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1. Introduction. While studying the transformation properties of what
we now call the Dedekind η-function η(z) := eπiz/12

∏
n≥1

(
1− e2πinz

)
under

SL2(Z), Richard Dedekind, in the 1880s [10], naturally arrived at what we
today call the Dedekind sum

s(a, b) :=
b−1∑
k=0

((
ka

b

))((
k

b

))
,

where a and b are positive integers and

((x)) :=

{
x− bxc − 1/2 if x /∈ Z,
0 if x ∈ Z.

The Dedekind sum and its generalizations have since intrigued mathemati-
cians from various areas such as analytic (see, e.g., [1, 3]) and algebraic
number theory (see, e.g., [9, 17, 22]), topology (see, e.g., [13, 15]), algebraic
(see, e.g., [7, 12, 19]) and combinatorial geometry (see, e.g., [6, 16]), and
algorithmic complexity (see, e.g., [14]).

Almost a century after the appearance of Dedekind sums, Leonard Car-
litz introduced a polynomial analogue, the Dedekind–Carlitz polynomial

c(u, v, a, b) :=

b−1∑
k=1

ubka/bcvk−1.

Here u and v are indeterminates and a and b are positive integers. Un-
doubtedly the most important basic property of any Dedekind-like sum is
reciprocity. For the Dedekind–Carlitz polynomials, it says that if a and b are
relatively prime then [8]

(1) (v − 1) c(u, v, a, b) + (u− 1) c(v, u, b, a) = ua−1vb−1 − 1.
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Carlitz’s reciprocity theorem generalizes that of Dedekind [10], which
states that for relatively prime positive integers a and b,

(2) s(a, b) + s(b, a) = −1

4
+

1

12

(
a

b
+

1

ab
+
b

a

)
.

Dedekind reciprocity follows from (1) by applying the operators u∂u twice
and v∂v once to Carlitz’s reciprocity identity. As a historical aside, we note
that (2) is equivalent to quadratic reciprocity (see, e.g., [21]).

Dedekind sums have many generalizations. One of the earliest will play a
central role in this paper: for a, b ∈ Z>0, and t ∈ R, we define the Dedekind–
Rademacher sum [20]

(3) rt(a, b) :=

b−1∑
k=0

((
ka+ t

b

))((
k

b

))
.

Our goal is to introduce and study an analogue of this sum in the world of
polynomials: for a, b ∈ Z>0, s, t ∈ R, and variables u and v, we define the
Rademacher–Carlitz polynomial

R(u, v, s, t, a, b) :=

dse+b−1∑
k=dse

ubka+t/bcvk.

Naturally, Dedekind–Carlitz polynomials are special cases of Rademacher–
Carlitz polynomials, in the sense that v c(u, v, a, b) = R(u, v, 0, 0, a, b) − 1.
It will be handy to abbreviate the linear function (ax+ t)/b =: f(x) which
appears in the exponent of u, and so we will typically use the notation

R(u, v, s, f) :=

dse+b−1∑
k=dse

ubf(k)cvk

with the understanding that b equals the denominator in the linear func-
tion f .

Our motivation to study Rademacher–Carlitz polynomials is twofold:
first, they seem natural generalizations of Dedekind–Carlitz polynomials
and, as we will see below, they give rise not only to new reciprocity theorems
but also to new results on old constructs, such as Dedekind–Rademacher
sums. Our second motivation stems from the fact that Rademacher–Carlitz
polynomials appear naturally—as we will also show below—in the integer-
point transforms

σP(x, y) :=
∑

(m,n)∈P∩Z2

xmyn

of 2-dimensional rational polyhedraP, in particular, 2-dimensional cones/po-
lygons with rational vertices. In fact, our paper extends some of the methods
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introduced in [4], which showed that Dedekind–Carlitz polynomials are nat-
ural ingredients for 2-dimensional lattice polyhedra, i.e., those with integral
vertices. Carlitz’s reciprocity theorem (1) was a natural by-product of the
geometric approach of [4], and our first result, which mirrors the geometric
setup of [4], is a reciprocity theorem for Rademacher–Carlitz polynomials.

Theorem 1. Let f(x) := (ax+ t)/b be a linear function with relatively
prime a, b ∈ Z>0, t ∈ R, and let (p, q) ∈ R2 be a point on the graph of f .
Then

v(1− u) R(v, u, p, f) + u(1− v) R(u, v, q, f−1)

= udpevdqe(1− ubva)− ucvd(1− u)(1− v),

where (c, d) ∈ Z2 is the unique lattice point on the half-open line segment
[(p, q), (p+ b, q+a)); if there are no integer points on the graph of f (and so
(c, d) does not exist), the last term on the right-hand side should be omitted.

We give a proof in Section 2, where we will also show how (1) follows as
a corollary. One can phrase the conditions in Theorem 1 in purely number-
theoretic terms as follows.

Corollary 2. Let a, b ∈ Z>0 be relatively prime and p, q ∈ R. Then

v(1− u) R(v, u, p, bq − ap, a, b) + u(1− v) R(u, v, q, ap− bq, b, a)

= udpevdqe(1− ubva)− ucvd(1− u)(1− v),

where c ∈ Z is (uniquely) determined by the conditions

ac ≡ ap− bq mod b and p ≤ c < p+ b,

and d := (ac+ bq − ap)/b. If ap−bq /∈ Z then the last term on the right-hand
side should be omitted.

Returning to our second motivation, we remark that the evaluation
σP(1, 1) of an integer-point transform yields the number of integer lattice
points in P. Ehrhart [11] famously proved in the 1960s that the counting
function

ehrP(t) := #(tP ∩ Zd)
is a polynomial in the positive integer variable t when P is a lattice poly-
tope, and a quasipolynomial when P is a rational polytope (see, e.g., [6] for
more on Ehrhart quasipolynomials). It is a natural question how to com-
pute Ehrhart (quasi)polynomials and integer-point transforms, both in the
computational complexity aspect and in terms of ingredients for possible
formulas. We will only briefly touch on the computational aspect, which is
governed by Barvinok’s theorem [2]. The ingredients of degree-2 Ehrhart
polynomials are easy; they essentially follow from Pick’s theorem [18] (of
which Ehrhart’s theorem can be viewed as a far-reaching generalization).
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The classification question for degree-2 Ehrhart quasipolynomials, i.e., stem-
ming from rational polygons, was answered much more recently [5]; here
Dedekind–Rademacher sums play a crucial role as the only nontrivial in-
gredients. The analogous classification question for integer-point transforms
of lattice polygons was answered in [4], and Dedekind–Carlitz polynomials
played there the role of the nontrivial ingredients. Our next result provides
formulas for the integer-point transforms of rational polygons; it can be
viewed as a common generalization (and combination) of the classification
results in [4] and [5], and indeed, from this point of view, it should come as
no surprise that Rademacher–Carlitz polynomials make an appearance.

Theorem 3. Let a, b, c, d, e, f, g, h ∈ Z>0, and let ∆ denote the triangle
with vertices (e/f, g/h), (a/b, g/h) and (e/f, c/d). Moreover, we define α :=
dh(be − af), β := bf(ch − dg), and l(x) := (β/α)x + c/d − eα/(fβ). Then
the integer-point transform of ∆ equals

σ∆(x, y) =
xde/feydg/he

(1− x)(1− y)
+

R(x, y, g/h, l−1)

(1− x−1)(1− xαyβ)
+

R(y, x, e/f, l)

(1− y−1)(1− x−αy−β)
.

We give a proof in Section 3. Theorem 3 suffices to provide formulas
for the integer-point transform of any rational polygon: we can triangulate
a given rational polygon, hence we only have to treat the case of rational
triangles and rational line segments, whose integer-point transforms are rel-
atively straightforward to compute. Using a simple geometric argument (see
Section 3), we can reduce the case of rational triangles to rational right
triangles with edges parallel to the x- and y-axis, which are the content of
Theorem 3.

Our final result is a pleasant by-product of the geometric treatment of
Dedekind-like sums; it turns out that we obtain the following reciprocity
theorem for Dedekind–Rademacher sums.

Corollary 4. Let a and b be relatively prime positive integers with
a < b, and let t ∈ R with 0 ≤ t < b. Then

r−t(a, b) + rt(b, a) =
1

12

(
a

b
+

1

ab
+
b

a

)
− 1

4
+

1

2ab
btc(btc+ 1)− 1

2

⌊
t

a

⌋
− χ

2

(((
a−1t

b

))
+

((
b−1t

a

)))
,

where χ equals 1 or 0 depending on whether or not t ∈ Z, aa−1 ≡ 1 mod b,
and bb−1 ≡ 1 mod a.

Note that the conditions on a, b, and t do not constitute a restriction for
practical purposes, as

rt(a, b) = rtmod b(a mod b, b).
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At any rate, our proof of Corollary 4, which we give in Section 4, contains
reformulations without the conditions a < b and 0 ≤ t < b.

Dedekind’s reciprocity theorem (2) follows naturally from Corollary 4 by
setting t = 0. However, a more interesting comparison is with Rademacher’s
reciprocity theorem, which he stated as follows [20]: For a, b∈Z and x, y∈R,
let

(4) s(a, b;x, y) :=

b−1∑
k=0

((
(k + y)a

b
+ x

))((
k + y

b

))
.

Then, if a and b are relatively prime and x and y are not both integers,

s(a, b;x, y) + s(b, a; y, x)

= ((x))((y)) +
1

2

(
a

b
B2(y) +

1

ab
B2(ay + bx) +

b

a
B2(x)

)
,

where B2(x) := {x}2 − {x} + 1/6 is the periodized second Bernoulli poly-
nomial. A moment’s thought reveals that any sum of the form (3) can be
expressed in the form (4) and vice versa. Indeed, setting y = 0 and x = t/b
gives

s

(
a, b;

t

b
, 0

)
=

b−1∑
k=0

((
ka+ t

b

))((
k

b

))
,

s

(
b, a; 0,

t

b

)
=

a−1∑
k=0

((
kb+ t

a

))((
k + t

b

b

))
.

The latter sum equals
∑a−1

k=0

((
kb+t
a

))((
k
b

))
plus some trivial terms. So Rade-

macher’s reciprocity theorem expressed in terms of rt(a, b) says that

rt(a, b) + rt(b, a)

equals a simple expression in terms of a, b, and t. It is, on the other hand,
not hard to see that r−t(a, b) = rt(a, b), and so Corollary 4 is equivalent
to Rademacher reciprocity. As we will briefly outline below, our geometric
approach to Theorems 1 and 3 could, in principle, easily generalize to higher-
dimensional settings; the analogue of Corollary 4 will then be a Dedekind–
Rademacher sum with more than two factors.

2. The reciprocity theorem for Rademacher–Carlitz poly-
nomials

Proof of Theorem 1. As mentioned in the introduction, we follow the
ideas of [4] which gave a novel geometric proof of (1). Let f(x) := (ax+ t)/b
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with a, b ∈ Z>0, where gcd(a, b) = 1, and t ∈ R, and let (p, q) ∈ R2 be a
point on the graph of f . Consider the half-open cones

K1 := {(p, q) + λ1(1, 0) + λ2(b, a) : λ1 > 0, λ2 ≥ 0},
K2 := {(p, q) + λ1(0, 1) + λ2(b, a) : λ1 > 0, λ2 ≥ 0}

and the ray

K3 := {(p, q) + λ(b, a) : λ ≥ 0}.

These three objects give a disjoint conic decomposition of the shifted first

6

-

(P,Q)

K1

Π1

Π2

K2

Fig. 1. The shifted first quadrant split into two pointed cones

quadrant, shown in Figure 1:

(5) {(p, q) + λ1(1, 0) + λ2(0, 1) : λ1, λ2 ≥ 0} = K1 ∪ K2 ∪ K3,

and our goal is to compute the integer-point transforms on both sides.

For the shifted first quadrant, this integer-point transform is

udpevdqe

(1− u)(1− v)
.

By a simple tiling argument (see, for example, [6, Chapter 3]), the integer-
point transform σK1(u, v) of the half-open cone K1 is

σK1(u, v) =
σΠ1(u, v)

(1− u) (1− ubva)

where

Π1 := {(p, q) + λ1(1, 0) + λ2(b, a) : 0 < λ1 ≤ 1, 0 ≤ λ2 < 1},

the fundamental parallelogram of K1. Since it has width 1, there is exactly
one integer point in Π1 for each y running from dqe to dqe + a − 1. The
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x-coordinate of this integer point is bf−1(y)c+ 1. Thus

σΠ1(u, v) =

dqe+a−1∑
k=dqe

ubf
−1(k)c+1vk = uR(u, v, q, f−1).

With a similar argument, changing the roles of the axes, we obtain our
second integer-point transform:

σK2(u, v) =
σΠ2(u, v)

(1− v)(1− ubva)
where

σΠ2(u, v) =

dpe+b−1∑
k=dpe

ukvbf(k)c+1 = vR(v, u, p, f).

It remains to compute the integer-point transform of the ray K3. It is clear
that any two lattice points on K3 differ by a multiple of (b, a) and so

σK3(u, v) =
ucvd

1− ubva

where (c, d) is the lattice point on K3 with the smallest coordinates, if there
is a lattice point on K3 at all—otherwise σK3(u, v) will simply not appear
in our formulas.

Thus (5) translates into the identity of rational generating functions

udpevdqe

(1− u)(1− v)
=

uR(u, v, q, f−1)

(1− u)(1− ubva)
+

vR(v, u, p, f)

(1− v)(1− ubva)
+

ucvd

1− ubva
,

where the last term only appears if K3 contains lattice points. Clearing
denominators gives Theorem 1.

We remark that, in principle, we could derive an analogue of Theorem 1
in higher dimension, similarly to the proof of [4, Theorem 3], involving an
arbitrary number of variables.

Carlitz’s reciprocity theorem (1) follows as an immediate corollary by
choosing t = p = q = 0: note that then c = d = 0, and so Theorem 1 gives
in this special case

v(1− u) R(v, u, 0, f) + u(1− v) R(u, v, 0, f−1) = 1− ubva − (1− u)(1− v).

We rewrite the expression on the left to see Dedekind–Carlitz polynomials
appear:

v(1− u)(R(v, u, 0, f)− 1) + u(1− v)(R(u, v, 0, f−1)− 1)

= 1− ubva − (1− u)(1− v)− v(1− u)− u(1− v) = −ubva + uv.

Dividing by −uv gives (1).
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We finish this section with a remark about computational complexity.
In the introduction we hinted at Barvinok’s theorem [2], which says that
in fixed dimensions, the integer-point transform σP(x1, . . . , xd) of a rational
polyhedron P can be computed as a sum of short rational functions in
x1, . . . , xd in time polynomial in the input size of P. Thus (say) σΠ2(u, v) can
be computed efficiently, which means we can compute Rademacher–Carlitz
sums efficiently. (This is a nontrivial statement, since Rademacher–Carlitz
sums have exponentially many terms when measured in the input size of
their parameters.)

3. Integer-point transforms of rational polygons. In this section,
we give the details behind our claim that Theorem 3 suffices to character-
ize the integer-point transform of any rational polygon, and we will prove
Theorem 3.

As mentioned in the introduction, any rational polygon can be triangu-
lated, and so we can compute its integer-point transform in an inclusion-
exclusion fashion from integer-point transforms of rational line segments
and rational triangles. Furthermore, we can embed an arbitrary triangle
in a rectangle in such a way that we can express the triangle as a set
union/subtraction of rectangles and right triangles with edges parallel to
the x- and y-axis, as suggested by Figure 2; if the triangle was rational to
begin with, so will be the rectangles and right triangles.

The integer-point transforms of rectangles are easy, and thus it remains
to compute integer-point transforms of right triangles with edges parallel
to the x- and y-axis, which (by a harmless lattice transformation) we may
assume to be in the first quadrant with its right angle in the southwestern
vertex. That is, it remains to prove Theorem 3.

Fig. 2. Triangles embedded in a rectangle and right triangles

Proof of Theorem 3. As stated in the conditions, we assume that ∆ looks
like in Figure 2. To compute the integer-point transform of ∆, we use Brion’s
theorem [7], which says that σ∆(x, y) equals the sum of the integer-point
transforms of the three vertex cones of ∆. (The vertex cone of a polytope
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(e/f, c/d)
6

-

(a/b, g/h)

(e/f, g/h)

Fig. 3. The rational right triangle from Theorem 3

P at a vertex v is the smallest cone with apex v that contains P.) Thus we
need to compute the integer-point transforms of the vertex cones

V1 := {(e/f, g/h)+λ1(1, 0) + λ2(0, 1) : λ1, λ2 ≥ 0},
V2 := {(a/b, g/h)+λ1(−1, 0) + λ2

(
dh(be− af), bf(ch− dg)

)
: λ1, λ2 ≥ 0},

V3 := {(e/f, c/d)+λ1(0,−1)+λ2
(
−dh(be−af),−bf(ch−dg)

)
: λ1, λ2≥ 0}.

To shorten notation, we define, as in the statement of Theorem 3, α :=
dh(be − af) and β := bf(ch − dg). The integer-point transform of V1 is
straightforward:

(6) σV1(x, y) =
∑

k≥de/fe, j≥dg/he

xkyj =
xde/feydg/he

(1− x)(1− y)
.

For the other two vertex cones, we use a tiling argument similar to the one
in the proof of Theorem 1. This gives

σV2(x, y) =
σΠ2(x, y)

(1− x−1)(1− xαyβ)
,(7)

σV3(x, y) =
σΠ3(x, y)

(1− y−1)(1− x−αy−β)
,(8)

where

Π2 := {(a/b, g/h) + λ1(−1, 0) + λ2(α, β) : 0 ≤ λ1, λ2 < 1},
Π3 := {(e/f, c/d) + λ1(0,−1) + λ2(−α,−β) : 0 ≤ λ1, λ2 < 1}

are the fundamental parallelograms of V2 and V3, respectively. To com-
pute the integer-point transform of Π2, we note that the linear function
l(x) := (β/α)x+c/d−eα/(fβ) given in the statement of Theorem 3 describes
the line that contains the hypotenuse of ∆. Since Π2 has height 1 and is
half-open, for every integral y-coordinate between dg/he and dg/he+ β − 1
there is exactly one point with integral x-coordinate, namely bl−1(y)c,



388 M. Beck and F. Kohl

and so

(9) σΠ2(x, y) =

dg/he+β−1∑
k=dg/he

xbl
−1(k)cyk = R

(
x, y,

g

h
, l−1

)
.

A parallel argument yields

(10) σΠ3(x, y) =

de/fe+α−1∑
k=de/fe

xkybl(k)c = R

(
y, x,

e

f
, l

)
.

Brion’s theorem says

σ∆(x, y) = σV1(x, y) + σV2(x, y) + σV3(x, y),

which, using (6)–(10), yields Theorem 3.

4. The reciprocity theorem for Dedekind–Rademacher sums.
Our goal in this section is to prove Corollary 4. We will need a few identities
that are slightly technical but straightforward. For x ∈ R and m ∈ Z>0, we
denote by [x]m the smallest nonnegative real number congruent to x mod m.

Lemma 5. Let a and b be positive relatively prime integers, and let t ∈ R.
Then

(a)

b−1∑
k=0

{
ak + t

b

}
=
b− 1

2
+ {t} ,

(b)
b−1∑
k=0

k

{
ak + t

b

}
= b rt(a, b) + 1

4b(b− 1) + 1
2b {t}−

1
2 [t]b + 1

2χ b

((
ta−1

b

))
where χ equals 1 or 0 depending on whether or not t is an integer.

Proof. (a) is essentially Raabe’s formula (see, e.g., [21, Lemma 1]).

(b) We compute

1

b

b−1∑
k=0

k

{
ak + t

b

}
=

b−1∑
k=1

{
k

b

}{
ak + t

b

}

=

b−1∑
k=1

((
k

b

))((
ak + t

b

))
+

1

2

b−1∑
k=1

{
ak + t

b

}
+

1

2

b−1∑
k=1

{
k

b

}
− b− 1

4
+
χ

2

((
ta−1

b

))
.

The last correction term comes from a case-by-case analysis of
((
ak+t
b

))
: the

argument is an integer if and only if t is an integer congruent to −ak for
some integer k between 1 and b− 1. With part (a) and the definition of the
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Dedekind–Rademacher sum, this becomes

1

b

b−1∑
k=0

k

{
ak + t

b

}
= rt(a, b) +

b− 1

4
+

1

2
{t} − 1

2

{
t

b

}
+
χ

2

((
ta−1

b

))
.

With b {x/b} = [x]b, this gives (b).

Proof of Corollary 4. We start by applying the operators u∂u twice and
v∂v once to the identity in Theorem 1, which yields

(11) 2

dpe+b−1∑
k=dpe

k

⌊
ak + t

b

⌋
+ 2

dpe+b−1∑
k=dpe

k +

dpe+b−1∑
k=dpe

⌊
ak + t

b

⌋
+ b

+

dqe+a−1∑
k=dqe

⌊
bk − t
a

⌋2
+ 2

dqe+a−1∑
k=dqe

⌊
bk − t
a

⌋
+ a

= (dpe+ 2b)adpe+ (2dpe+ b)bdqe+ ab2 + χ(2c+ 1).

Here χ equals 1 or 0 depending on whether or not there are integer points
on the graph of f(x) = (ax+ t)/b; since a and b are relatively prime, there
will be integer points if and only if t ∈ Z, and thus χ has the same meaning
as in Lemma 5. Recall also from the statement of Theorem 1 that c is
the x-coordinate of the unique lattice point on the half-open line segment
[(p, q), (p+ b, q + a)). Thus c ∈ Z is uniquely determined by the conditions

c ≡ a−1(ap− bq) mod b and p ≤ c < p+ b,

where aa−1 ≡ 1 mod b.

There are four nontrivial sums in (11), which we will uncover now one
by one, with the help of Lemma 5. First,

dpe+b−1∑
k=dpe

k

⌊
ak + t

b

⌋
=

dpe+b−1∑
k=dpe

k
ak + t

b
−
dpe+b−1∑
k=dpe

k

{
ak + t

b

}
=

1

3
ab2 + abdpe+ adpe2 − 1

2
ab− adpe+

1

2
bt+ dpet+

1

6
a− 1

2
t

−
b−1∑
k=0

(k + dpe)
{
a(k + dpe) + t

b

}
=

1

3
ab2 + abdpe+ adpe2 − 1

2
ab− adpe+

1

2
bbtc+ dpe btc+

1

6
a− 1

2
t

+
1

2
[adpe+ t]b −

1

4a
b2 − 1

2
bdpe+

1

4
b+

1

2
dpe − b radpe+t(a, b)

− 1

2
χ b

((
dpe+ ta−1

b

))
,
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where again aa−1 ≡ 1 mod b. (Note that adpe+ t ∈ Z if and only if t ∈ Z.)
Next,

dpe+b−1∑
k=dpe

⌊
ak + t

b

⌋
=

dpe+b−1∑
k=dpe

ak + t

b
−
dpe+b−1∑
k=dpe

{
ak + t

b

}

=
1

2
a(b− 1) + adpe+ t−

b−1∑
k=0

{
k + t

b

}
=

1

2
(a− 1)(b− 1) + adpe+ btc .

Analogously,

dqe+a−1∑
k=dqe

⌊
bk − t
a

⌋
=

1

2
(a− 1)(b− 1) + bdqe+ b−tc .

Finally,

dqe+a−1∑
k=dqe

⌊
bk − t
a

⌋2

=

dqe+a−1∑
k=dqe

(
bk − t
a

)2

− 2

dqe+a−1∑
k=dqe

bk − t
a

{
bk − t
a

}
+

dqe+a−1∑
k=dqe

{
bk − t
a

}2

=
1

3
ab2 + b2dqe − 1

2
b2 − bt+

1

a

(
b2dqe2 − b2dqe − 2bdqet+

1

6
b2 + bt+ t2

)

− 2b

a

dqe+a−1∑
k=dqe

k

{
bk − t
a

}
+

2t

a

dqe+a−1∑
k=dqe

{
bk − t
a

}
+

a−1∑
k=0

{
k + {−t}

a

}2

=
1

3
ab2 + b2dqe − 1

2
b2 − bt+

1

a

(
b2dqe2 − b2dqe − 2bdqet+

1

6
b2 + bt+ t2

)
− 2b

a

a−1∑
k=0

(k+dqe)
{
b(k + dqe)− t

a

}
+

2t

a

a−1∑
k=0

{
k−t
a

}
+

a−1∑
k=0

(
k + {−t}

a

)2

=
1

3
ab2 − 1

2
ab+

1

3
a+ b2dqe − bt− 1

2
b2 +

1

2
b− 1

2
− b−tc − bdqe

+
1

a

(
b2dqe2− b2dqe+2bdqeb−tc+ 1

6
b2 + bt+

1

6
+b−tc2 +b−tc+ bdqe

)
− 2b rbdqe−t(b, a)− b

a
[−at]a +

b

a
[bdqe − t]a − χ b

((
q − tb−1

a

))
,

where bb−1 ≡ 1 mod a. (Note that bdqe − t ∈ Z if and only if t ∈ Z.)
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We are all set to substitute the expressions we found back into (11).
Simplifying terms such as {t}+{−t} (which equals 1 if t /∈ Z and 0 if t ∈ Z)
and [x]a/a = {x/a} gives

radpe+t(a, b) + rbdqe−t(b, a)

=
adpe2

2b
− adpe

2b
+
bdqe2

2a
− bdqe

2a
+

b

12a
+

a

12b
+

1

12ab
+
dqeb−tc

a
+
dqe
2a

+
dpebtc
b

+
dpe
2b

+
t

2a
− t

2b
− dpedqe+

dpe
2

+
dqe
2
− 3

4
+
b−tc2

2ab
+
b−tc
2ab

+
1

2

{
adpe+ t

b

}
+

1

2

{
bdqe − t

a

}
+ χ

(
−1

2

((
a−1(adpe+ t)

b

))
− 1

2

((
b−1(bdqe − t)

a

))
+

1

2
− c

b

)
.

Now we use the relation bq = ap+ t, which simplifies the left-hand side to

ra{−p}−b{−q}(a, b) + rb{−q}−a{−p}(b, a).

But this means we might as well choose p and q in some interval of length 1;
it is easiest to assume −1 < p, q ≤ 0, since this will simplify the right-hand
side most easily:

rbq−ap(a, b) + rap−bq(b, a)

=
a

12b
+

b

12a
+

1

12ab
− 3

4
+
bap− bqc2

2ab
+
bap− bqc

2ab

− 1

2

⌊
ap− bq

a

⌋
− 1

2

⌊
bq − ap

b

⌋
+ χ

(
1

2
− c

b
− 1

2

((
a−1(bq − ap)

b

))
− 1

2

((
b−1(ap− bq)

a

)))
.

Recall that c is the unique integer satisfying

c ≡ a−1(ap− bq) mod b and p ≤ c < p+ b.

Since −1 < p ≤ 0, this condition simply says that c is the smallest nonneg-
ative integer congruent to a−1(ap− bq) modulo b, that is,

c = b

{
a−1(ap− bq)

b

}
= −b

((
a−1(bq − ap)

b

))
+ (1− µ)

b

2
,

where µ = 1 if b | bq − ap and µ = 0 otherwise. This yields

rbq−ap(a, b) + rap−bq(b, a)

=
a

12b
+

b

12a
+

1

12ab
− 3

4
+
bap− bqc2

2ab
+
bap− bqc

2ab

− 1

2

⌊
ap− bq

a

⌋
− 1

2

⌊
bq − ap

b

⌋
+ χ

(
µ

2
+

1

2

((
a−1(bq − ap)

b

))
− 1

2

((
b−1(ap− bq)

a

)))
.
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We now set q = 0 and assume that a < b, for which the above identity
simplifies to

rbq(a, b) + r−bq(b, a)

=
a

12b
+

b

12a
+

1

12ab
− 3

4
+
b−bqc2

2ab
+
b−bqc

2ab
− 1

2

⌊
−bq
a

⌋
− 1

2
bqc

+ χ

(
µ

2
− 1

2

((
a−1(−bq)

b

))
− 1

2

((
b−1(−bq)

a

)))
,

where χ equals 1 or 0 depending on whether or not bq is an integer, µ equals 1
or 0 depending on whether or not q = 0, aa−1 ≡ 1 mod b, and bb−1 ≡
1 mod a. Noticing that bqc = −1 unless q = 0, and setting t = −bq (which
is a real number in the interval [0, b)) yields Corollary 4.
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