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Another look at real quadratic fields
of relative class number 1
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1. Introduction. A real quadratic field K is necessarily of the form
Q(
√
m) = {a + b

√
m | a, b ∈ Q} for some square-free natural number m.

The discriminant d of K is m if m ≡ 1 (mod 4), otherwise d = 4m. In the
former case, the ring OK of integers of K is {a + b(1 +

√
m)/2 | a, b ∈ Z},

and in the latter case, OK = {a + b
√
m | a, b ∈ Z}. By Dirichlet’s Unit

Theorem, the units of OK are given by ±ξim (i ∈ Z) where ξm is called the
fundamental unit. The relative class number of K for a conductor f is the
ratio Hd(f) of the class numbers of Of = Z+fOK and OK . It was Dirichlet
who obtained a nice formula for the relative class number (see [1]):

Result 1.1. Let θ(f) be the smallest positive integer such that ξ
θ(f)
m ∈ Of

and

ψ(f) = f
∏
q|f

(
1−

(
d

q

)
1

q

)
,

where
(
d
q

)
denotes the “Kronecker residue symbol” of d modulo a prime q.

Then the relative class number for conductor f is given by

(1.1) Hd(f) =
ψ(f)

θ(f)
.

Recall that the Kronecker residue symbol
(
d
q

)
is the same as the Legendre

symbol when q is an odd prime. For q = 2 and d odd,
(
d
q

)
is 1 if d ≡ ±1

(mod 8), and −1 if d ≡ ±3 (mod 8). The relative class number is always an
integer (see [1]), hence θ(f) always divides ψ(f). We will always write the
fundamental unit of OK as

ξm = α0 + β0
√
m, 2α0, 2β0 ∈ Z.
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It is well known that ξ3m ∈ Z[
√
m] and, when m 6≡ 5 (mod 8), α0 and β0 are

integers. For the rest of the paper, we will use the following notation:

β̃0 = β0, α̃0 =α0 if ξm∈Z[
√
m], β̃0 = 2β0, α̃0 = 2α0 if ξm 6∈Z[

√
m].

Observe that if β̃0 is divisible by a prime q, then θ(q) = 1. When the
square-free integer m does not divide β̃0, there exists a prime q dividing m
such that β̃0 is not divisible by q. Taking f = q in Dirichlet’s formula, we find
that ψ(q) = q and θ(q) 6= 1 is a factor of ψ(q). Hence θ(q) = ψ(q) = q, and
Hd(q) = 1. Now we consider m = 1817 and f = 2. As 1817 ≡ 1 (mod 8), we
find that Hd(2) = 1. But m divides β̃0 in this case (see [4]). In other words,
non-divisibility of β̃0 by m is a sufficient condition for existence of f such
that Hd(f) = 1 but it is not a necessary condition. Later, we will obtain a
necessary and sufficient condition for existence of f with Hd(f) = 1 when
ξm has norm 1. We will mostly consider prime conductors f = p, and try to
determine the smallest exponent θ(p) that takes the fundamental unit ξm of
Q(
√
m) into the order Op of conductor p.

2. Powers of ξm in Op. The fundamental unit ξm = α0 + β0
√
m has

norm either 1 or −1, and accordingly, we have ξ−1m = α0 − β0
√
m or ξ−1m =

−(α0−β0
√
m). In the following two sections we assume that ξm has norm 1.

We need the next two propositions.

Proposition 2.1. If ξm has norm 1, then ξ
(p−( d

p
))/2

m ∈ Op for any odd
prime p not dividing m.

In fact, one can obtain the following sharper result.

Proposition 2.2. Let p be an odd prime not dividing m. If 2s divides

p−
(
d
p

)
and ξm

(p−( d
p
))/2s−1

≡ 1 (mod p) then ξ
(p−( d

p
))/2s

m ∈ Op.
The propositions above can be derived easily by considering congruence.

The essential idea lies in the following lemma.

Lemma 2.3. ξ
p−( d

p
)

m ≡ 1 (mod p) for any odd prime p not dividing m.

Proof. Modulo pOK we have

ξpm ≡ α
p
0 + βp0m

(p−1)/2√m ≡ α0 +

(
m

p

)
β0
√
m = (α0 + β0

√
m)

(m
p
)

= ξ
(m
p
)

m .

As ξm is a unit and
(
d
p

)
=
(
m
p

)
, it follows that ξ

p−( d
p
)

m ≡ 1 mod pOK .

Proof of Proposition 2.1. Let ξ
(p−( d

p
))/2

m = α1 +β1
√
m. It is obvious that

ξ
−(p−( d

p
))/2

m = α1 − β1
√
m. Now,

2β1
√
m = ξ

−(p−( d
p
))/2

m

(
ξ
p−( d

p
)

m − 1
)
∈ pOK .
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When
(
m
p

)
= −1, pOK is a prime ideal. As m is not divisible by p,

√
m does

not belong to pOK . Therefore, 2β1 ∈ pZ, i.e.,

ξ
(p−( d

p
))/2

m = α1 + β1
√
m ∈ Z + pOK = Op.

When
(
m
p

)
= 1, pOK splits as a product ℘1℘2 of two prime ideals. As m is

not divisible by p,
√
m 6∈ ℘i and therefore 2β1 ∈ ℘i (i = 1, 2). Consequently,

2β1 ∈ pZ, and ξ
(p−( d

p
))/2

m ∈ Op in this case too.

Proof of Proposition 2.2. Let p−
(
d
p

)
= l2s and ξlm = αl + βl

√
m. From

ξ2lm − 1 ∈ pOK we can conclude that 4(α2
l + mβ2l − 1) and 4αlβl are in pZ,

noting that αl and βl can be half-integers when m ≡ 5 (mod 8). If p divides
2βl we are done with our proof. If not, then p must divide 2αl from the
second condition. But p also divides 4(α2

l + mβ2l − 1). Hence 4mβ2l ≡ 4
(mod p). On the other hand, ξlm has norm 1 as ξm has norm 1. Therefore
4(α2

l −mβ2l ) = 4 and 4mβ2l ≡ −4 (mod p). This means p divides 8, which
is a contradiction. Therefore we have our desired result.

3. Fundamental unit of norm −1. In this section we assume that
the fundamental unit ξm = α0 +β0

√
m of Q(

√
m) has norm −1, and obtain

information about the relative class number for odd prime conductors that
do not divide m. We will show that if d is a quadratic non-residue modulo a
Mersenne prime f , then the conductor f has relative class number 1. Finally,
we will show that if f is a Sophie Germain prime such that d is a quadratic
residue modulo 2f+1, then the conductor 2f+1 has relative class number 1.
Note that we now have ξ−1m = −(α0−β0

√
m). The following lemma is almost

obvious.

Lemma 3.1. ξm
p−
(

d
p

)
≡
(
d
p

)
(mod p) for any odd prime p not dividing

m.

Proof. We have

ξpm ≡ α
p
0 + βp0m

(p−1)/2√m ≡ α0 ± β0
√
m ≡

(
d

p

)
ξ
( d
p
)

m (mod pOK),

As ξm is a unit in OK , the lemma follows.

Proposition 3.2. If p is an odd prime not dividing m then p ≡ 1

(mod 4) if and only if ξ
(p−( d

p
))/2

m ∈ Op.
Proof. We can assume that the fundamental units ξm are in Z[

√
m],

as the argument is exactly similar for the case 2ξm ∈ Z[
√
m ] for an odd

prime p.

First assume that p ≡ 1 (mod 4) and
(
d
p

)
=
(
m
p

)
= 1. Now ξ

(p−1)/2
m =

α1 + β1
√
m has norm 1 as (p− 1)/2 is even, so its inverse is ξ

−(p−1)/2
m =
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α1 − β1
√
m. By Lemma 3.1,

2β1
√
m = ξ(p−1)/2m − ξ−(p−1)/2m = ξ−(p−1)/2m (ξp−1m − 1) ∈ pOK .

From 2β1
√
m ∈ pOK it follows that 2mβ1 =

√
m · 2β1

√
m ∈ pOK . Hence,

2mβ1 ∈ pZ, so p |β1, since 2m is invertible modulo p.
Now let p ≡ 1 (mod 4) and

(
d
p

)
=
(
m
p

)
= −1, so pOK is a prime

ideal. Then ξ
(p+1)/2
m = α2 + β2

√
m has norm −1 as (p+ 1)/2 is odd, so

α2
2 −mβ22 = −1. By Lemma 3.1,

ξp+1
m + 1 = (ξ(p+1)/2

m )2 + 1 ∈ pOK ⇒ α2
2 +mβ22 + 1 + 2α2β2

√
m ∈ pOK .

If p does not divide β2 then p divides α2 and mβ22 = 1 + α2
2 ≡ 1 (mod p)

contradicts
(
m
p

)
= −1. Hence, p |β2 and ξ

(p+1)/2
m ∈ Op.

Assume in turn that p ≡ 3 (mod 4) and
(
d
p

)
=
(
m
p

)
= −1 so that

ξp+1
m ≡ −1 (mod pOK). Now ξ

(p+1)/2
m = α2 +β2

√
m has norm 1 as (p+ 1)/2

is even, so α2
2 −mβ22 = 1. If ξ

(p+1)/2
m ∈ Op, then

p |β2 ⇒ −1 ≡ ξp+1
m ≡ α2

2 ≡ 1 (mod pOK) ⇒ p = 2.

Next assume that p ≡ 3 (mod 4) and
(
d
p

)
=
(
m
p

)
= 1 so that ξp−1m ≡ 1

(mod pOK). Now ξ
(p−1)/2
m = α2 + β2

√
m has norm −1 as (p− 1)/2 is odd,

so α2
2 −mβ22 = −1. Then ξp−1m = α2

2 +mβ22 + 2α2β2
√
m ≡ 1 (mod pOK), so

p divides 2α2β2. If ξ
(p−1)/2
m ∈ Op then

p |β2 ⇒ 1 ≡ ξp−1m ≡ α2
2 ≡ −1 (mod pOK) ⇒ p = 2.

The following corollaries now follow immediately from Dirichlet’s for-
mula.

Corollary 3.3.

(i) If p ≡ 1 (mod 4) is an odd prime not dividing m, then the relative
class number for conductor p is not 1.

(ii) If p ≡ 3 (mod 4) is an odd prime not dividing m, then the relative
class number for conductor p is odd.

Proposition 3.4. When Q(
√
m) has fundamental unit of norm −1, the

relative class number for conductor 3 must be 1.

Proof. If the fundamental unit of Q(
√
m) has norm −1 then −1 will be a

quadratic residue modulo any odd prime dividing d. Hence only odd primes
dividing m must be of the form 4k + 1. In particular, 3 cannot divide m,
and ψ(3) = 2 or 4. By the second part of the above corollary, Hd(3) is odd.
The only odd factor of 2 or 4 is 1, hence Hd(3) = 1.

Corollary 3.5. There are infinitely many real quadratic fields of rela-
tive class number 1 for the conductor 3.
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Proof. If m is a prime which is congruent to 1 modulo 4, it is an easy
exercise to show that the fundamental unit of Q(

√
m) has norm −1. By

Dirichlet’s theorem on primes in arithmetic progression, there are infinitely
many such primes m. Hence the corollary follows from Proposition 3.4.

Proposition 3.6. Let Q(
√
m) be a real quadratic field with fundamental

unit ξm of norm −1. If d is a quadratic non-residue modulo a Mersenne
prime f , then the relative class number for conductor f is 1.

Proof. Let ξm = α0 + β0
√
m. Suppose there exists a Mersenne prime

f = 2p − 1 for some prime p such that
(
d
f

)
= −1. Now,

ψ(f) = f

(
1−

(
d

f

)
1

f

)
= 1 + f = 2p.

By Corollary 3.3, Hd(f) is an odd divisor of 2p, hence it must be 1.

A prime f is said to be a Sophie Germain prime of the first kind if 2f+1
is also a prime. We can deduce the following result.

Proposition 3.7. Let Q(
√
m) be a real quadratic field with fundamental

unit ξm of norm −1. If d is a quadratic residue modulo 2f + 1 where f is
a sufficiently large Sophie Germain prime of the first kind, then the relative
class number for the conductor 2f + 1 is 1.

Proof. Let ξm = α0+
√
mβ0. Suppose f is a Sophie Germain prime such

that d is a quadratic residue modulo the prime 2f + 1 and 2f + 1 does not
divide α̃0β̃0. Then

ψ(2f + 1) = (2f + 1)

(
1−

(
d

2f + 1

)
1

2f + 1

)
= 2f.

Now, 2f + 1 not dividing 2mα̃0β̃0 implies φ(f) 6= 2. By Proposition 3.2,

2f + 1 ≡ 3 (mod 4) ⇒ θ(f) 6= f ⇒ θ(f) = 2f.

Therefore,

Hd(2f + 1) =
ψ(2f + 1)

θ(2f + 1)
= 1.

The following corollary follows directly from the previous two proposi-
tions.

Corollary 3.8. Suppose Q(
√
m) has only finitely many prime conduc-

tors of relative class number 1. Then

(i) There are only finitely many Mersenne primes with d as quadratic
non-residue.

(ii) There are only finitely many Sophie Germain primes of the first kind
with d as quadratic residue.
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4. A criterion for non-existence of conductor of relative class
number 1. The main result of this section is the following criterion for non-
existence of a conductor f for which the relative class number of Q(

√
m)

is 1. As before, we have ξm = α0 + β0
√
m as the fundamental unit and d

is the discriminant of Q(
√
m). In view of Proposition 3.4, ξm must have

norm 1.

Theorem 4.1. There does not exist any conductor f for which the rel-
ative class number of Q(

√
m) is 1 if and only if

(i) m divides β̃0, and
(ii) if m is odd then m 6= 1 (mod 8) and β̃0 is an even integer.

Proof. Let us first prove the sufficiency. If p is an odd prime dividing m,
then p divides β̃0. So ξm ∈ Op and θ(p) = 1. But

ψ(p) = p

(
1−

(
d

p

)
1

p

)
= p > 1.

If p is an odd prime not dividing m then by Proposition 2.1 we have

ξ
(p−( d

p
))/2

m ∈ Op. Therefore, θ(p) ≤ (p− (dp))/2. Now by the formula (1.1) of
Dirichlet,

ψ(p) = p

(
1−

(
d

p

)
1

p

)
⇒ Hd(p) =

ψ(p)

θ(p)
≥ 2.

The only remaining prime is p = 2 when m is odd. Under the given con-
ditions, ψ(2) = 2

(
1 −

(
d
2

)
1
2

)
= 3 or 2 (when d ≡ −3 (mod 8)), and

θ(2) = 1 as β̃0 is even. Therefore, Hd(2) > 1. For any non-prime con-
ductor f , our theorem follows from the fact that Hd(g) divides Hd(f) if g
divides f (see [1]).

Conversely, suppose there does not exist any f with Hd(f) = 1. Any
prime q that dividesm but does not divide β̃0 will giveHd(q) =ψ(q)/θ(q) = 1.
Hence m must divide β̃0. Also, Hd(2) 6= 1 implies that

ψ(2) = 2

(
1−

(
d

2

)
1

2

)
= 2 or 3,

and hence m must be of the form m 6≡ 1 (mod 8) if m is odd. In that case,
θ(2) = 1 and hence β̃0 must be an even integer.

Example. Consider m = 46. It is well known that β0 = 3588 (see [2]),
which is divisible by 46. Hence Q(

√
46) does not have relative class number 1

for any conductor.
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