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1. Introduction. In this memoir we are concerned with the distribution
of the divisor function d(n) for n lying in a given residue class. Here d(n) is
the number of positive divisors of n,

d(n) =
∑
m|n

1.

Suppose that q ∈ N and a ∈ Z and define, for each x ∈ R with x ≥ 1,

S(x; q, a) =
∑
n≤x

n≡amod q

d(n).

Various estimates are known for S(x; q, a). Many of the estimates in the
literature fall into two categories. In the first kind the error term is com-
mendably small, but the acceptable range for q is small. In the second kind
the range for q is greater, but the relative error is generally not very small.
Our interest here is in estimates which are uniform in q for as large a range
as possible, yet the error term is as small as possible.

Fouvry and Iwaniec [FI] assume (q, a) = 1 and state that by using Fourier
series techniques and Weil’s estimate for Kloosterman’s sum K(q; a, b) one
can show that

S(x; q, a) =
1

φ(q)

∑
n≤x

(n,q)=1

d(n) +O((x1/3 + q1/2)xε).

Here

K(q; a, b) =

q∑
r=1

(r,q)=1

e((ar + b[q, r])/q)

where [q, r] denotes an integer u such that ur ≡ 1 mod q.
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As far as we are aware, there is no proof in print. Our interest in this is
that we have an application in mind. Indeed, we need more than is stated
above, as we require the corresponding result when (q, a) > 1. In this paper
we remedy this by adumbrating a proof in this general case. We also make
a novel contribution to the subject by providing a main term that is both
useful and uniform in q and a in all cases.

Theorem 1.1. Suppose that q ∈ N, a ∈ Z, x ∈ R and x ≥ 1. Then

(1.1) S(x; q, a) =
x

q

∑
r|q

cr(a)

r

(
log

x

r2
+ 2γ − 1

)
+O((x1/3 + q1/2)xε)

where γ is Euler’s constant and cr(a) is Ramanujan’s sum

cr(a) =
r∑

m=1
(m,r)=1

e(am/r).

The implicit constant in (1.1) depends at most on ε.

2. Lemmata

Lemma 2.1. Suppose that q ∈ N and a, b ∈ Z. Then

K(q; a, b)� d(q)q1/2(q, a, b)1/2

where (q, a, b) is the greatest common divisor of q, a, b.

This is sometimes called “Weil’s estimate for K(q; a, b)”, although as
far as we are aware the first complete proof for all q, a, b is due to Ester-
mann [E].

Lemma 2.2. Suppose that X < Y , F ′′ exists and is continuous on [X,Y ]
and F ′ is monotonic on [X,Y ]. Let H1 and H2 be integers such that H1 ≤
F ′(α) ≤ H2 for every α ∈ [X,Y ]. Then∑

X<n≤Y
e(F (n)) =

H2∑
h=H1

Y�

X

e(F (α)− hα) dα+O(log(2 +H))

where H = max(|H1|, |H2|).

This is a standard finite form of the Poisson summation formula, and
proofs can be found in Vaughan [V, Lemma 4.2] or Titchmarsh [T, Lem-
ma 4.7].

Lemma 2.3 ([T, Lemma 4.2]). Suppose that X < Y , F ′′ exists and is
continuous on [X,Y ] and F ′ is monotonic on [X,Y ]. Let J be a positive
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real number such that |F ′(α)| ≥ J for all α ∈ [X,Y ]. Then∣∣∣Y�
X

eiF (α) dα
∣∣∣ ≤ 4

J
.

Lemma 2.4 ([T, Lemma 4.4]). Suppose that X < Y , F ′′ exists and is
continuous on [X,Y ]. Let K be a positive real number such that |F ′′(α)| ≥ K
for all α ∈ [X,Y ]. Then ∣∣∣Y�

X

eiF (α) dα
∣∣∣ ≤ 8√

K
.

It is useful to establish first of all a weak version of our main theorem.

Lemma 2.5. Suppose that q ∈ N, a ∈ Z, x ∈ R and x ≥ 1. Then

S(x; q, a) =
x

q

∑
r|q

cr(a)

r

(
log

x

r2
+ 2γ − 1

)
+O((x1/2 + q) log 2q).

Proof. Let r ∈ N, b ∈ Z with (r, b) = 1. Dirichlet’s method of the
hyperbola gives∑

n≤x
d(n)e(bn/r) =

∑
u≤
√
x

( ∑
v≤x/u

2−
∑
v≤
√
x

1
)
e(buv/r).

When r - u the inner sums are � ‖bu/r‖−1, and so such terms contribute

� (
√
x+ r) log 2r

to the double sums. The remaining terms, with r |u, are easily seen to con-
tribute

x

r

(
log

x

r2
+ 2γ − 1

)
+O(

√
x).

The lemma then follows by considering

S(x; q, a) =
1

q

q∑
j=1

e(−ja/q)
∑
n≤x

d(n)e(jn/q).

It is useful to define the periodic polynomials

B1(α) = α− bαc − 1
2 , B2(α) = 1

2(α− bαc)2 − 1
2(α− bαc) + 1

12 .

They are of period 1, B1(x) is continuous on R \ Z, B2(x) is differentiable
on R \ Z and continuous on R, and they are related by

x�

0

B1(y) dy = B2(x)− 1
12 .
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Lemma 2.6. Suppose that q ∈ N, a ∈ Z, (q, a) = 1. Then there is a real
number C(q) such that whenever x ∈ R and x ≥ 1 we have

S(x; q, a) =
φ(q)

q2
x(log x+ C(q))− S1 − S2 + S3 − S4

where

S1 =
∑
n≤
√
x

(n,q)=1

2B1

(
x− an[q, n]

nq

)
,

S2 =

q∑
r=1

(r,q)=1

2B2

(√
x− r
q

)
,

S3 = 4x

∞�
√
x

1

β3

q∑
r=1

(r,q)=1

B2

(
β − r
q

)
dβ,

S4 =

q∑
r=1

(r,q)=1

(
B1

(√
x− r
q

)
+B1

(
−r
q

))(
B1

(√
x−a[q, r]

q

)
−B1

(
−a[q, r]

q

))
.

Proof. Multiple use is made of the observation that∑
n≤y

n≡bmod q

1 =
y

q
−B1

(
y − b
q

)
+B1

(
−b
q

)
.

Again we start with Dirichlet’s method of the hyperbola. Thus

(2.1) S(x; q, a) =
∑
`≤
√
x

(`,q)=1

q∑
r=1

`r≡amod q

(
2x

`q
−
√
x

q
− 2A+B

)

where

A = B1

(
x− r`
`q

)
−B1

(
−r
q

)
, B = B1

(√
x− r
q

)
−B1

(
−r
q

)
.

The expression B contributes

(2.2)

q∑
r=1

(r,q)=1

∑
`≤
√
x

`r≡amod q

B =

√
x

q

q∑
r=1

(r,q)=1

B − C

where

C =

q∑
r=1

(r,q)=1

(
B1

(√
x−r
q

)
−B1

(
−r
q

))(
B1

(√
x− a[q, r]

q

)
−B1

(
−a[q, r]

q

))
.
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The contribution to (2.1) of

−
∑
`≤
√
x

(`,q)=1

q∑
r=1

`r≡amod q

√
x

q

is

(2.3) −
√
x

q

∑
`≤
√
x

(`,q)=1

1 = −xφ(q)

q2
+

√
x

q

q∑
r=1

(r,q)=1

B.

The contribution to (2.1) of

−
∑
`≤
√
x

(`,q)=1

q∑
r=1

`r≡amod q

2A

is

−S1 +

q∑
r=1

(r,q)=1

∑
`≤
√
x

`r≡amod q

2B1

(
−r
q

)

and the sum here is
q∑
r=1

(r,q)=1

2B1

(
−r
q

)(√
x

q
−B1

(√
x− a[q, r]

q

)
+B1

(
−a[q, r]

q

))
.

Combining this with (2.2) and (2.3) gives

(2.4) −xφ(q)

q2
+

2
√
x

q

q∑
r=1

(r,q)=1

B1

(√
x− r
q

)
− S1 − S4.

It remains to consider the contribution to (2.1) of∑
`≤
√
x

(`,q)=1

q∑
r=1

`r≡amod q

2x

`q
=

2x

q

q∑
r=1

(r,q)=1

∑
`≤
√
x

`≡rmod q

1

`
.

By integration by parts,∑
`≤
√
x

`≡rmod q

1

`
=

1

q
log
√
x+

1

q
+B1

(
−r
q

)
− 1√

x
B1

(√
x−r
q

)
−

√
x�

1

β−2B1

(
β−r
q

)
dβ.

The integral here is

C1(q, r)−
∞�
√
x

β−2B1

(
β − r
q

)
dβ
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where

C1(q, r) =

∞�

1

β−2B1

(
β − r
q

)
dβ.

We have
∞�
√
x

β−2B1

(
β − r
q

)
dβ = − q

x
B2

(√
x− r
q

)
+

∞�
√
x

2qβ−3B2

(
β − r
q

)
dβ.

Thus the total contribution to our sum from this term is

(2.5)
xφ(q)

q2
(log x+ C2(q))−

2
√
x

q

q∑
r=1

(r,q)=1

B1

(√
x− r
q

)
− S2 + S3

where

C2(q) = 2 +
2q

ϕ(q)

q∑
r=1

(r,q)=1

B1

(
−r
q

)
− 2q

ϕ(q)

q∑
r=1

(r,q)=1

C1(q, r).

Combining (2.4) and (2.5), we obtain

S(x; q, a) =
ϕ(q)x

q2
(log x+ C(q))− S1 − S2 + S3 − S4

where C(q) = C2(q) − 1 is independent of a. One can also see this by
reference to Lemma 2.5. When (q, a) = 1, we have cr(a) = µ(r), and then
subtracting main terms, dividing by x and letting x → ∞ gives another
formula for C(q),

(2.6) C(q) =
q

ϕ(q)

∑
r|q

µ(r)

r
(−2 log r + 2γ − 1),

which is independent of a.

Lemma 2.7. Suppose that q ∈ N and α ∈ R. Then

(2.7)

q∑
r=1

(r,q)=1

B2

(
α− r

q

)
� q

φ(q)
.

Proof. B2(β) has the Fourier expansion (Montgomery and Vaughan
[MV, Theorem B.2]) ∑

h6=0

e(βh)

4π2h2
,

which converges to B2(β) for every β. Thus the sum in question is∑
h6=0

e(αh)

4π2h2
cq(−h).



The divisor function on residue classes I 375

By Ramanujan’s formula cq(−h) =
∑

m|(q,h)mµ(q/m), the above becomes∑
m|q

1

m
µ(q/m)

∑
j 6=0

e(αmj)

4π2j2
=

1

q

∑
m|q

mµ(m)B2(αq/m)� 1

q
σ(q)� q

ϕ(q)
.

Lemma 2.8. Suppose that q ∈ N, a ∈ Z, (q, a) = 1, and α, β ∈ R. Then
q∑
r=1

(r,q)=1

B1(α− r/q)B1(β − a[q, r]/q)� d(q)q1/2(log 2q)2.

Proof. The result obviously holds for q = 1, 2. So we assume that q ≥ 3
and let H ≥ 3 be a number to be specified later. By Lemma D.1 of Mont-
gomery and Vaughan [MV] we have

B1(α) = −
∑

0<|h|≤H

e(αh)

2πih
+O(G(α))

where

G(α) = G(α,H) = min

(
1,

1

H‖α‖

)
and ‖α‖ = minn∈Z |α− n|. In particular, this implies that∑

0<|h|≤H

e(αh)

2πih
� 1

uniformly in H and α. Thus the sum in question is

(2.8) −
∑

0<|h|≤H

∑
0<|j|≤H

e(αh)

2πh

e(βj)

2πj
K(q;−h,−ja) +O(E)

where

(2.9) E =

q∑
r=1

(r,q)=1

(G(α− r/q) +G(β − a[q, r]/q)).

We also record that the function G(α) has the Fourier expansion

(2.10) G(α) =

∞∑
h=−∞

g(h)e(αh) where g(h) =

1/2�

−1/2

G(α)e(−αh) dα.

Thus

g(0) =

−1/H�

−1/2

dα

H(−α)
+

1/H�

−1/H

dα+

1/2�

1/H

dα

Hα
=

2

H
log

He

2
.
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Also, when h 6= 0,

g(h) =

1/2�

−1/2

G(α)e(−αh) dα

=

1/H�

−1/H

e(−αh) dα+

−1/H�

−1/2

1

H(−α)
e(−αh) dα+

1/2�

1/H

1

Hα
e(−αh) dα

=
sin(2πh/H)

πh
+

1/2�

1/H

2 cos 2παh

Hα
dα.

By integration by parts this is

1/2�

1/H

sin 2παh

πhHα2
dα.

It is easy to check that for h 6= 0, we have |g(h)| ≤ g(0) � log 2H
H , and

|g(h)| ≤ 1
π|h| , and by integration by parts, g(h)� H

h2
. Thus

(2.11) g(h)� min

(
log 2H

H
,

1

|h|
,
H

h2

)
(h 6= 0).

Now let H = q. Then by (2.9)–(2.11), we obtain

E =

∞∑
h=−∞

g(h)
(
e(αh) + e(βh)

)
cq(h)�

∞∑
h=−∞

|g(h)|
∑
r|(q,h)

r

�
∑
r|q

r

( q∑
h=1
r|h

1

h
+

∞∑
h=q+1
r|h

q

h2

)
+ g(0)qd(q)� d(q) log 2q.

So it remains to consider the main term in (2.8). By Lemma 2.1,

K(q;−h,−ja)� d(q)q1/2(q, h, ja)1/2 = d(q)q1/2(q;h, j)1/2,

and therefore the main term in (2.8) is

� d(q)q1/2
q∑

h=1

q∑
j=1

1

hj
(q, h, j)1/2 = d(q)q1/2

∑
d|q

d1/2
q∑

h=1

q∑
j=1

(q,h,j)=d

1

hj

= d(q)q1/2
∑
d|q

d1/2
q/d∑
u=1

q/d∑
v=1

(q/d,u,v)=1

1

d2uv
≤ d(q)q1/2

∑
d|q

1

d3/2

( q/d∑
u=1

1

u

)2

� d(q)q1/2(log 2q)2.

This completes the proof of Lemma 2.8.
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3. Proof of Theorem 1.1 when (q, a) = 1. Since the conclusion is
trivial when q > x2/3, we may suppose that q ≤ x2/3.

It follows by Lemma 2.7 that

S2 �
q

φ(q)
,

and likewise for S3. Also, by several applications of Lemma 2.8 we have

S4 � d(q)q1/2(log 2q)2.

Our main aim is to prove that

S1 � (x1/3 + q1/2)xε,

for then the desired conclusion will follow from Lemma 2.6, the formula for
C(q) in (2.6), and the fact that cr(a) = µ(r) when (q, a) = 1 and r | q.

Consider

T (Y ) =
∑

Y <n≤Y ′
(n,q)=1

2B1

(
x− an[q, n]

nq

)

where Y < Y ′ ≤ 2Y and Y ≤
√
x. We are only concerned with Y satisfying

x1/3 ≤ Y ≤ x1/2.
We estimate B1 as in Lemma 2.8. Thus

B1

(
x− an[q, n]

nq

)
= −

∑
0<|h|≤H

e
(hx−ahn[q,n]

nq

)
2πih

(3.1)

+O

(
G

(
x− an[q, n]

nq

))
,

and in the error term here

(3.2) G

(
x− an[q, n]

nq

)
=

∞∑
h=−∞

g(h)e

(
hx− ahn[q, n]

nq

)
.

Therefore

T (Y ) = −2
∑

0<|h|≤H

1

2πih

∑
Y <n≤Y ′
(n,q)=1

e

(
hx− ahn[q, n]

nq

)
(3.3)

+O

( ∞∑
h=−∞

g(h)
∑

Y <n≤Y ′
(n,q)=1

e

(
hx− ahn[q, n]

nq

))
.

The term h = 0 will contribute in total

� Y g(0)� Y log 2H

H
,

and we shall see that for a suitable choice of H this is adequate.
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When h 6= 0 we are interested in∑
Y <n≤Y ′
(n,q)=1

e

(
hx− ahn[q, n]

nq

)
=

q∑
r=1

(r,q)=1

e

(
−ah[q, r]

q

) ∑
Y <n≤Y ′
n≡rmod q

e

(
hx

nq

)
,

which is equal to

1

q

q∑
k=1

K(q; k,−ah)
∑

Y <n≤Y ′
e

(
hx

nq
− kn

q

)
.

For α ∈ [Y, Y ′], let F (α) = hx
αq−

kα
q , so that F ′(α) = −hx

α2q
− k
q , F ′ is monotonic

on [Y, Y ′], and |F ′(α)| ≤ |h|x
qY 2 + 1. Thus, by Lemma 2.2 we have

∑
Y <n≤Y ′

e

(
hx

nq
− kn

q

)
=

∑
J−k ≤j≤J

+
k

Y ′�

Y

e(F (α)− jα) dα+O(log 2xH)

where J±k are integers such that J−k ≤ F ′(α) ≤ J+
k . Here we take J+

k =⌊ |h|x
qY 2

⌋
+2 and J−k = −

⌊ |h|x
qY 2

⌋
−2. The total contribution from the error term

here is readily estimated by reference to Lemma 2.1. Concentrating on the
main term we have to consider

(3.4)
1

q

q∑
k=1

∑
J−k ≤j≤J

+
k

K(q; k,−ah)

Y ′�

Y

e(F (α)− jα) dα.

Let ` = `(k, j) = k + jq for k = 1, . . . , q and J−k ≤ j ≤ J+
k . If k1 + j1q

= k2 + j2q, then |j1 − j2| = |k1 − k2|/q ≤ (q − 1)/q < 1, which implies
j1 = j2 and k1 = k2. Thus `(k, j) are all distinct and

|`(k, j)| ≤ max{q + J+
k q, |1 + J−k q|} ≤ |h|xY

−2 + 3q.

We divide the multiple summation in (3.4) into two cases.

If |h|x
Y 2q
≤ |k+jq|2q , then k + jq 6= 0 and

|F ′(α)− j| =
∣∣∣∣ hxα2q

+
k + jq

q

∣∣∣∣ ≥ |k + jq|
q

− |h|x
Y 2q

≥ |k + jq|
2q

.

Hence by Lemma 2.3 the integral appearing in (3.4) is � q/|k + jq|, and
the contribution from these terms to (3.4) is

1

q

∑
1≤|`|≤|h|xY −2+3q

|K(q; `,−ah)| q
|`|
� d(q)q1/2

∑
1≤`≤|h|xY −2+3q

(q, h, `)1/2

`

� d(q)q1/2
∑

m|(q,h)

m−1/2
∑

1≤k≤(|h|xY −2+3q)m−1

1

k
� q1/2xε.
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If |k+jq|2q ≤ |h|x
Y 2q

, then |`| ≤ 2|h|xY −2, and by using Lemma 2.4 we obtain

the bound

1

q

∑
|`|≤2|h|xY −2

|K(q; `,−ah)|
(
qY 3

|h|x

)1/2

� d(q)

(
Y 3

|h|x

)1/2 ∑
|`|≤2|h|xY −2

(q, h, `)1/2

� d(q)

(
Y 3

|h|x

)1/2(
(q, h)1/2 +

∑
m|(q,h)

m1/2
∑

1≤k≤2|h|xY −2m−1

1
)

� d(q)

(
Y 3

|h|x

)1/2(
(q, h)1/2 +

∑
m|(q,h)

m−1/2
2|h|x
Y 2

)

� d(q)(q, h)1/2
(
Y 3

|h|x

)1/2

+ d(q)2
(
|h|x
Y

)1/2

.

We now insert this estimate in (3.3). The main term is

�
∑

0<|h|≤H

1

|h|

(
q1/2xε + d(q)(q, h)1/2

(
Y 3

|h|x

)1/2

+ d(q)2
(
|h|x
Y

)1/2)

� q1/2xε log 2H + d(q)

(
Y 3

x

)1/2

log 2H + d(q)2H1/2

(
x

Y

)1/2

.

For the error term in (3.3), we recall the bound on g(h) in (2.11). The
term h = 0 is � (Y log 2H)/H. If 0 < |h| ≤ H, then we use the bound
g(h) � 1/|h|, which leads to the same estimate as in the main term. If
|h| ≥ H, we apply the bound g(h)� H/|h|2, which gives a total estimate

� q1/2xε + d(q)

(
Y 3

x

)1/2

+ d(q)2H1/2

(
x

Y

)1/2

.

Hence

T (Y )� q1/2xε log 2H + qε
(
Y 3

x

)1/2

log 2H + qεH1/2

(
x

Y

)1/2

+
Y log 2H

H
.

When x1/3 ≤ Y ≤ x1/2, a good choice for H is Y x−1/3, and it follows that

T (Y )� x1/3+ε + q1/2xε.

By dyadic summing we obtain S1 � x1/2+ε + q1/2xε as desired.
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4. Proof of Theorem 1.1 when (q, a) > 1. Let k = (q, a), r = q/k,
b = a/k, so that (r, b) = 1 and∑

n≤x
n≡amod q

d(n) =
∑

m≤x/k
m≡bmod r

d(km).

Define
k1 =

∏
pt‖k
p|r

pt, k2 =
∏
pt‖k
p-r

pt.

Thus ∑
n≤x

n≡amod q

d(n) = d(k1)
∑

m≤x/k
m≡bmod r

d(k2m).

Let K = {` ∈ N : p | `⇒ p | k2}. Then the above is

d(k1)
∑
`∈K

d(k2`)
∑

n≤x/(k`)
n≡b[r,`]mod r

(n,k2)=1

d(n).

Let µ2(n) denote the multiplicative function such that µ2(p) = −2,
µ2(p

2) = 1, µ2(p
t) = 0 when t ≥ 3. Now we have∑
uv=n
u∈K

µ2(u)d(v) =

{
d(n) when (n, k2) = 1,

0 otherwise.
Thus ∑

n≤x
n≡amod q

d(n) = d(k1)
∑
`∈K

d(k2`)
∑
u∈K

µ2(u)
∑

v≤x/(k`u)
v≡b[r,u][r,`]mod r

d(v).

By the case (q, a) = 1 of Theorem 1.1 this is

d(k1)
∑
`∈K

d(k2`)
∑
u∈K

u≤x/(k`)

µ2(u)

×
(

x

k`u

(
f1(r) log

x

k`u
+ g1(r)

)
+O

((
x

k`u

)1/3+ε

+ r1/2
(

x

k`u

)ε))
,

where the functions f1(r) and g1(r) depend only on r. By use of the Rankin
“trick” in the forms ∑

m≤x
m∈K

1 ≤
∑
m∈K

(
x

m

)λ
with λ sufficiently small and∑

m>x
m∈K

m−θ ≤
∑
m∈K

mλ−θ

xλ
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with λ close to θ, we see that the various sums overK can either be completed
to infinity with an error � xε−1 or bounded by xε. Thus the above is

x(f2(q, a) log x+ g2(q, a)) +O(x1/3+ε + q1/2xε)

for some undetermined choice of f2(q, a) and g2(q, a).
Now, once more an appeal can be made to Lemma 2.5 to complete the

proof. First of all dividing by x log x and letting x→∞ and comparing with
Lemma 2.5 gives the leading coefficient. Now subtracting this here and in
Lemma 2.5, dividing by x and letting x→∞ gives the second order term.
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