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Coefficient bounds for level 2 cusp forms

by

Paul Jenkins (Provo, UT) and Kyle Pratt (Urbana, IL)

1. Introduction. The Fourier coefficients of modular forms encode in-
teresting arithmetic information. To give just three examples, the Fourier
coefficients of modular forms are intimately connected with representations
of integers as sums of squares [28], Galois representations [26], and integer
partitions (e.g. [1, Chapter 5]). Those rich interactions between modular
forms and other branches of mathematics have given them a place of central
importance in modern number theory.

It is natural to ask about the size of the coefficients of a modular form.
The coefficients of cusp forms in particular have attracted a great deal of
attention. Ramanujan [25] studied the coefficients of ∆(z), the unique nor-
malized cusp form of weight 12 for SL2(Z) given by

∆(z) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

τ(n)qn,

where as usual q = e2πiz. Ramanujan conjectured that |τ(n)| ≤ d(n)n11/2,
where d(n) is the number of divisors of n. Petersson [22] generalized Ra-
manujan’s conjecture to cusp forms for congruence subgroups of SL2(Z).
The Ramanujan–Petersson conjectures were proved by Deligne [7] as a con-
sequence of his work on the Weil conjectures. The corresponding conjectures
for Maass forms and automorphic forms on GL(n) for n > 2 remain unre-
solved (see [3] for details).

Deligne’s result applies to newforms, certain cusp forms that are eigen-
forms for all of the Hecke operators (see Section 2 for more details). For such a
weight k newform, Deligne’s work implies that the coefficient of qn is bounded
above by d(n)n(k−1)/2. Any cusp form can be written as a linear combina-
tion of newforms and newforms acted on by various operators, so it is still
the case that the coefficients of a general cusp form f are O(d(n)n(k−1)/2).
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However, the implied constant depends heavily on f , and it is a non-trivial
problem to determine this constant (or even its size). Several researchers
have studied the implied constant in O(d(n)n(k−1)/2) for various families of
cusp forms (see e.g. [18], [27], [28]). Rouse and the first author [17] gave an
explicit bound on the implied constant for all cusp forms for SL2(Z) (earlier
work of Chua [5] makes Hecke’s O(nk/2) bound explicit). For a cusp form
G =

∑∞
n=1 a(n)q

n of weight k for SL2(Z), they proved that

(1.1)

|a(n)| ≤
√
log k

(
11

√√√√∑̀
m=1

|a(m)|2
mk−1 +

e18.72(41.41)k/2

k(k−1)/2
·
∣∣∣∑̀
m=1

a(m)e−7.288m
∣∣∣)

· d(n)n(k−1)/2,

where ` is the dimension of the weight k cusp form space Sk(SL2(Z)). The
fact that (1.1) incorporates the first ` coefficients of G is natural, since these
coefficients uniquely identify G in Sk(SL2(Z)).

The main result of this paper makes Deligne’s implied constant explicit
for weight k cusp forms for Γ0(2). To state our main theorem we define some
notation. For a positive even integer k, write k = 4`+ k′, where k′ ∈ {0, 2},
hence ` = bk/4c. It is convenient to write k in this form because then the
dimension of Sk(2) is `− 1. We define a function B(k) by

B(k) =
e5.449(6.274)k

(k/4− 1)(k−1)/2
+
e10.905(4.793)k√

(k − 2)!
+
e6.511(10.096)k√

(k − 2)!
.

We now state the main result of this paper.

Theorem 1.1. Let k ≥ 8 be an even integer, and let G be a cusp form
of weight k for Γ0(2). Write

G(z) =

∞∑
n=1

a(n)qn.

Then

|a(n)| ≤
√

log k

(
103

`−1∑
m=1

|a(m)|
m(k−1)/2 +B(k)

`−1∑
m=1

|a(m)|e−7.288m
)
d(n)n(k−1)/2.

The condition k ≥ 8 is not a restriction at all, since Sk(2) = {0} for
k < 8.

The proof of Theorem 1.1 is similar to the proof of (1.1). We study the
basis of cusp forms for Sk(2) given by Fk,m(z) = qm+

∑∞
n=`Ak(m,n)q

n with
1 ≤ m ≤ ` − 1. This basis is useful because, for any given G ∈ Sk(2), it is
trivial to write G in terms of the basis elements. Hence, Theorem 1.1 follows
from suitable bounds on the coefficients of Fk,m.
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We write Fk,m as Fk,m =
∑

i αifi +
∑

j βjgj , where αi, βj ∈ R, the
fi are oldforms, and the gj are newforms. We choose the fi so that their
coefficients are bounded in absolute value by Cd(n)n(k−1)/2 for C ≥ 1 an
absolute constant. It follows that the coefficients of Fk,m are bounded above
by C(

∑
i |αi| +

∑
j |βj |)d(n)n(k−1)/2. By the Cauchy–Schwarz inequality, it

suffices to get an upper bound on
∑

i α
2
i +

∑
j β

2
j .

Letting 〈·, ·〉 denote the Petersson inner product (see Section 2 for the
definition), we have 〈Fk,m, Fk,m〉 =

∑
i α

2
i 〈fi, fi〉 +

∑
j β

2
j 〈gj , gj〉 for an ap-

propriate choice of fi. Using the fact that 〈fi, fi〉, 〈gj , gj〉 are multiples of
special values of L-functions, we obtain a lower bound on 〈Fk,m, Fk,m〉 of the
form 〈Fk,m, Fk,m〉 ≥ (

∑
i α

2
i +
∑

j β
2
j )h(k) for some function h. Therefore, we

require an upper bound on 〈Fk,m, Fk,m〉, which involves bounding several in-
tegrals. This in turn requires upper bounds on the coefficients of Fk,m when
Fk,m is acted on by various matrices in SL2(Z). By using the generating
function for Fk,m given in [10], we obtain bounds of the form c1c

`
2e
c3m+c4n

with c1, c2 > 0 and 0 < c4 <
√
3/2. While these bounds are poor, they are

sufficient to obtain a reasonable upper bound on 〈Fk,m, Fk,m〉.
In addition to cusp forms, we also study the coefficients of weight zero

modular functions for Γ0(2). In general, the coefficients of modular functions
grow much faster than the coefficients of cusp forms. The classical example
of a modular function is the j-function, which is modular of weight zero for
SL2(Z). The j-function has a Fourier expansion of the form

j(z) = q−1 + 744 +
∞∑
n=1

c(n)qn

with the c(n) positive integers. Petersson [23] and Rademacher [24] indepen-
dently obtained an asymptotic formula for c(n). They found that

(1.2) c(n) ∼ 1√
2n3/4

e4π
√
n.

Since the coefficients of cusp forms are O(n(k−1)/2+ε), we see that the coef-
ficients of j dwarf the coefficients of any cusp form when n is large.

The asymptotic formula (1.2) gives the true order of magnitude of c(n),
but often we are interested in explicit upper bounds as well. In 1975 Her-
mann [13] established that c(n) ≤ 6e4π

√
n, while the state-of-the-art result

of Brisebarre and Philibert [4] yields the asymptotically sharp bound

(1.3) c(n) =
1√

2n3/4
e4π
√
n

(
1− 3

32π
√
n
+ εn

)
, |εn| ≤

0.055

n
.

The proof of (1.1) makes use of (1.3) to bound the tails of certain infinite
series. Similarly, our proof of Theorem 1.1 requires bounds on the coefficients
of certain modular functions for Γ0(2). These modular functions, denoted by
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ψ and φ, are actually Hauptmoduln for Γ0(2) (see Section 2), and are defined
by

ψ(z) =
∆(z)

∆(2z)
= q−1 − 24 +

∞∑
n=1

s(n)qn, φ(z) =
1

ψ(z)
=
∞∑
n=1

b(n)qn.

Here the s(n) and b(n) are integers, and one can show the b(n) are positive.
Our next theorem gives asymptotic formulas for |s(n)| and b(n) as n→∞,
similar to (1.2).

Theorem 1.2. Let s(n) and b(n) be given as above. Then, as n→∞,

|s(n)| ∼ 1

2n3/4
e2π
√
n, b(n) ∼ 21/4

8192

1

n3/4
e2π
√
2n.

This theorem supports the general principle that the coefficients of mod-
ular functions are large. The proof is straightforward, relying on a result of
Dewar and Murty [8].

Our last theorem is an explicit upper bound on |s(n)| and b(n).

Theorem 1.3. Let s(n) and b(n) be given as above. Then, for n ≥ 1,

|s(n)| < 0.9n11e2π
√
2n, b(n) < 0.08n11e2π

√
2n.

By comparison with Theorem 1.2 we see these bounds may be improved,
but the bounds suffice for our purposes. The proof of Theorem 1.3 is el-
ementary, using only an explicit bound on the number of partitions of an
integer into distinct parts. Indeed, interpreted appropriately, the proof gives
explicit upper bounds for r-colored partitions of n into distinct parts, with
r = 2, 4, 8, 16, 24 (see [9] for definitions).

The outline of the rest of the paper is as follows. Section 2 covers nec-
essary background material about modular forms. In Section 3 we prove
Theorems 1.2 and 1.3. In Section 4 we prove some necessary lemmas about
L-functions. We derive an upper bound for 〈Fk,m, Fk,m〉 in Section 5, and in
Section 6 we prove Theorem 1.1.

2. Background. Here we give some necessary background and defini-
tions about modular forms (see e.g. [28, Section 2]). We let H denote the
complex upper half-plane. For a positive integer N ≥ 1 define

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

We let Sk(N) denote the finite-dimensional C-vector space of cusp forms of
weight k for Γ0(N).
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If f is a modular form of weight k for some Γ0(N) and α =
(
a b
c d

)
∈

GL2(Q), det(α) > 0, we define the slash operator f |α by

f |α = (detα)k/2(cz + d)−kf

(
az + b

cz + d

)
.

Here we follow the notation of [28]. Note that some authors replace the
exponent k/2 by k − 1. For a positive integer d we also define the operator
Vd by f(z)|Vd = f(dz). It is well-known that Vd maps Sk(N) to Sk(dN). We
further have the usual Hecke operator Tp, defined for p - N by

∞∑
n=0

a(n)qn|Tp =
∞∑
n=0

(
a(pn) + pk−1a

(
n

p

))
qn,

where a
(
n
p

)
= 0 if p - n. Hecke operators for p|N are defined differently. The

Hecke operators preserve Sk(N).
If f, g ∈ Sk(N), we define their Petersson inner product 〈f, g〉 by

〈f, g〉 = 3

π[SL2(Z) : Γ0(N)]

�

H/Γ0(N)

f(x+ iy)g(x+ iy)yk
dx dy

y2
.

The integration takes place over a fundamental domain for Γ0(N). The Pe-
tersson inner product is well-defined with respect to the choice of fundamen-
tal domain, and there is a natural way to make this choice for Γ0(N) using
its coset representatives in SL2(Z). Additionally, if α ∈ GL2(Q) with positive
determinant, then 〈f |α, g|α〉 = 〈f, g〉.

The space of oldforms of Sk(N) is the space spanned by all forms

f(z)|Vd with f(z) ∈ Sk(M),

where we have M |N , M < N and d is a divisor of N/M . We define Snew
k (N)

to be the orthogonal complement of the oldforms in Sk(N) with respect
to the Petersson inner product. A newform of level N is a form f(z) =∑∞

n=1 a(n)q
n ∈ Snew

k (N) that is a simultaneous eigenform of all the Hecke
operators Tp, normalized with a(1) = 1. It is a well-known property of new-
forms that if f1 6= f2 are newforms, then 〈f1, f2〉 = 0.

Lastly we must define some modular forms. We let η(z) be the usual
Dedekind eta function

η(z) = q1/24
∞∏
n=1

(1− qn).

A Hauptmodul (plural Hauptmoduln) for a subgroup Γ ⊂ SL2(Z) is a mod-
ular function f so that the field of all modular functions for Γ is C(f). We
define the Hauptmoduln ψ, φ for Γ0(2) by

ψ(z) =

(
η(z)

η(2z)

)24

= q−1 − 24 +
∞∑
n=1

s(n)qn, φ(z) =
1

ψ(z)
=
∞∑
n=1

b(n)qn.



346 P. Jenkins and K. Pratt

We note that ψ(z) has a pole at infinity and vanishes at the cusp at 0, while
φ(z) has a pole at the cusp at 0 and vanishes at infinity.

Let Ek denote the usual Eisenstein series of weight k for SL2(Z). Thus

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n,

with Bk denoting the kth Bernoulli number. We define modular forms S4
and F2 for Γ0(2) by

S4(z) =
E4(z)− E4(2z)

240
, F2(z) = 2E2(2z)− E2(z).

Note that S4 is modular for Γ0(2) of weight 4, and F2 is modular for Γ0(2)
of weight 2. The generating function for Fk,m involves both S4 and F2, as
well as ψ (see (5.1) in Section 5).

3. Hauptmodul coefficients. In this section we prove asymptotics for
the coefficients of ψ and φ, and also explicit upper bounds on the absolute
values of their coefficients.

We begin by finding asymptotic formulas for the coefficients. The key
ingredient is the following theorem due to Dewar and Murty [8, Theorem 2].

Theorem 3.1. Suppose

f(z) =
∞∑
n=0

λf (n)q
n, g(z) =

∞∑
n=0

λg(n)q
n,

where

λf (n) ∼ cfnαeA
√
n, λg(n) ∼ cgnβeB

√
n,

with α, β,A,B, cf , cg ∈ R and A,B, cf , cg > 0. For fg(z) =
∑∞

n=0 λfg(n)q
n

we then have

λfg ∼ cfcg2
√
2π

A2α+1B2β+1

(A2 +B2)5/4+α+β
nα+β+3/4e

√
A2+B2

√
n.

We first consider the coefficients s(n) of ψ. To see that the s(n) are all
integers, note that

ψ(z) = q−1
∞∏
n=1

(1− qn)24

(1− q2n)24
= q−1

∞∏
n=1

(1− q2n−1)24.

Define coefficients a(n) by
∏∞
n=1(1−q2n−1)24 = 1+

∑∞
n=1 a(n)q

n. Substi-
tuting −q for q, we get

∏∞
n=1(1+q

2n−1)24 = 1+
∑∞

n=1(−1)na(n)qn, hence the
coefficients of

∏∞
n=1(1− q2n−1)24 and

∏∞
n=1(1 + q2n−1)24 have the same ab-

solute value. Thus, to get asymptotic formulas or explicit bounds for |s(n)|,
we may study the coefficients of

∏∞
n=1(1 + q2n−1)24.
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We define coefficients g(n) by
∏∞
n=1(1 + q2n−1) = 1 +

∑∞
n=1 g(n)q

n. In
view of Theorem 3.1 we must get an asymptotic formula for g(n). It is not
difficult to see that g(n) = #{partitions of n into distinct odd parts}. The
function g(n) is studied in [12], where it is shown that g(n)∼

√
6

243/4n3/4 e
π
√
n/6.

The first part of Theorem 1.2 now follows by applying Theorem 3.1 repeat-
edly (note that dividing by q does not change the asymptotic).

Now we turn to the coefficients of φ. We easily see from its definition
that φ has positive integral coefficients, since

φ(z) = q
∞∏
n=1

(1− q2n)24

(1− qn)24
= q

∞∏
n=1

(1 + qn)24.

We recognize
∏∞
n=1(1+ q

n) as the generating function for Q(n), the number
of partitions of n into distinct parts. An asymptotic formula for Q(n) is given
by

Q(n) ∼ 1

4 · 31/4n3/4
eπ
√
n/3,

as found, for example, in [2, equation (4)]. Again applying Theorem 3.1
repeatedly, we finish the proof of Theorem 1.2. Using this same method one
can establish by induction asymptotic formulas for the coefficients of powers
of ψ and φ.

It remains to prove Theorem 1.3. Define the coefficients Qk(n) by
∞∏
n=1

(1 + qn)k =
∞∑
n=0

Qk(n)q
n,

and note that Qk(0) = 1. Observe that g(n) is less than the number of
partitions of n into distinct parts. Thus to get upper bounds on |s(n)| and
b(n) it suffices to get an upper bound on Q24(n) and then determine the
effect of dividing or multiplying by q.

Corollary 2 of [2] shows that Q(n) = Q1(n) <
π

2
√
3n
eπ
√
n/3, which implies

Q2(n) =

n∑
k=0

Q1(k)Q1(n− k) = 2Q1(n) +

n−1∑
k=1

Q1(k)Q1(n− k)

<
π√
3n
eπ
√
n/3 +

π2

12

n−1∑
k=1

1√
kn− k2

eπ(
√
k/3+
√

(n−k)/3)

<
π√
3n
eπ
√
n/3 +

π2

12
eπ
√

2n/3
n−1∑
k=1

1√
kn− k2

.

Consider the sum
∑

k≤x 1/
√
kt− k2 with x, t real numbers and x < t. Ap-
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plying partial summation in the usual way and simplifying, we find that∑
k≤x

1√
kt− k2

≤ 2 arctan

(
x1/2

(t− x)1/2

)
+

1

(t− 1)1/2
+

2x1/2

t(t− x)1/2
.

Setting x = n− 1, t = n, we get
n−1∑
k=1

1√
kn− k2

≤ 2 arctan

(√
n− 1

1

)
+

1√
n− 1

+
2√
n

≤ π +
1√
n− 1

+
2√
n
.

Thus

Q2(n) <
π√
3n
eπ
√
n/3 +

π2

12
eπ
√

2n/3

(
π +

1√
n− 1

+
2√
n

)
< 3.44eπ

√
2n/3

if n ≥ 10. We proceed similarly with Q4(n), obtaining

Q4(n) < 2 · 3.44eπ
√

2n/3 + 3.442
n−1∑
k=1

eπ(
√

2n/3+
√

2(n−k)/3) < 12.08ne2π
√
n/3.

Continuing in this manner we get

Q8(n) < 24.33n3e2π
√

2n/3,

Q16(n) < 4.23n7e4π
√
n/3,

Q24(n) < 0.08n11e2π
√
2n.

Adjusting for multiplication or division by q and doing a manual check for
1 ≤ n ≤ 10, we finish the proof of Theorem 1.3.

It is natural to ask whether our elementary methods give similar results
for Hauptmoduln of higher levels (particularly levels 3, 5, and 7). Suitable
modifications of our arguments will give explicit, but weak, upper bounds.
Tighter bounds require bounds on restricted integer partitions. On the other
hand, obtaining asymptotic formulas via our method seems difficult. For
example, consider using our method to obtain an asymptotic formula for
the coefficients of the level 3 analogue of ψ. We find that we would need an
asymptotic formula for the absolute value of

#{partitions of n into even number of distinct parts congruent to 1 mod 3}
−#{partitions of n into odd number of distinct parts congruent to 1 mod 3}.

We would also need a similar asymptotic formula for parts that are 2 mod 3.
As the level increases, the restricted partitions become more complex, hence
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an extension of our method to higher levels appears non-trivial. The circle
method or other more advanced techniques are likely to yield satisfactory
results (e.g. compare (1.2) and the main theorem of [24]).

4. L-function calculations. The goal of this section is to derive a lower
bound on the L-function special value L(Sym2g, 1) (see below for definitions),
where g ∈ Sk(2) is a newform. We proceed in slightly more generality, treat-
ing g ∈ Snew

k (p) for p ∈ {2, 3, 5, 7}. We are interested in the special value
L(Sym2g, 1) because of the well-known identity

〈g, g〉 = 6

π2
· 1

1 + 1/p
· Γ (k)
(4π)k

L(Sym2g, 1).

If g ∈ Sk(p) has coefficients {a(n)}∞n=1, then we define the normalized
L-function of g to be

L(g, s) =
∏

q prime

(1− αqq−s)−1(1− βqq−s)−1,

where αq + βq = a(q)/q(k−1)/2 and αqβq = 1 for q 6= p, and we allow αp or
βp to be zero. The symmetric square L-function L(Sym2g, s) associated to
g is then given by

L(Sym2g, s) =
∏

q prime

(1− α2
qq
−s)−1(1− q−s)−1(1− β2q q−s)−1;

see [6, Section 3] for the computation of these local factors. The symmetric
square L-function of g is known by the work of Gelbart and Jacquet [11] to
be the L-function of a cuspidal automorphic representation on GL(3), unless
g = g⊗χ for some non-trivial Dirichlet character χ. If such is the case, then
we say that g has complex multiplication, or is a CM modular form. It is
well-known that all newforms of squarefree level are non-CM forms, and
since we only handle newforms of level 1 or 2 we do not need to deal with
CM forms. Therefore L(Sym2g, s) is entire and has a functional equation of
the usual form. That is, if we set

Λ(Sym2g, s) = psπ−3s/2Γ

(
s+ 1

2

)
Γ

(
s+ k − 1

2

)
Γ

(
s+ k

2

)
L(Sym2g, s),

then we have the functional equation
Λ(Sym2g, s) = Λ(Sym2g, 1− s).

Our first step toward obtaining a lower bound on L(Sym2g, 1) is to show
that L(Sym2g, s) has no Siegel zeros.

Lemma 4.1. Let g ∈ Snew
k (p) with p ∈ {2, 3, 5, 7}. Then

L(Sym2g, s) 6= 0 for real s > 1− 5− 2
√
6

10 log k
.
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Proof. Here we follow [27] and [18], which are based on an argument of
Goldfeld, Hoffstein, and Lieman [15].

Consider the function

L(s) = ζ(s)2L(Sym2g, s)3L(Sym4g, s),

where

L(Sym4g, s)

=
∏

q prime

(1−α4
qq
−s)−1(1−α2

qq
−s)−1(1− q−s)−1(1− β2q q−s)−1(1− β4q q−s)−1

and αq, βq are as above (as with the symmetric square L-function; see [6]
for further details). Kim [19] proved that L(Sym4g, s) is associated to an
automorphic representation on GL(5), so L(Sym4g, s) has an analytic con-
tinuation and a functional equation of the usual type.

From the above remarks it follows that L(s) has a functional equation
and is analytic except for a pole at s = 1. Define Λ(s) = s2(1− s)2G(s)L(s),
where

G(s) = p5sπ−8sΓ

(
s

2

)3

Γ

(
s+ 1

2

)3

Γ

(
s+ k − 1

2

)4

· Γ
(
s+ k

2

)4

Γ

(
s+ 2k − 2

2

)
Γ

(
s+ 2k − 1

2

)
.

Then Λ(s) = Λ(1 − s). For the duration of the proof we take s real and
greater than 1.

As Λ(s) is an entire function of order 1, it admits a Hadamard product
factorization

Λ(s) = eA+Bs
∏
ρ

(
1− s

ρ

)
es/ρ,

where A,B are constants and the product is over all zeros ρ of Λ(s). Taking
the logarithmic derivative, we have∑

ρ

(
1

s− ρ
+

1

ρ

)
=

2

s
+

2

s− 1
+
G′(s)

G(s)
+
L′(s)

L(s)
−B.

Since s > 1, we get L(s) > 0 and L′(s) < 0, and hence L′(s)/L(s) < 0.
Now we take the real part of both sides and use the fact that Re(B) =
−
∑

ρRe(1/ρ) (see [16, Theorem 5.6]). Therefore∑
ρ

Re

(
1

s− ρ

)
≤ 2

s
+

2

1− s
+
G′(s)

G(s)
.

Define ψ(s) = Γ ′(s)/Γ (s) (the notational conflict with the Hauptmodul ψ
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is unfortunate, but both notations are standard). Then
G′(s)

G(s)
= 5 log(p)− 8 log(π) +

3

2
ψ

(
s

2

)
+

3

2
ψ

(
s+ 1

2

)
+ 2ψ

(
s+ k − 1

2

)
+ 2ψ

(
s+ k − 1

2

)
+

1

2
ψ

(
s+ 2k − 2

2

)
+

1

2
ψ

(
s+ 2k − 1

2

)
.

Now set s = 1+α with 0 < α ≤ 1/2 to be chosen shortly. With p ∈ {2, 3, 5, 7}
and the restriction on s, we have G′(s)/G(s) ≤ 10 log(k) − 2, since ψ(s) ≤
log s for s ≥ 1. Now assume β is a real zero of L(Sym2g, s). Then

3

1 + α− β
≤ 2 +

2

α
+
G′(s)

G(s)
≤ 2

α
+ 10 log(k).

Choosing the optimum value of α =
√
6−2

10 log(k) , which is always less than 1/2,
completes the proof.

We use the above lemma to get a lower bound on L(Sym2g, 1), following
Rouse [27] and an argument of Hoffstein [14].

Lemma 4.2. Let k be an even integer with k ≥ 8, and let p ∈ {2, 3, 5, 7}.
If g is a normalized newform in Snew

k (p) then

L(Sym2g, 1) >
1

86 log(k)
.

Proof. We have the Rankin–Selberg convolution L-function

L(g ⊗ g, s) = ζ(s)L(Sym2g, s) =
∞∑
n=1

a(n)

ns
.

Obviously L(g ⊗ g, s) has a functional equation since ζ(s) and L(Sym2f, s)
both do. By checking Euler factors one may show that a(n) ≥ 0 and a(n2)
≥ 1 for all n. Let β = 1− 5−2

√
6

10 log k , and note that 9/10 < β < 1. Set x = kA,
where A is a parameter to be chosen at the end of the proof (in fact we will
set A = 16/5, so that x ≥ 816/5 ≥ 776).

Consider the integral

I =
1

2πi

2+i∞�

2−i∞

L(g ⊗ g, s+ β)xs

s
∏10
r=2(s+ r)

ds.

We use the fact that

1

2πi

2+i∞�

2−i∞

xs

s
∏10
r=2(s+ r)

ds =

{
(x+ 9)(x− 1)9

10!x10
if x > 1,

0 if x < 1,

which implies

I =
∑
n≤x

a(n)(x/n+ 9)(x/n− 1)9

10!nβ(x/n)10
.
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We now observe that

I ≥ 1

10!

∑
n≤
√
x

1

n2
(x/n2 + 9)(x/n2 − 1)9

(x/n2)10

≥ 1

10!

∑
n≤
√
x

1

n2

(
1− n2

x

)9

≥ 1.39873

10!
.

Let α = −3/2−β. We shift the contour in I to α, and thereby pick up poles
at s = 1− β, s = 0, and s = −2. By the Residue Theorem, we have

I =
1

2πi

α+i∞�

α−i∞

L(g ⊗ g, s+ β)xs

s
∏10
r=2(s+ r)

ds+
L(Sym2g, 1)x1−β

(1− β)
∏10
r=2(1− β + r)

+
L(g ⊗ g, β)

10!
− L(g ⊗ g,−2 + β)x−2

2 · 8!
.

Lemma 4.1 shows that L(Sym2g, s) has no real zeros to the right of β, so
L(Sym2g, β) ≥ 0. As ζ(β) < 0, we see that L(g ⊗ g, β) ≤ 0. Similarly, we
have L(Sym2g,−2 + β) < 0 and ζ(−2 + β) < 0, so L(g ⊗ g,−2 + β) > 0.
Thus,

I − I2 ≤
L(Sym2g, 1)x1−β

(1− β)
∏10
r=2(1− β + r)

,(4.1)

where we have defined

I2 =
1

2πi

α+i∞�

α−i∞

L(g ⊗ g, s+ β)xs

s
∏10
r=2(s+ r)

ds.

We require an upper bound on |I2|. Using the functional equations for
L(g ⊗ g, s) and Γ (s) we have∣∣∣∣L(g ⊗ g,−3

2
+ it

)∣∣∣∣ = p4π−8
∣∣∣∣14 +

it

2

∣∣∣∣2∣∣∣∣34 +
it

2

∣∣∣∣2∣∣∣∣k2 − 5

4
− it

2

∣∣∣∣ ∣∣∣∣k2 − 3

4
− it

2

∣∣∣∣
·
∣∣∣∣k2 − 1

4
− it

2

∣∣∣∣ ∣∣∣∣k2 +
1

4
− it

2

∣∣∣∣ ∣∣∣∣L(f ⊗ f, 52 − it
)∣∣∣∣.

Recall that |xs| = k−A(3/2+β). We have the bounds∣∣∣∣L(g ⊗ g, 52 − it
)∣∣∣∣ ≤ ζ(5

2

)4

and
1

|−3/2− β + it|
∏10
r=2 |r − 3/2− β + it|

≤ 1

|12/5 + it| |2/5 + it|
∏10
r=3 |r − 5/2 + it|

.
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Together this gives

|I2| ≤
ζ(5/2)4p4k4−A(3/2+β)

29π9

·
∞�

−∞

|1/2 + it|2|3/2 + it|2|1 + it|3|256/225 + it|
|12/5 + it| |2/5 + it|

∏10
r=3 |r − 5/2 + it|

dt

≤ 0.18047

10!
p4k4−A(3/2+β) ≤ 0.18047

10!
k8−A(3/2+β).

By (4.1), this gives

L(Sym2g, 1) ≥ (1− β)(1.39873kA(β−1) − 0.18047k8−5A/2).

Choosing A = 16/5 completes the proof.

5. Petersson norm upper bounds. Recall the notation from the in-
troduction. We write k = 4`+ k′ where k′ ∈ {0, 2}. The dimension of Sk(2)
is `− 1. There is a basis for Sk(2) indexed by m given by

Fk,m(z) = qm +
∞∑
n=`

Ak(m,n)q
n, 1 ≤ m ≤ `− 1.

In this section we obtain an upper bound on 〈Fk,m, Fk,m〉. The Fk,m have
the following generating function [10, Section 6]:

`−1∑
m=−∞

Fk,m(z)e
2πimτ =

(S`4ψFk′)(z)

(S`4ψFk′)(τ)

ψ(τ)F2(τ)

ψ(τ)− ψ(z)
.

Recall that S4 and F2 were defined in Section 2. We set F0(z) = 1. Integrating
the generating function gives an integral representation of Fk,m(z), namely

Fk,m(z) =

1/2�

−1/2

(S`4ψFk′)(z)

(S`4ψFk′)(τ)

ψ(τ)F2(τ)

ψ(τ)− ψ(z)
e2πimτ du,(5.1)

where τ = u + iv and v is a fixed constant to be chosen later. Here we are
not free to take v arbitrarily. We require v to be positive and chosen so as
to avoid poles in the integrand of (5.1); see the beginning of [17, Section 3]
for similar discussion.

To compute the inner product 〈Fk,m, Fk,m〉, we first need coset represen-
tatives of Γ0(2) in SL2(Z). The index of Γ0(2) in SL2(Z) is 3, and we choose
the coset representatives

α1 =

(
1 0
0 1

)
, α2 =

(
0 −1
1 0

)
, α3 =

(
1 0
1 1

)
.

Recall that the Petersson inner product is well-defined with respect to the
choice of fundamental domain (which may be obtained from a choice of coset
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representatives). If F denotes the usual fundamental domain for SL2(Z), then

〈Fk,m, Fk,m〉 =
1

π

�

H/Γ0(2)

|Fk,m(x+ iy)|2yk dx dy
y2

=
1

π

3∑
i=1

�

F

∣∣Fk,m|α−1
i
(x+ iy)

∣∣2yk−2 dx dy.
(The presence of yk−2 in each integral is to ensure certain invariance proper-
ties are satisfied.) To get an upper bound on 〈Fk,m, Fk,m〉 we study Fk,m|α−1

i
.

In particular, the Fourier expansion of Fk,m changes when Fk,m is acted on
by these matrices, and we require upper bounds on the absolute values of
these coefficients. The generating function representation of Fk,m is key to
this step. From the definition of the slash operator and the theory of Fourier
expansions of modular forms, we have

Fk,m|α−1
1
(z) = Fk,m(z) = qm +

∞∑
n=`

A
(1)
k (m,n)qn,

Fk,m|α−1
2
(z) = z−kFk,m

(
−1

z

)
= z−k

∞∑
n=1

A
(2)
k (m,n)qn/2,

Fk,m|α−1
3
(z) = (−z + 1)−kFk,m

(
z

−z + 1

)
= (−z + 1)−k

∞∑
n=1

A
(3)
k (m,n)qn/2.

We write A(i)
k (m,n) to denote the dependence on αi. Note that A

(1)
k (m,n) =

Ak(m,n).

To get upper bounds on |A(i)
k (m,n)| we determine how replacing z by

−1/z or z/(−z + 1) changes the integral representation of Fk,m. First con-
sider z → −1/z. Recall that η(z) satisfies η(−1/z) =

√
−iz η(z). Since ψ is

an eta quotient this implies ψ(−1/z) = 212φ(z/2). Transformation properties
of Eisenstein series easily imply that

S4

(
−1

z

)
=

z4

240

(
E4(z)−

1

16
E4

(
z

2

))
, F2

(
−1

z

)
= −z

2

2
F2

(
z

2

)
.

Next consider z → z
−z+1 . To compute η

(
z

−z+1

)
we use, in addition to the

transformation law above, the fact [20, p. 145] that

η

(
z +

1

2

)
=
e2πi/48η3(2z)

η(z)η(4z)
.

Standard computations then show that ψ
(

z
−z+1

)
= −212φ(z)ψ(z/2). By

definition,
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S4

(
z

−z + 1

)
=

1

240

(
E4

(
z

−z + 1

)
− E4

(
2z

−z + 1

))
,

and a straightforward calculation shows that

E4

(
z

−z + 1

)
= (z − 1)4E4(z).

Observe that

E4

(
2z

−z + 1

)
= E4

(
− 1
z−1
2z

)
=

(
z − 1

2z

)4

E4

(
z − 1

2z

)
.

We see that z−1
2z corresponds to the matrix

(
1 −1
2 0

)
acting on z. Certainly(

1 −1
2 0

)
=

(
1 1
2 3

)(
1 −3
0 2

)
,

so if we set w = (z − 3)/2 we have

E4

(
z − 1

2z

)
= E4

(
w + 1

2w + 3

)
= (2w + 3)4E4(w)

= z4E4

(
z − 3

2

)
= z4E4

(
z

2
+

1

2

)
,

since
(
1 1
2 3

)
∈ SL2(Z). Combining everything gives

S4

(
z

−z + 1

)
=

(z − 1)4

240

(
E4(z)−

1

16
E4

(
z

2
+

1

2

))
.

We do a similar calculation with F2

(
z

−z+1

)
and find that

F2

(
z

−z + 1

)
= (z − 1)2

(
1

2
E2

(
z

2
+

1

2

)
− E2(z)

)
.

Putting everything together yields the required generating functions:

Fk,m(z) =

1/2�

−1/2

ψ(τ)F2(τ)

(S`4ψFk′)(τ)
e2πimτ · S

`
4(z)ψ(z)F2(z)

ψ(τ)− ψ(z)
du,

Fk,m

(
−1

z

)
=

1/2�

−1/2

ψ(τ)F2(τ)

(S`4ψFk′)(τ)
e2πimτ ·

(
z4

240

(
E4(z)−

1

16
E4

(
z

2

)))`

·
212φ(z/2) · −z22 F2(z/2)

ψ(τ)− 212φ(z/2)
du,
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Fk,m

(
z

−z + 1

)

=

1/2�

−1/2

ψ(τ)F2(τ)

(S`4ψFk′)(τ)
e2πimτ ·

(
(z − 1)4

240

(
E4(z)−

1

16
E4

(
z

2
+

1

2

)))`

·
−212φ(z)ψ(z/2) · (z − 1)2

(
1
2E2(z/2 + 1/2)− E2(z)

)
ψ(τ) + 212φ(z)ψ(z/2)

du.

We write z = x + iy, where we take y a constant to be fixed soon. The
coefficients A(i)

k (m,n) are then given by

A
(1)
k (m,n) =

1/2�

−1/2

Fk,m(z)e
−2πinz dx,

A
(2)
k (m,n) =

1�

−1
Fk,m

(
−1

z

)
e−πinz dx,

A
(3)
k (m,n) =

1�

−1
Fk,m

(
z

−z + 1

)
e−πinz dx.

To get upper bounds on |A(i)
k (m,n)| it suffices to bound the appropriate

double integrals. For the remainder of the section, we set v = 1.16 and
y = 0.865, so that τ = u + 1.16i, z = x + 0.865i, where u, x ∈ [−1/2, 1/2].
This choice of v, y is identical to that in [17]. These values of v and y give
reasonable bounds, and keep the difference of Hauptmoduln in the denom-
inator of (5.1) far enough from zero. Further, in bounding 〈Fk,m, Fk,m〉 we
require certain infinite series to be convergent, and choosing y to be just less
than

√
3/2 makes this possible.

We handle eachA(i)
k (m,n) in turn. For a modular formG =

∑∞
n=0 a(n)q

n,
we write G̃ =

∑N
n=0 a(n)q

n, and write RG = G− G̃ (we also refer to RG as
the tail of the series). Throughout the calculations we understand N to be
equal to 100. All computations were performed using SAGE [29] and Math-
ematica [30]. (See Section 5 of [10] for computations of a similar nature.)

5.1. Upper bound on |A(1)
k (m,n)|. We have

A
(1)
k (m,n) =

1/2�

−1/2

1/2�

−1/2

ψ(τ)F2(τ)

(S`4ψFk′)(τ)
· S

`
4(z)ψ(z)F2(z)

ψ(τ)− ψ(z)
e2πimτe−2πinz du dx.

Trivially bounding, we have

|A(1)
k (m,n)| ≤ e−2πm·1.16e2πn·0.865 max

|u|,|x|≤1/2

∣∣∣∣ F2(τ)

(S`4Fk′)(τ)

∣∣∣∣∣∣∣∣S`4(z)ψ(z)F2(z)

ψ(τ)− ψ(z)

∣∣∣∣.
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We find the appropriate upper and lower bounds on each piece separately,
and then combine the bounds after all the calculations.

The Fourier expansion of F2(z) is given by

F2(z) = 1 + 24
∞∑
n=1

(∑
d|n
d odd

d
)
qn.

It is clear that

|F̃2(z)| ≤ 1 + 24

N∑
n=1

(∑
d|n
d odd

d
)
e−2πn·0.865 ≤ 1.10514,

|F̃2(τ)| ≤ 1 + 24
N∑
n=1

(∑
d|n
d odd

d
)
e−2πn·1.16 ≤ 1.01642.

To bound RF2, we have ∑
d|n
d odd

d ≤ σ(n) < n+ n2,

and thus

|RF2(τ)|, |RF2(z)| ≤
∞∑

n=N+1

(n+ n2)e−2πn·0.865 ≤ 4.15 · 10−235,

where we have used the technique of taking derivatives of geometric series to
evaluate the sum. (Hereafter we do not mention the contribution of tails of
series, since our choice ofN lets us easily show the tails are always negligible.)
Hence

|F2(z)| ≤ 1.10514, |F2(τ)| ≤ 1.01642.

We similarly find that |S4(z)| ≤ 0.00452.
The next task is to obtain a lower bound on |S4(τ)|. First, we take the

derivative of S4(τ) to get

d

dτ
S4(τ) = 2πi

∞∑
n=1

n

(
σ3(n)− σ3

(
n

2

))
e2πinτ ,

from which it follows that∣∣∣∣ ddτ S4(τ)
∣∣∣∣ ≤ 2π

∞∑
n=1

(n3 + n5)e−2πn·1.16 ≤ 0.00871.

We evaluate S̃4(τ) at the points τ = n
20000 + 1.16i for n ∈ [−10000, 10000]

and find that the minimum absolute value at these points is greater than
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0.000679. Hence the smallest possible value of |S̃4(τ)| is given by 0.000679−
0.00871
40000 ≥ 0.00067. Subtracting off the tail, we see that |S4(τ)| ≥ 0.00067.

It remains to handle ψ(z) and ψ(τ). Taking the derivative, we have

d

dz
ψ(z) = −2πiq−1 + 2πi

∞∑
n=1

ns(n)qn,

and from this we get∣∣∣∣ ddzψ(z)
∣∣∣∣ ≤ 2π

(
e2π·0.865 +

N∑
n=1

n|s(n)|e−2πn·0.865
)

+ 2π

∞∑
n=N+1

n|s(n)|e−2πn·0.865.

The first sum is finite, and we can evaluate it directly, getting

2π
(
e2π·0.865 +

N∑
n=1

n|s(n)|e−2πn·0.865
)
≤ 1448.69599.

For the infinite sum, we can bound |s(n)| using Theorem 1.3. Thus we have

2π
∞∑

n=N+1

n|s(n)|e−2πn·0.865 ≤ 2π · 0.9
∞∑
n=1

n12e2π
√
2n−2πn·0.865.

We bound the exponent by

2π
√
2n− 2πn · 0.865 = 2πn

(
−0.865 +

√
2

n

)
≤ 2πn

(
−0.865 +

√
2

N + 1

)
≤ −2πn · 0.724,

and summing the series we find that as usual the tail is negligible. It follows
that ∣∣∣∣ ddzψ(z)

∣∣∣∣ ≤ 1448.69599.

As above, we now calculate |ψ̃(z)| on a grid of points. We look at points
with x = −1

2 +
n

20000 , n ∈ [−20000, 20000]. We find that the maximum value
on this point sample is given by 254.52626, and thus we have

|ψ̃(z)| ≤ 254.52626 +
1448.69599

40000
≤ 254.56248.

This gives |ψ(z)| ≤ 254.56248. We similarly compute a lower bound for
|ψ(τ)|, finding that |ψ(τ)| ≥ 1439.51688.
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We now pull all the computations above together to get

(5.2) |A(1)
k (m,n)|

≤ e−2πm·1.16e2πn·0.865 max
|u|,|x|≤1/2

∣∣∣∣ F2(τ)

(S`4Fk′)(τ)

∣∣∣∣∣∣∣∣S`4(z)ψ(z)F2(z)

ψ(τ)− ψ(z)

∣∣∣∣
≤ e−2πm·1.16e2πn·0.865 · 1.01642

(0.00067)`
· (0.00452)

`(254.56248)(1.10514)

1439.51688− 254.56248

≤ 0.242 · 6.747` · e−2πm·1.16e2πn·0.865.

5.2. Upper bound on |A(2)
k (m,n)|. Here

|A(2)
k (m,n)|

≤ 213e−2πm·1.16eπn·0.865 max
|u|,|x|≤1/2

∣∣∣∣ F2(τ)

(S`4Fk′)(τ)

∣∣∣∣ |φ(z/2)| · |(z2/2)F2(z/2)|
|ψ(τ)− 212φ(z/2)|

·
∣∣∣∣ z4240

(
E4(z)−

1

16
E4

(
z

2

))∣∣∣∣`.
We have already bounded everything involving τ , so we only need to bound
the parts involving z. The bound on |z| is straightforward, since |z| ≤ |1/2+
0.865i| ≤ 0.99912. Using this and arguing as above we find that∣∣∣∣z22 F2

(
z

2

)∣∣∣∣ ≤ 1.35659,

∣∣∣∣ z4240

(
E4(z)−

1

16
E4

(
z

2

))∣∣∣∣ ≤ 0.0042.

Getting an upper bound on |φ(z/2)| is entirely analogous to the calculations
we have done before. We derive the bound |φ(z/2)| ≤ 0.34276.

Combining everything from above, we have

(5.3) |A(2)
k (m,n)|

≤ e−2πm·1.16eπn·0.865 · 213 1.01642

(0.00067)`
· (0.34276)(1.35659)(0.0042)

`

1439.51688− 212 · 0.34276
≤ 108.842 · 6.269` · e−2πm·1.16eπn·0.865.

5.3. Upper bound on |A(3)
k (m,n)|. From the equations above we have

|A(3)
k (m,n)| ≤ 2e−2πm·1.16eπn·0.865

· max
|x|,|u|≤1/2

∣∣∣∣ F2(τ)

(S`4Fk′)(τ)

∣∣∣∣∣∣∣∣(z − 1)4

240

(
E4(z)−

1

16
E4

(
z

2
+

1

2

))∣∣∣∣`
· 2

12|φ(z)ψ(z/2)| |(z − 1)2(1/2E2(z/2 + 1/2)− E2(z))|
|ψ(τ) + 212φ(z)ψ(z/2)|

.
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We first get a bound for (z−1)4
240

(
E4(z)− 1

16E4(z/2+1/2)
)
. As usual, we bound

its derivative, compute values of the truncated sum on a grid of points, and
compensate for the effects of the derivative and the tail of the series. This
gives ∣∣∣∣(z − 1)4

240

(
E4(z)−

1

16
E4

(
z

2
+

1

2

))∣∣∣∣ ≤ 0.044063.

Arguing similarly for (z − 1)2
(
1
2E2(z/2 + 1/2)− E2(z)

)
, we find that∣∣∣∣(z − 1)2

(
1

2
E2

(
z

2
+

1

2

)
− E2(z)

)∣∣∣∣ ≤ 2.69392.

It remains to deal with φ(z) and ψ(z/2). Again the computations are routine,
and we have

|φ(z)| ≤ 0.00486, |ψ(z/2)| ≤ 15.95619.

From our bounds above, we have

|A(3)
k (m,n)| ≤ e−2πm·1.16eπn·0.865(5.4)

· 213 1.01642

0.00067`
· 0.044063

`(2.69392)(0.00486 · 15.95619)
1439.51688− 212 · 0.00486 · 15.95619

≤ 1.551 · 65.766` · e−2πm·1.16eπn·0.865.
Now we are in a position to get an upper bound on 〈Fk,m, Fk,m〉:

〈Fk,m, Fk,m〉 =
1

π

3∑
i=1

�

F
Fk,m|α−1

i
(z)Fk,m|α−1

i
(z)yk−2 dx dy =

1

π
(I1 + I2 + I3).

We bound each of I1, I2, I3 separately.

5.3.1. Upper bound on I1. In this integral we act on Fk,m with α−11 ,
which is just the identity matrix. We write

Fk,m(z) = qm +

∞∑
n=`

A
(1)
k (m,n)qn,

and putting this in the integral and integrating over x, we get

I1 =

1/2�

−1/2

∞�
√
1−x2
|Fk,m(x+ iy)|2yk−2 dy dx

≤
∞�
√
3/2

yk−2
1/2�

−1/2

|Fk,m(x+ iy)|2 dx dy

=

∞�
√
3/2

yk−2
(
e−4πmy +

∞∑
n=`

|A(1)
k (m,n)|2e−4πny

)
dy.
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Changing variables, we find that

I1 ≤
(k − 2)!

(4πm)k−1
+

1

(4π)k−1

∞∑
n=`

|A(1)
k (m,n)|2

nk−1

∞�

2π
√
3n

uk−2e−u du.

Thus
	∞
2π
√
3n u

k−2e−u du = e−2π
√
3n
∑k−2

i=0
(k−2)!
i! (2π

√
3n)i, and it is easy to

see that

1

nk−1

k−2∑
i=0

(k − 2)!

i!
(2π
√
3n)i

is decreasing as a function of n, so

I1 −
(k − 2)!

(4πm)k−1
≤ 1

(4π)k−1

∞∑
n=`

|A(1)
k (m,n)|2e−2π

√
3n (k − 2)!

`k−1

∞∑
i=0

(2π
√
3 `)i

i!

≤ (k − 2)!e2π
√
3`

(4π`)k−1

∞∑
n=`

|A(1)
k (m,n)|2e−2π

√
3n.

Using (5.2) gives
∞∑
n=`

|A(1)
k (m,n)|2e−2π

√
3n ≤ 0.2422 · 6.7472` · e−4πm·1.16

∞∑
n=`

e4πn·0.865−2π
√
3n

≤ (4.5763)(45.523)` · e−4πm·1.16e−0.01288`,

and thus

I1 ≤
(k − 2)!

(4πm)k−1
+

(4.5763)(k − 2)!(45.523)`

(4π`)k−1
· e−4πm·1.16e10.86992`.

5.3.2. Upper bound on I2. Here we act on Fk,m with α−12 , and thus

Fk,m|α−1
2
(z) =

1

zk
Fk,m

(
−1

z

)
=

1

zk

∞∑
n=1

A
(2)
k (m,n)qn/2.

Putting this into the integral and rearranging, we have

I2 =
∑
r,s≥1

A
(2)
k (m, r)A

(2)
k (m, s)

1/2�

−1/2

eπix(r−s)
∞�

√
1−x2

yk−2

(x2 + y2)k
e−πy(r+s) dy dx.

We easily obtain

I2 ≤
1

π

(
2
√
3

3

)k+2 ∑
r,s≥1

|A(2)
k (m, r)| |A(2)

k (m, s)|e
− 1

2
π
√
3(r+s)

r + s
,
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and (5.3) yields

I2 ≤
(108.842)2

π

(
2
√
3

3

)k+2

(6.269)2`e−4πm·1.16

·
∑
r,s≥1

eπr·0.865eπs·0.865
e−

1
2
π
√
3(r+s)

r + s
.

It remains to bound the double sum. Since r, s are positive integers, we
have 1

r+s ≤
1√
2rs

, so the double sum is bounded above by

1√
2

( ∞∑
n=1

e−
1
2

√
3πn+π·0.865n

n1/2

)2

.

We explicitly calculate the partial sum with 10000 terms and then bound
the contribution of the tail, which gives

∞∑
n=1

e−
1
2

√
3πn+π·0.865n

n1/2
≤ 29.77087.

Putting everything together, we obtain

I2 ≤ 2363259(2
√
3/3)k+2(6.269)2`e−4πm·1.16.

5.3.3. Upper bound on I3. We have

I3 =
�

F
Fk,m|α−1

3
(z)Fk,m|α−1

3
(z)yk−2 dx dy,

which implies

I3 ≤
1

π

∑
r,s≥1

|A(3)
k (m, r)| |A(3)

k (m, s)|e
− 1

2

√
3π(r+s)

r + s
.

Applying (5.4) and proceeding as before yields I3 ≤ 480 ·65.7662` ·e−4πm·1.16.
Putting everything together and simplifying, we have

〈Fk,m, Fk,m〉 ≤
4(k − 2)!

(4π)kmk−1 +
e2.908(k − 2)!(17.094)k

(4π)k(k/4− 1)k−1
· e−4πm·1.16(5.5)

+ e13.817(1.828)ke−4πm·1.16 + e5.03(8.11)ke−4πm·1.16.

6. Proof of Theorem 1.1. Let n=n(k) be the dimension of Sk(SL2(Z))
and let t = t(k) be the dimension of Snew

k (2). Let {fi}ni=1 be a basis of
normalized Hecke eigenforms for Sk(SL2(Z)), and let {gj}tj=1 be a basis of
normalized newforms for Snew

k (2). We would like to write Fk,m as a linear
combination of fi, fi|V2, and gj (i.e. in terms of oldforms and newforms).
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Directly writing

Fk,m =
∑
i

cifi +
∑
i

difi|V2 +
∑
j

ejgj

with constants ci, di, ej leads to problems, so we write Fk,m with respect to
a different basis.

To motivate our choice of basis we require some results on Petersson
inner products. Specifically, we need to be able to evaluate 〈fi|V2, fj |V2〉 and
〈fi, fj |V2〉. We define a matrix M by M =

(
2 0
0 1

)
. Let fi, fj be eigenforms in

Sk(SL2(Z)). Then
〈fi|V2, fj |V2〉 = 2−k〈fi|M , fj |M 〉 = 2−k〈fi, fj〉.

This implies 〈fi|V2, fj |V2〉 = 0 if i 6= j. Further, from [28, Lemma 5] we have

〈fi, fi|V2〉 =
ai(2)

3 · 2k−1
〈fi, fi〉,

where ai(2) is the coefficient of q2 in the Fourier expansion of fi. Note that
ai(2) is real since fi is a Hecke eigenform. An easy modification of the proof
of this lemma shows that 〈fi, fj |V2〉 = 0 if i 6= j.

We would like to write Fk,m with respect to a basis in which the forms
are all orthogonal to each other with respect to the Petersson inner product,
the nth coefficient of a basis element is bounded by Cd(n)n(k−1)/2 for some
absolute constant C ≥ 1, and the Petersson norm of each basis element is
about the same order of magnitude. Using a basis of this form was suggested
to us by Rouse (private communication). We choose our basis to consist of
the forms {gj}tj=1, {fi|V2}ni=1, {fi − κifi|V2}ni=1, where κi is chosen so that
fi−κifi|V2 is orthogonal to fi|V2. An easy calculation shows that κi = 2

3ai(2).
Now we write

Fk,m =
∑
i

ci(fi − κifi|V2) +
∑
i

di(2
k/2fi|V2) +

∑
j

ejgj .

Note that we may take ci, di, ej ∈ R because Fk,m, fi, gj have real coefficients.
Since the basis elements are orthogonal to each other we have

〈Fk,m, Fk,m〉 =
∑
i

c2i 〈fi − κifi|V2, fi − κifi|V2〉

+
∑
i

d2i 2
k〈fi|V2, fi|V2〉+

∑
j

e2j 〈gj , gj〉.

Note that

〈fi − κifi|V2, fi − κifi|V2〉 = 〈fi − κifi|V2, fi〉 =
(
1− 4

9

a2i (2)

2k

)
〈fi, fi〉

≥ 1

9
〈fi, fi〉,
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where for the inequality we have used |ai(2)| ≤ 2 · 2(k−1)/2. From work of
Rouse [27] we have

〈fi, fi〉 ≥
6

π2
· Γ (k)
(4π)k

· 1

64 log k
,

and Lemma 4.2 yields

〈gj , gj〉 ≥
6

π2
· 1

1 + 1/2
· Γ (k)
(4π)k

· 1

86 log k
.

Taking into account these inequalities we see that

〈Fk,m, Fk,m〉 ≥
∑
i

(c2i + d2i )
1

9
〈fi, fi〉+

∑
j

e2j 〈gj , gj〉

≥
∑
i

(c2i + d2i )
1

96π2
· Γ (k)

(4π)k log k
+
∑
j

e2j
2

43π2
· Γ (k)

(4π)k log k

≥
(∑

i

c2i +
∑
i

d2i +
∑
j

e2j

) 1

96π2
· Γ (k)

(4π)k log k
.

This obviously implies∑
i

c2i +
∑
i

d2i +
∑
j

e2j ≤ 〈Fk,m, Fk,m〉 · 96π2 ·
(log k)(4π)k

(k − 1)!
.

Recall that n is the dimension of Sk(SL2(Z)) and t is the dimension of
Snew
k (2). We have n ≤ k/12, and specializing [21, Theorem 1] gives

t = k − 1−
⌊
k

4

⌋
− 2

⌊
k

3

⌋
≤ 2 +

k

12
.

By the Cauchy–Schwarz inequality, we have
n∑
i=1

|ci|+
n∑
i=1

|di|+
t∑

j=1

|ej | ≤
√
2n+ t ·

√∑
i

c2i +
∑
i

d2i +
∑
j

e2j

≤
√
k

4
+ 2 ·

√∑
i

c2i +
∑
i

d2i +
∑
j

e2j .

Using the triangle inequality and (5.5) we obtain

n∑
i=1

|ci|+
n∑
i=1

|di|+
t∑

j=1

|ej | ≤
√
log k

(
44

m(k−1)/2 +
e4.601(6.274)k

(k/4− 1)(k−1)/2
e−2πm·1.16

+
e10.057(4.793)k√

(k − 2)!
e−2πm·1.16 +

e5.663(10.096)k√
(k − 2)!

e−2πm·1.16
)
.
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We must determine the absolute constant C ≥ 1 such that the nth coeffi-
cients of gj , 2k/2fi|V2, and fi−κifi|V2 are bounded above by Cd(n)n(k−1)/2.
The gj are newforms so their coefficients are bounded above by d(n)n(k−1)/2.
Let fi be as above with Fourier expansion given by

fi(z) =
∞∑
n=1

ai(n)q
n.

Then fi|V2 =
∑

n=1 a(n)q
2n, so the 2nth coefficient of 2k/2fi|V2 is bounded

above by

|2k/2ai(n)| ≤ 2k/2d(n)n(k−1)/2 =
√
2 d(n)(2n)(k−1)/2 ≤

√
2 d(2n)(2n)(k−1)/2.

Arguing similarly, we see that the coefficients of fi − κifi|V2 are bounded
above by 7

3d(n)n
(k−1)/2. Hence we may take C = 7/3. This implies that the

absolute value of the coefficient of qn in Fk,m is bounded above by√
log k

(
103

m(k−1)/2 +
e5.449(6.274)k

(k/4− 1)(k−1)/2
e−2πm·1.16

+
e10.905(4.793)k√

(k − 2)!
e−2πm·1.16 +

e6.511(10.096)k√
(k − 2)!

e−2πm·1.16
)
d(n)n(k−1)/2.

Now define

B(k) =
e5.449(6.274)k

(k/4− 1)(k−1)/2
+
e10.905(4.793)k√

(k − 2)!
+
e6.511(10.096)k√

(k − 2)!
,

so that the nth coefficient of Fk,m is bounded above in absolute value by√
log k

(
103

m(k−1)/2 +B(k)e−2πm·1.16
)
d(n)n(k−1)/2.

Let G ∈ Sk(2) be given by G(z) =
∑`−1

m=1 a(m)Fk,m =
∑∞

n=1 a(n)q
n. Apply-

ing the triangle inequality gives

|a(n)| ≤
√
log k

(
103

`−1∑
m=1

|a(m)|
m(k−1)/2 +B(k)

`−1∑
m=1

|a(m)|e−7.288m
)
d(n)n(k−1)/2,

which yields Theorem 1.1.
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