{1} \sqrt{m} \in \mathbb{Z}+p \mathcal{O}_{K}=\mathcal{O}_{p}
$$

When $\left(\frac{m}{p}\right)=1, p \mathcal{O}_{K}$ splits as a product $\wp_{1} \wp_{2}$ of two prime ideals. As m is not divisible by $p, \sqrt{m} \notin \wp_{i}$ and therefore $2 \beta_{1} \in \wp_{i}(i=1,2)$. Consequently, $2 \beta_{1} \in p \mathbb{Z}$, and $\xi_{m}^{\left(p-\left(\frac{d}{p}\right)\right) / 2} \in \mathcal{O}_{p}$ in this case too.

Proof of Proposition 2.2. Let $p-\left(\frac{d}{p}\right)=l 2^{s}$ and $\xi_{m}^{l}=\alpha_{l}+\beta_{l} \sqrt{m}$. From $\xi_{m}^{2 l}-1 \in p \mathcal{O}_{K}$ we can conclude that $4\left(\alpha_{l}^{2}+m \beta_{l}^{2}-1\right)$ and $4 \alpha_{l} \beta_{l}$ are in $p \mathbb{Z}$, noting that α_{l} and β_{l} can be half-integers when $m \equiv 5(\bmod 8)$. If p divides $2 \beta_{l}$ we are done with our proof. If not, then p must divide $2 \alpha_{l}$ from the second condition. But p also divides $4\left(\alpha_{l}^{2}+m \beta_{l}^{2}-1\right)$. Hence $4 m \beta_{l}^{2} \equiv 4$ $(\bmod p)$. On the other hand, ξ_{m}^{l} has norm 1 as ξ_{m} has norm 1. Therefore $4\left(\alpha_{l}^{2}-m \beta_{l}^{2}\right)=4$ and $4 m \beta_{l}^{2} \equiv-4(\bmod p)$. This means p divides 8 , which is a contradiction. Therefore we have our desired result.
3. Fundamental unit of norm -1 . In this section we assume that the fundamental unit $\xi_{m}=\alpha_{0}+\beta_{0} \sqrt{m}$ of $\mathbb{Q}(\sqrt{m})$ has norm -1 , and obtain information about the relative class number for odd prime conductors that do not divide m. We will show that if d is a quadratic non-residue modulo a Mersenne prime f, then the conductor f has relative class number 1. Finally, we will show that if f is a Sophie Germain prime such that d is a quadratic residue modulo $2 f+1$, then the conductor $2 f+1$ has relative class number 1 . Note that we now have $\xi_{m}^{-1}=-\left(\alpha_{0}-\beta_{0} \sqrt{m}\right)$. The following lemma is almost obvious.

LEMMA 3.1. $\xi_{m}{ }^{p-\left(\frac{d}{p}\right)} \equiv\left(\frac{d}{p}\right)(\bmod p)$ for any odd prime p not dividing m.

Proof. We have

$$
\xi_{m}^{p} \equiv \alpha_{0}^{p}+\beta_{0}^{p} m^{(p-1) / 2} \sqrt{m} \equiv \alpha_{0} \pm \beta_{0} \sqrt{m} \equiv\left(\frac{d}{p}\right) \xi_{m}^{\left(\frac{d}{p}\right)}\left(\bmod p \mathcal{O}_{K}\right)
$$

As ξ_{m} is a unit in \mathcal{O}_{K}, the lemma follows.
Proposition 3.2. If p is an odd prime not dividing m then $p \equiv 1$ $(\bmod 4)$ if and only if $\xi_{m}^{\left(p-\left(\frac{d}{p}\right)\right) / 2} \in \mathcal{O}_{p}$.

Proof. We can assume that the fundamental units ξ_{m} are in $\mathbb{Z}[\sqrt{m}]$, as the argument is exactly similar for the case $2 \xi_{m} \in \mathbb{Z}[\sqrt{m}]$ for an odd prime p.

First assume that $p \equiv 1(\bmod 4)$ and $\left(\frac{d}{p}\right)=\left(\frac{m}{p}\right)=1$. Now $\xi_{m}^{(p-1) / 2}=$ $\alpha_{1}+\beta_{1} \sqrt{m}$ has norm 1 as $(p-1) / 2$ is even, so its inverse is $\xi_{m}^{-(p-1) / 2}=$

$$
\begin{aligned}
& \alpha_{1}-\beta_{1} \sqrt{m} . \text { By Lemma 3.1. } \\
& \quad 2 \beta_{1} \sqrt{m}=\xi_{m}^{(p-1) / 2}-\xi_{m}^{-(p-1) / 2}=\xi_{m}^{-(p-1) / 2}\left(\xi_{m}^{p-1}-1\right) \in p \mathcal{O}_{K} .
\end{aligned}
$$

From $2 \beta_{1} \sqrt{m} \in p \mathcal{O}_{K}$ it follows that $2 m \beta_{1}=\sqrt{m} \cdot 2 \beta_{1} \sqrt{m} \in p \mathcal{O}_{K}$. Hence, $2 m \beta_{1} \in p \mathbb{Z}$, so $p \mid \beta_{1}$, since $2 m$ is invertible modulo p.

Now let $p \equiv 1(\bmod 4)$ and $\left(\frac{d}{p}\right)=\left(\frac{m}{p}\right)=-1$, so $p \mathcal{O}_{K}$ is a prime ideal. Then $\xi_{m}^{(p+1) / 2}=\alpha_{2}+\beta_{2} \sqrt{m}$ has norm -1 as $(p+1) / 2$ is odd, so $\alpha_{2}^{2}-m \beta_{2}^{2}=-1$. By Lemma 3.1.

$$
\xi_{m}^{p+1}+1=\left(\xi_{m}^{(p+1) / 2}\right)^{2}+1 \in p \mathcal{O}_{K} \Rightarrow \alpha_{2}^{2}+m \beta_{2}^{2}+1+2 \alpha_{2} \beta_{2} \sqrt{m} \in p \mathcal{O}_{K}
$$

If p does not divide β_{2} then p divides α_{2} and $m \beta_{2}^{2}=1+\alpha_{2}^{2} \equiv 1(\bmod p)$ contradicts $\left(\frac{m}{p}\right)=-1$. Hence, $p \mid \beta_{2}$ and $\xi_{m}^{(p+1) / 2} \in \mathcal{O}_{p}$.

Assume in turn that $p \equiv 3(\bmod 4)$ and $\left(\frac{d}{p}\right)=\left(\frac{m}{p}\right)=-1$ so that $\xi_{m}^{p+1} \equiv-1\left(\bmod p \mathcal{O}_{K}\right)$. Now $\xi_{m}^{(p+1) / 2}=\alpha_{2}+\beta_{2} \sqrt{m}$ has norm 1 as $(p+1) / 2$ is even, so $\alpha_{2}^{2}-m \beta_{2}^{2}=1$. If $\xi_{m}^{(p+1) / 2} \in \mathcal{O}_{p}$, then

$$
p \mid \beta_{2} \Rightarrow-1 \equiv \xi_{m}^{p+1} \equiv \alpha_{2}^{2} \equiv 1\left(\bmod p \mathcal{O}_{K}\right) \Rightarrow p=2
$$

Next assume that $p \equiv 3(\bmod 4)$ and $\left(\frac{d}{p}\right)=\left(\frac{m}{p}\right)=1$ so that $\xi_{m}^{p-1} \equiv 1$ $\left(\bmod p \mathcal{O}_{K}\right)$. Now $\xi_{m}^{(p-1) / 2}=\alpha_{2}+\beta_{2} \sqrt{m}$ has norm -1 as $(p-1) / 2$ is odd, so $\alpha_{2}^{2}-m \beta_{2}^{2}=-1$. Then $\xi_{m}^{p-1}=\alpha_{2}^{2}+m \beta_{2}^{2}+2 \alpha_{2} \beta_{2} \sqrt{m} \equiv 1\left(\bmod p \mathcal{O}_{K}\right)$, so p divides $2 \alpha_{2} \beta_{2}$. If $\xi_{m}^{(p-1) / 2} \in \mathcal{O}_{p}$ then

$$
p \mid \beta_{2} \Rightarrow 1 \equiv \xi_{m}^{p-1} \equiv \alpha_{2}^{2} \equiv-1\left(\bmod p \mathcal{O}_{K}\right) \Rightarrow p=2
$$

The following corollaries now follow immediately from Dirichlet's formula.

Corollary 3.3.
(i) If $p \equiv 1(\bmod 4)$ is an odd prime not dividing m, then the relative class number for conductor p is not 1 .
(ii) If $p \equiv 3(\bmod 4)$ is an odd prime not dividing m, then the relative class number for conductor p is odd.
Proposition 3.4. When $\mathbb{Q}(\sqrt{m})$ has fundamental unit of norm -1 , the relative class number for conductor 3 must be 1 .

Proof. If the fundamental unit of $\mathbb{Q}(\sqrt{m})$ has norm -1 then -1 will be a quadratic residue modulo any odd prime dividing d. Hence only odd primes dividing m must be of the form $4 k+1$. In particular, 3 cannot divide m, and $\psi(3)=2$ or 4 . By the second part of the above corollary, $H_{d}(3)$ is odd. The only odd factor of 2 or 4 is 1 , hence $H_{d}(3)=1$.

Corollary 3.5. There are infinitely many real quadratic fields of relative class number 1 for the conductor 3 .

Proof. If m is a prime which is congruent to 1 modulo 4 , it is an easy exercise to show that the fundamental unit of $\mathbb{Q}(\sqrt{m})$ has norm -1 . By Dirichlet's theorem on primes in arithmetic progression, there are infinitely many such primes m. Hence the corollary follows from Proposition 3.4.

Proposition 3.6. Let $\mathbb{Q}(\sqrt{m})$ be a real quadratic field with fundamental unit ξ_{m} of norm -1. If d is a quadratic non-residue modulo a Mersenne prime f, then the relative class number for conductor f is 1 .

Proof. Let $\xi_{m}=\alpha_{0}+\beta_{0} \sqrt{m}$. Suppose there exists a Mersenne prime $f=2^{p}-1$ for some prime p such that $\left(\frac{d}{f}\right)=-1$. Now,

$$
\psi(f)=f\left(1-\left(\frac{d}{f}\right) \frac{1}{f}\right)=1+f=2^{p}
$$

By Corollary 3.3, $H_{d}(f)$ is an odd divisor of 2^{p}, hence it must be 1.
A prime f is said to be a Sophie Germain prime of the first kind if $2 f+1$ is also a prime. We can deduce the following result.

Proposition 3.7. Let $\mathbb{Q}(\sqrt{m})$ be a real quadratic field with fundamental unit ξ_{m} of norm -1. If d is a quadratic residue modulo $2 f+1$ where f is a sufficiently large Sophie Germain prime of the first kind, then the relative class number for the conductor $2 f+1$ is 1 .

Proof. Let $\xi_{m}=\alpha_{0}+\sqrt{m} \beta_{0}$. Suppose f is a Sophie Germain prime such that d is a quadratic residue modulo the prime $2 f+1$ and $2 f+1$ does not divide $\tilde{\alpha_{0}} \tilde{\beta}_{0}$. Then

$$
\psi(2 f+1)=(2 f+1)\left(1-\left(\frac{d}{2 f+1}\right) \frac{1}{2 f+1}\right)=2 f
$$

Now, $2 f+1$ not dividing $2 m \tilde{\alpha}_{0} \tilde{\beta}_{0}$ implies $\phi(f) \neq 2$. By Proposition 3.2,

$$
2 f+1 \equiv 3(\bmod 4) \Rightarrow \theta(f) \neq f \Rightarrow \theta(f)=2 f
$$

Therefore,

$$
H_{d}(2 f+1)=\frac{\psi(2 f+1)}{\theta(2 f+1)}=1
$$

The following corollary follows directly from the previous two propositions.

Corollary 3.8. Suppose $\mathbb{Q}(\sqrt{m})$ has only finitely many prime conductors of relative class number 1. Then
(i) There are only finitely many Mersenne primes with d as quadratic non-residue.
(ii) There are only finitely many Sophie Germain primes of the first kind with d as quadratic residue.
4. A criterion for non-existence of conductor of relative class number 1. The main result of this section is the following criterion for nonexistence of a conductor f for which the relative class number of $\mathbb{Q}(\sqrt{m})$ is 1 . As before, we have $\xi_{m}=\alpha_{0}+\beta_{0} \sqrt{m}$ as the fundamental unit and d is the discriminant of $\mathbb{Q}(\sqrt{m})$. In view of Proposition 3.4. ξ_{m} must have norm 1 .

Theorem 4.1. There does not exist any conductor f for which the relative class number of $\mathbb{Q}(\sqrt{m})$ is 1 if and only if
(i) m divides $\tilde{\beta}_{0}$, and
(ii) if m is odd then $m \neq 1(\bmod 8)$ and $\tilde{\beta}_{0}$ is an even integer.

Proof. Let us first prove the sufficiency. If p is an odd prime dividing m, then p divides $\tilde{\beta}_{0}$. So $\xi_{m} \in \mathcal{O}_{p}$ and $\theta(p)=1$. But

$$
\psi(p)=p\left(1-\left(\frac{d}{p}\right) \frac{1}{p}\right)=p>1 .
$$

If p is an odd prime not dividing m then by Proposition 2.1 we have $\xi_{m}^{\left(p-\left(\frac{d}{p}\right)\right) / 2} \in \mathcal{O}_{p}$. Therefore, $\theta(p) \leq\left(p-\left(\frac{d}{p}\right)\right) / 2$. Now by the formula 1.1 of Dirichlet,

$$
\psi(p)=p\left(1-\left(\frac{d}{p}\right) \frac{1}{p}\right) \Rightarrow H_{d}(p)=\frac{\psi(p)}{\theta(p)} \geq 2 .
$$

The only remaining prime is $p=2$ when m is odd. Under the given conditions, $\psi(2)=2\left(1-\left(\frac{d}{2}\right) \frac{1}{2}\right)=3$ or $2($ when $d \equiv-3(\bmod 8))$, and $\theta(2)=1$ as $\tilde{\beta}_{0}$ is even. Therefore, $H_{d}(2)>1$. For any non-prime conductor f, our theorem follows from the fact that $H_{d}(g)$ divides $H_{d}(f)$ if g divides f (see [1]).

Conversely, suppose there does not exist any f with $H_{d}(f)=1$. Any prime q that divides m but does not divide $\tilde{\beta}_{0}$ will give $H_{d}(q)=\psi(q) / \theta(q)=1$. Hence m must divide $\tilde{\beta_{0}}$. Also, $H_{d}(2) \neq 1$ implies that

$$
\psi(2)=2\left(1-\left(\frac{d}{2}\right) \frac{1}{2}\right)=2 \text { or } 3
$$

and hence m must be of the form $m \not \equiv 1(\bmod 8)$ if m is odd. In that case, $\theta(2)=1$ and hence $\tilde{\beta}_{0}$ must be an even integer.

Example. Consider $m=46$. It is well known that $\beta_{0}=3588$ (see [2]), which is divisible by 46 . Hence $\mathbb{Q}(\sqrt{46})$ does not have relative class number 1 for any conductor.

Acknowledgements. We would like to thank the anonymous referee for his/her valuable comments.

References

[1] H. Cohn, A numerical study of the relative class numbers of real quadratic integral domains, Math. Comp. 16 (1962), 127-140.
[2] H. Davenport, The Higher Arithmetic, 8th ed., Cambridge Univ. Press, 2008.
[3] R. A. Mollin, Proof of relative class number one for almost all real quadratic fields and a counterexample for the rest, Gen. Math. Notes 17 (2013), no. 2, 81-90.
[4] A. J. Stephens and H. C. Williams, Some computational results on a problem concerning powerful numbers, Math. Comp. 50 (1988), 619-632.

Debopam Chakraborty, Anupam Saikia
Department of Mathematics
Indian Institute of Technology, Guwahati
Guwahati 781039, Assam, India
E-mail: c.debopam@iitg.ernet.in
a.saikia@iitg.ernet.in

Received on 8.10.2013
and in revised form on 19.3.2014

[^0]: 2010 Mathematics Subject Classification: Primary 11R11; Secondary 11R65. Key words and phrases: relative class number, fundamental unit.

