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An example in Beurling’s theory of generalised primes

by

Faez Al-Maamori (Babylon) and Titus Hilberdink (Reading)

Introduction. Beurling prime systems are generalisations of the prime
numbers in which we start with a sequence, say pn, called the generalised
primes (or g-primes for short), satisfying

1 < p1 ≤ p2 ≤ · · · and pn →∞.
From these numbers we form all possible products, called the generalised
integers (or g-integers). We distinguish between two such products (made
from different g-primes) even if they are numerically the same. Let π(x)
and N(x) denote, respectively, the counting functions of the g-primes and
of the g-integers up to and including x. Much of the interest and research is
in deducing information about one of these functions from the other. Many
authors have studied these systems (see for example [1], [5], [6], [10], [14]
to name just a few) and found such connections, starting with Beurling’s
broad generalisation of the Prime Number Theorem [3].

The system we have described above is a discrete system, where π and
N are step functions with integer jumps. More generally, one can consider
the case where these functions are just increasing but not necessarily step
functions, maybe even continuous (see §1 for the definition). In §3, we study
a particular such system in which the generalised Chebyshev function is
given by

ψ0(x) = [x]− 1.

In this case, the ‘g-primes’ are highly regular and very close to being ‘dis-
crete’, and we wish to investigate how regular the corresponding g-integer
counting function N(x) is.

Letting ζ0(s) = N̂(s) denote the Mellin transform of N , we find that

−ζ
′
0(s)

ζ0(s)
= ψ̂0(s) = ζ(s)− 1,
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where ζ(s) is the Riemann zeta function. Integrating one finds

ζ0(s) = exp

{ ∞∑
n=2

1

ns log n

}
(Re s > 1).

This function has an analytic continuation to C \ {1} with a simple pole
at 1, and has no zeros anywhere.

The problem is to study the distribution of the associated g-integer
counting function, N0(x). The fact that ψ0(x) is sufficiently close to x implies
that N0(x) ∼ τx for some τ > 0. We shall look more closely at how good
this approximation is by producing O and Ω results for the error N0(x)−τx.
The problem is of interest in that it gives an explicit example where we can
be quite precise about the asymptotics of both ψ and N , which is extremely
rare for discrete systems.

In order to prove these results, we need to establish some connections
between the growth of a function and its Mellin transform. This we do in §2.

Notation. Throughout this article we make use of the standard O, �,
and Ω notation. For f, g defined on a neighbourhood of∞ we write f = O(g)
or f � g to mean |f(x)| ≤ Cg(x) for some constant C and all x sufficiently
large. We write f = Ω(g) if there exists C > 0 and xn → ∞ such that
|f(xn)| > Cg(xn) for all n.

1. G-prime systems. Discrete g-prime systems are those as described
in the Introduction. Here π(x) and N(x) are counting functions—increasing
step functions with integer jumps. The g-primes and integers are related in
the following way. First let ψ denote the generalised Chebyshev function

ψ(x) =
∑
pkn≤x

log pn

where the pn are the g-primes and k ∈ N. Now let NL(x) =
∑

ni≤x log ni,
where the ni are the g-integers. Then it can be readily verified that

(1.1) NL(x) =

x�

0

ψ(x/t) dN(t).

This identity is used to generalise these systems to ‘continuous’ (1) systems.

Let S denote the set of functions f : R→ R which are zero on (−∞, 1),
right-continuous, and of local bounded variation. Let S+ denote the subset
of S consisting of increasing functions. Also, for α ∈ R, let Sα = {f ∈ S :
f(1) = α}, while S+

α = S+ ∩ Sα.

(1) Strictly speaking, they are not necessarily continuous.
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For f, g ∈ S, the convolution (or Mellin–Stieltjes convolution) is defined
by

(f ∗ g)(x) =

x�

0

f(x/t) dg(t).

We note that S is closed under ∗ and that ∗ is commutative and associative.
The identity (with respect to ∗) is i(x) = 1 for x ≥ 1 and zero otherwise.
Thus (1.1) is just NL = ψ ∗N .

For g ∈ S0 the exponential (with respect to ∗) is defined by

exp∗ g =
∞∑
n=0

g∗n

n!
,

where g∗n = g ∗ g∗(n−1) and g∗0 = i, the series converging absolutely. It is
known that, given f ∈ S1, there exists g ∈ S0 such that f = exp∗ g. Also
f = exp∗ g if and only if f ∗ gL = fL, where fL ∈ S is the function defined
for x ≥ 1 by

fL(x) =

x�

1

log t df(t).

(See for example [2, pp. 50–70] and [4].)
Returning to discrete g-prime systems define, as usual,

Π(x) =

x�

p1−

1

log t
dψ(t) =

∑
pkn≤x

1

k
=

∞∑
k=1

1

k
π(x1/k),

so that ψ = ΠL. We see that NL = ΠL ∗N ; that is, N = exp∗Π. This leads
to the following:

Definition. (i) An outer g-prime system is a pair of functions Π,N
with Π ∈ S+

0 and N ∈ S+
1 such that N = exp∗Π.

Of course, if Π ∈ S+
0 then exp∗Π ∈ S+

1 , so (Π,N) is an outer g-prime
system (with N = exp∗Π). The above definition is somewhat more general
than the usual ‘generalised primes’, since we have not yet mentioned the
equivalent of the prime counting function π(x).

(ii) A g-prime system is an outer g-prime system for which there exists
π ∈ S+

0 such that

(1.2) Π(x) =
∞∑
k=1

1

k
π(x1/k).

(iii) For an outer g-prime system (Π,N), define the Beurling zeta func-
tion to be the Mellin transform of N :

N̂(s) =

∞�

0

x−s dN(x) = eΠ̂(s).



386 F. Al-Maamori and T. Hilberdink

(The equality of the two expressions follows from the fact that êxp∗ f =

exp f̂ .)

Remarks 1. (a) With Π given in terms of π by (1.2) we have, by Möbius
inversion,

π(x) =

∞∑
k=1

µ(k)

k
Π(x1/k).

In fact this sum always converges for Π ∈ S+ (since Π(x1/k) decreases with
k and

∑∞
k=1 µ(k)/k converges), so π may always be defined for an outer

g-prime system. But in general π need not be increasing. Thus an outer
g-prime system is more general than a g-prime system.

(b) For an outer g-prime system (Π,N), let ψ = ΠL denote the gener-
alised Chebyshev function. Then ψ ∈ S+

0 and ψ ∗ N = NL. Taking Mellin

transforms gives ψ̂(s) = −N̂ ′(s)/N̂(s).

Some relevant results. Let (Π,N) be an outer g-prime system with
ψ = ΠL.

(a) Beurling’s Prime Number Theorem (2): If N(x) = cx+O(x(log x)−γ)
for some c > 0 and γ > 3/2, then ψ(x) ∼ x.

(b) Conversely, it follows from results by Diamond [5] that if ψ(x) =
x+O(x(log x)−δ) for some δ > 0, then N(x) ∼ cx for some c > 0.

(c) If the stronger relation ψ(x) = x+O(xα) holds for some α < 1, then
N(x) = cx+O(x exp{−d

√
log x log log x}) for some c, d > 0 (see [8]).

2. Growth relations between a function and its Mellin trans-
form. Let f ∈ S+

1 and suppose that

(2.1) F (s) = f̂(s) =

∞�

0

x−s df(x)

converges absolutely for σ = Re s > 1, and that there exists an analytic
continuation toHα\{1} for some α < 1 except for a simple pole at s = 1 with
residue ρ. (Here Hα is the half-plane of complex numbers whose real part
is greater than α.) We prove the following connections between ‘polynomial
growth’ of F on curves close to σ = 1 and the size of the ‘error’ in f(x)−ρx.
We note here that we have assumed there is a simple pole at 1. The result
can easily be adjusted to include any finite number of poles on the 1-line,
including none.

The first result, which argues from the size of F to the size of f , uses
standard methods from complex analysis.

(2) This is usually formulated for g-prime systems, but actually proved for outer
g-prime systems. No use of π(x) being increasing is made, only that of Π(x).
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Theorem 2.1. With the above conventions, suppose that F (σ± it)� ta

for some a < 1 (t ≥ 1), for σ ≥ 1− δ(log t) where δ : [0,∞)→ (0, 1− α) is
continuously differentiable, decreasing, and δ′(x)� 1. Then

f(x) = ρx+O(xe−
b
2
h−1( log x

b
))

where b = 1− a and h(x) = x/δ(x).

Proof. We make use of the inverse Mellin transform, not for f(x) but its
integral, thus:

f1(x) =

x�

0

f =
1

2πi

�

(c)

F (s)

s(s+ 1)
xs+1 ds (x > 0)

where the path is the vertical line Re s = c and c > 1. (3) Note that the
integral converges absolutely as F (s) is bounded on any such line. Now push
the contour to the left as far as the curve C made up of s = 1−δ(log |t|)+ it
for |t| ≥ 1, and the vertical section s = 1− δ(0) + it for |t| < 1. We pick up
the residue at the simple pole at 1 to obtain

f1(x) =
ρ

2
x2 +

1

2πi

�

C

F (s)

s(s+ 1)
xs+1 ds.

It follows that (using δ′(x)� 1)∣∣∣∣f1(x)− ρ
2
x2
∣∣∣∣� ∞�

1

|F (1− δ(log t) + it)|
t2

x2−δ(log t) dt+ x2−δ(0)

� x2
∞�

1

x−δ(log t)

t2−a
dt+ x2−δ(0) = x2

∞�

0

e−bu−δ(u) log x du+ x2−δ(0)

where b = 1 − a. Split up the integral into the ranges [0, A] and [A,∞).

On [0, A], the integral is bounded by e−δ(A) log x
	A
0 e
−bu du� e−δ(A) log x. On

[A,∞) it is bounded by
	∞
A e−bu du � e−bA. The optimal choice is to take

A so that δ(A) log x = bA, that is,

h(A) =
A

δ(A)
=

1

b
log x, or A = h−1

(
1

b
log x

)
.

This gives

f1(x) =
ρ

2
x2 +O(x2e−bh

−1( log x
b

)).

The usual trick of passing from f1 to f using the fact that f is increasing
now gives the result.

Note that in the above theorem, it clearly suffices to have δ(·) eventually
decreasing.

(3) Here
	
(c)

means
	c+i∞
c−i∞

.
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Now we prove a kind of converse result, in that bounds for the ‘error’
f(x) − ρx imply polynomial growth for F in some region close to the line
Re s = 1 (and to the right of it).

Theorem 2.2. Suppose that F = f̂ has an analytic continuation to
Hα \ {1} for some α < 1 except for a simple pole at 1 with residue ρ, and
F (σ ± it)� et as t→∞ for σ > α. Further assume that

f(x) = ρx+O(xe−k(x))

where k is strictly increasing and positive and k(ex)/x is decreasing. Then
there exist a, c > 0 such that

F (σ ± it)� tc

as t→∞, in the region where

σ ≥ 1− k(eat)

at
.

Proof. We shall actually show that F (σ ± it) � tc in the region where
t−b � 1 − σ ≤ k(eat)/(at) for some a, b > 0. (Note that k(eat)/(at) � 1/t
in any case.) But F (σ+it)� tb+1 for σ−1� t−b (4), hence a straightforward
Phragmén–Lindelöf argument, together with the bound F (σ + it)� et,
shows that the polynomial bound holds throughout the region where |σ − 1|
� t−b. So for the rest of the proof, we may take 1 − σ � t−b whenever
necessary.

We start from the formula

(2.2)

∞�

0

x−se−λx df(x)

=
1

2πi

�

(c)

Γ (w)F (s+ w)λ−w dw (λ > 0, c > max{0, 1− σ}),

which can be proved by inserting the Mellin transform (2.1) on the right,
swapping the order of integration, and using the formula

e−y =
1

2πi

�

(c)

Γ (w)y−w dw.

This is justified as |Γ (c+iy)F (s+c+iy)| is exponentially small for large |y|,
on the assumption that F (σ + it)� et.

Take σ ∈ (α, 1). Integrate the LHS of (2.2) by parts, while on the RHS
push the contour to the left as far as Rew = −β past the simple poles
at 0 and 1− s, picking up the residues F (s) and ρΓ (1− s)λs−1 respectively,
where 0 < β < σ−α. This is justified since, along [−β+ iy, c+ iy], we have

(4) Here |F (s)|= |s
	∞
1

f(x)

xs+1 dx| � t
	∞
1
x−σ dx� t

σ−1
� tb+1 for σ − 1� t−b.
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|Γ (w)F (s+ w)λ−w| � |y|Aλ−Be−π|y|/2e|t|+|y| → 0 as |y| → ∞. Rearranging
gives

F (s) =

∞�

0

f(x)(s+ λx)e−λx

xs+1
dx

− ρΓ (1− s)λs−1 − 1

2πi

�

(−β)

Γ (w)F (s+ w)λ−w dw.

Now insert f(x) = ρx + E(x). The part involving ρx cancels with the
ρΓ (1− s)λs−1 term to give

(2.3) F (s) =

∞�

0

E(x)e−λx(s+ λx)

xs+1
dx− 1

2πi

�

(−β)

Γ (w)F (s+ w)λ−w dw

valid for 0 < β < σ − α.

We estimate the two terms on the RHS of (2.3). Then we choose λ
appropriately. Without loss of generality take t ≥ 1. The second term is
bounded in modulus by

λβ

2π

∞�

−∞
|Γ (−β + iy)| |F (σ − β + i(y + t))| dy

� λβ
∞�

−∞

e−π|y|/2

(|y|+ 1)β+1/2
e|y+t| dy � λβet.

To make this � tc, we shall take λ = e−t/β. For the first integral of (2.3)
consider first the range [0, 1]. This is

� t

1�

0

|E(x)|
xσ+1

dx = ρt

1�

0

x−σ dx =
ρt

1− σ
� tb+1,

on the assumption that 1−σ � t−b. Thus, with λ = e−t/β and β ∈ (0, σ−α),

F (s)�
∞�

1

e−k(x)−λx(t+ λx)

xσ
dx+ tb+1.

Split the integral into the ranges [1, 1/λ] and [1/λ,∞). For [1, 1/λ] it is

� t

1/λ�

1

e−k(x)

xσ
dx = t

t/β�

0

exp{(1− σ)y − k(ey)} dy.

Now take 1−σ ≤ k(et/β)
t/β . Since k(ex)/x is decreasing, we must have (1−σ)y

≤ k(ey) for 0 ≤ y ≤ t/β. Thus the above integral is at most t/β � t.
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There remains the range [1/λ,∞). We have

∞�

1/λ

e−k(x)−λx(t+ λx)

xσ
dx

� λte−k(1/λ)
∞�

1/λ

x1−σe−λx dx = λσ−1te−k(1/λ)
∞�

1

y1−σe−y dy

≤ Γ (2− σ)t exp{(1− σ)t/β − k(et/β)} ≤ Γ (2− σ)t� t

in the range where 1− σ ≤ k(et/β)
t/β .

Examples. We illustrate the above results with some examples.

(i) Take δ(x) = x−α where α ≥ 0. Then h(x) = x1+α, and Theorem 2.1
says (for suitable b, c > 0) that

(2.4) F (σ+it)� tc for 1−σ≤ 1/(log t)α ⇒ f(x)−ρx� xe−b(log x)
1/(1+α)

.

(ii) Take k(x) = (log x)β where 0 < β ≤ 1. Thus k(ex)/x = x−(1−β)

decreases, and Theorem 2.2 says (essentially) that

(2.5) f(x)− ρx� xe−(log x)
β ⇒ F (σ + it)� tc for 1− σ � 1/t1−β.

Note the discrepancy between the regions. In (2.4) the region of poly-

nomial growth of F needed to force f(x) − ρx � xe−(log x)
β

is much larger
than that gained in (2.5)—except in the case where β = 1 (α = 0). This
undoubtedly has to do with the apriori assumption in Theorem 2.2 about
the growth of F . If we assumed more, we can expect a bigger region where
F is of polynomial growth.

3. An example of generalised primes. As mentioned in the intro-
duction, we wish to study the generalised prime system for which the gen-
eralised Chebyshev function is given by

ψ0(x) = [x]− 1 for x ≥ 1,

and zero otherwise. Here

Π0(x) =
∑

1<n≤x

1

log n
,

so that indeed we have an outer g-prime system, according to Definition (i).
Further, note that, by setting

π0(x) =
∑

1<n≤x
n not a perfect power

1

log n
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(where a perfect power is a number of the form pq with p, q ∈ N and p, q > 1),
we have

∞∑
k=1

1

k
π0(x

1/k) =
∑

k≥1, n>1
nk≤x

n not a perfect power

1

k log n
=

∑
1<m≤x

1

logm
= Π0(x).

So this is indeed a g-prime system. The Beurling zeta function ζ0 is, for
Re s > 1, given by

ζ0(s) = eΠ̂0(s) = exp

{ ∞∑
n=2

1

ns log n

}
.

Thus also

−ζ
′
0(s)

ζ0(s)
= ζ(s)− 1.

This shows that the LHS above has an analytic continuation to the whole
plane except for a simple pole at 1. Standard complex analysis then implies
that ζ0 is holomorphic in C \ {1} with a simple pole at s = 1 and has no
zeros.

Let N0(x) denote the associated g-integer counting function. Thus ζ0(s)
= N̂0(s). By a simple application of the Wiener–Ikehara Theorem (see for
example [1]) it follows that

N0(x) ∼ τx as x→∞,

for some τ > 0. Indeed τ is the residue of ζ0(s) at s = 1. The question is
now: how small is the difference N0(x)− τx?

O-results for N0(x) − τx. We can get an immediate improvement by
using the fact that ψ0(x) = x+O(1) and result (c) at the end of Section 1,
namely

N0(x) = τx+O(xe−c
√
log x log log x)

for some c > 0. We show below that the error can be strengthened further
by using knowledge of the Riemann zeta function.

Theorem 3.1. With N0 and τ as above, we have

N0(x) = τx+O(xe−c(log x)
3/5(log log x)2/5)

for some c > 0. Furthermore, on the Riemann Hypothesis,

N0(x) = τx+O(xe−ck(x)), where k(x) =
log x log log log x

log log x
,

for any c < 1/4.
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Proof. The proof depends on bounds for Riemann’s zeta function in the
region to the left of, and close to, the 1-line. By a result of Richert [11],

(3.1) ζ(σ + it)� (1 + t100(1−σ)
3/2

)(log t)2/3 for 0 ≤ σ ≤ 2, t ≥ 2,

while on the Riemann Hypothesis, this can be improved to (see [13, Chap-
ter 14])

(3.2) log ζ(σ+it)� (log t)2−2σ − 1

(1−σ) log log t
+log log log t for 1/2 < σ0 ≤ σ < 1.

From the above, we have

log |ζ0(σ + it)| = Re{log ζ0(σ + it)} = −Re

2�

σ

ζ ′0
ζ0

(x+ it) dx+O(1)

� (1 + t100(1−σ)
3/2

)(log t)2/3.

This is o(log t) if, say, 100(1−σ)3/2 ≤ log log t
4 log t . Thus we can apply Theorem 2.1

to ζ0 with

δ(x) =

(
log x

400x

)2/3

and any a ∈ (0, 1). With h(x) = x/δ(x), we find h−1(y) ∼ cy3/5(log y)2/5

for some c > 0, and hence the first (unconditional) result follows from The-
orem 2.1.

Now assume the truth of the Riemann Hypothesis, so that (3.2) holds.
Using the fact that (eu − 1)/u ≤ eu for u > 0, this implies that for σ < 1,

log |ζ0(σ + it)| � exp{A(log t)2(1−σ) +A log log log t}
= (log log t)A exp{A(log t)2(1−σ)}

for some A. The RHS is o(log t) if we take

1− σ ≤ log log log t−B
2 log log t

for some B sufficiently large. For then A(log t)2(1−σ) ≤ Ae−B log log t and
so, taking B = log 2A,

log |ζ0(σ + it)| � (log log t)A
√

log t = o(log t).

We can apply Theorem 2.1 with

δ(x) =
log log x−B

2 log x

and any a ∈ (0, 1). As h(x) ∼ 2x log x
log log x and h−1(x) ∼ x log log x

2 log x , we have

N0(x)− τx� xe
− 1−ε

4
log x log log log x

log log x

for any ε > 0.
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Remark. In the above it is clear that for the second part, we do not
need the full force of the Riemann Hypothesis, but only (3.2), and even then
only for σ close to 1.

Ω-results for N0(x)−τx. On the other hand, the difference N0(x)−τx
cannot be too small. Indeed, if N0(x) − τx � xβ for some β < 1, then the
system is ‘well-behaved’, which implies that

−ζ
′
0(σ + it)

ζ0(σ + it)
� (log t)A (β < σ < 1)

for some A (see [8, Theorem 2.3]). But the LHS is ζ(σ + it) − 1, which
is sometimes of much larger order than a power of log t. Thus N0(x) − τx
= Ω(x1−δ) for every δ > 0. A further improvement is possible using Theo-
rem 2.2.

Theorem 3.2. With N0 as above, we have

N0(x)− τx = Ω(xe−cl(x)) where l(x) =
log x log4 x

log3 x
,

for every c > 2. (5)

Proof. If the result is false, then N0(x) − τx = o(xe−cl(x)). Now ap-

ply Theorem 2.2 with k(x) = cl(x). We have k(ex)/x = c log3 x
log2 x

, which is

decreasing. The conditions of the theorem are met, and so

(3.3) ζ0(σ + it)� tA whenever 1− σ ≤ c log3 at

log2 at
∼ c log3 t

log2 t

for some A, a > 0. We show this is incompatible with known Ω-results for
ζ(σ+ it). For this, we quote a special case of a result of Ivić [9, p. 241]: there

exist arbitrarily large t ∈ [T, 2T ] such that with σ = 1− µ log3 T
log2 T

,

(3.4) log |ζ(σ + it)| � (log log t)µ−1.

(On the Riemann Hypothesis, it is � (log log t)2µ/log3 t, so one cannot
expect to do much better.) Now apply the Borel–Carathéodory Theorem
(see [12]) to log ζ0 and the circles with centre 2 + it and radii R = 1 +
(1−ε)c log3 t

log2 t
and r = R − 1/log2 t (here ε > 0). On the larger circle, by (3.3)

we have

Re{log ζ0(σ + it)} = log |ζ0(σ + it)| � log t,

hence on and inside the smaller circle we have

|log ζ0(σ + it)| � log t log log t.

(5) Here logk x denotes the kth iterated log, that is, log0 x = x, logk+1 x = log logk x.
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By Cauchy’s integral formula,

ζ(s)− 1 = −ζ
′
0(s)

ζ0(s)
= − 1

2πi

�

C

log ζ0(s+ z)

z2
dz

for any sufficiently small circular contour C around 0. Taking s = 1 −
µ log3 T
log2 T

+ it with µ < c and t ∈ [T, 2T ], and C the circle with radius δ =

1/log2 t, we have (for t sufficiently large)∣∣∣∣ζ(1− µ log3 T

log2 T
+ it

)∣∣∣∣ ≤ 1 +
1

δ
max
|z|=δ
|log ζ0(σ + it+ z)| � log t (log log t)2.

Because of (3.4), this is a contradiction for every µ > 2.

Remarks. (i) By the methods in [7], a slight strengthening in large
values of ζ near the 1-line is possible. In particular, in (3.4) the RHS may
be improved to (log log t)µ/log3 t. This leads to a small improvement in
Theorem 3.2, namely the result holds for every c > 1.

(ii) We see that, especially on the Riemann Hypothesis, there is a little
gap between the O- and Ω-results. It would be interesting to investigate
further which result is closer to the truth.

The value of τ . Finally, a few words about the value of τ . An easy
exercise shows that τ is given by∑

1<n≤x

1

n log n
= log log x+ γ + log τ + o(1),

where γ is Euler’s constant. For, denoting the LHS sum by S(x), elementary
real analysis implies S(x) = log log x+ λ+ o(1) as x→∞ for some λ. But
for δ > 0, we have

log ζ0(1 + δ) = δ

∞�

1

S(x)

x1+δ
dx = δ

∞�

1

log log x

x1+δ
dx+ δ

∞�

1

λ+ o(1)

x1+δ
dx

= δ

∞�

0

log y

eδy
dy + λ+ o(1) = log

1

δ
− γ + λ+ o(1).

The LHS is log(1/δ) + log τ + o(1) as δ → 0. Hence the result follows.
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Vertikalen σ = 1, Math. Ann. 169 (1967), 97–101.
[12] E. C. Titchmarsh, The Theory of Functions, 2nd ed., Oxford Univ. Press, 1975.
[13] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ.

Press, 1986.
[14] W.-B. Zhang, Beurling primes with RH and Beurling primes with large oscillation,

Math. Ann. 337 (2007), 671–704.

Faez Al-Maamori
Department of Mathematics
University of Babylon
Babylon, Iraq
E-mail: Faez@itnet.uobabylon.edu.iq

Titus Hilberdink
Department of Mathematics

University of Reading
Whiteknights, PO Box 220

Reading RG6 6AX, UK
E-mail: t.w.hilberdink@reading.ac.uk

Received on 6.11.2014
and in revised form on 14.2.2015 (7983)

http://dx.doi.org/10.1016/0022-314X(72)90066-2
http://dx.doi.org/10.4064/aa139-4-3
http://dx.doi.org/10.1007/s10440-006-9063-0
http://dx.doi.org/10.5802/jtnb.201
http://dx.doi.org/10.1007/BF01399533
http://dx.doi.org/10.1007/s00208-006-0051-5



	Introduction
	1 G-prime systems
	2 Growth relations between a function and its Mellin transform
	3 An example of generalised primes
	References

