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1. Introduction. The ancient Greeks called the positive integer n de-
ficient, perfect, or abundant, according to whether σ(n) < 2n, σ(n) = 2n,
or σ(n) > 2n, respectively. Here σ(n) :=

∑
d|n d is the usual sum of divisors

function. Denoting these sets D, P, and A, we have

D = {1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, . . . },
P = {6, 28, 496, 8128, 33 550 336, 8 589 869 056, 137 438 691 328, . . . },
A = {12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, 60, 66, 70, 72, . . . }.

From the analytic standpoint, it is natural to ask what proportion of the
natural numbers fall into each of these three classes. From the limited evi-
dence presented above, we might conjecture that the perfect numbers have
density zero, while the abundant and deficient numbers each make up a
positive proportion of the integers.

Actually our innocent question requires some care to make precise, as
it is not clear a priori that these proportions are well-defined. That this is
the case follows from a result discovered independently by each of Behrend,
Chowla [1], and Davenport [2]:

Theorem A. For each real number u, define

D(u) := lim
x→∞

#{n ≤ x : σ(n)/n ≤ u}
x

.

Then D(u) exists for all u. Moreover, D(u) is a continuous function of u and
is strictly increasing for u ≥ 1. Finally, D(1) = 0 and limu→∞D(u) = 1.

The continuity of D(u) implies immediately that the perfect numbers
make up a set of asymptotic density zero. We then deduce that the deficient
numbers make up a set of asymptotic density D(2) and that the abundant
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numbers make up a set of asymptotic density 1 − D(2). Deléglise [4] has
shown that

0.2474 < 1−D(2) < 0.2480.

Thus just under 1 in 4 natural numbers are abundant.
These results adequately describe the global distribution of the deficient

and abundant numbers, but it is reasonable to ask also about the local distri-
bution. For abundant numbers, this is straightforward: For example, every
proper multiple of 6 is abundant, so the maximal gap between consecutive
abundant numbers is at most 6. Moreover, by an elementary averaging ar-
gument (cf. [14]), each gap between 1 and 6 can be shown to occur a positive
proportion of the time (i.e., with positive lower density). It follows from a
theorem of Erdős and Schinzel [8, Theorem 3] that each of these proportions
tends to a well-defined limit (i.e., the densities in question exist). For defi-
cient numbers the situation is less simple to describe. For x ≥ 2, define G(x)
as the largest gap n′−n between consecutive deficient numbers n < n′ ≤ x.
In 1935, Erdős [5] showed the existence of positive constants c1 and c2 with

(1) c1 log log log x ≤ G(x) ≤ c2 log log log x

for large x. The results of [5], sometimes in slightly weaker form, have been
rediscovered multiple times; see, e.g., [9], [10], [12], [3]. Other results on the
local distribution of σ(n)/n are considered in [7].

Our primary objective is to fill the gap implicit in (1) by proving an
asymptotic formula for G(x) as x→∞.

Theorem 1. We have G(x)/log log log x→ 1/C as x→∞, where

(2) C :=
2�

1

D(u)
u

du.

Remark. M. Kobayashi shows [11] that

0.28209 ≤ C ≤ 0.28724, so that 3.481 ≤ 1
C
≤ 3.545.

Erdős originally phrased his theorem in terms of long runs of abundant
numbers. We now turn our attention to the question of how often such long
runs occur. If x ≥ 2 is real and A is a positive integer, we let N(x,A) denote
the number of n ≤ x for which n+ 1, . . . , n+A are all nondeficient (perfect
or abundant). The result of Erdős and Schinzel alluded to above implies
that for any fixed A, the ratio N(x,A)/x tends to a limit as x → ∞. Our
second result shows that this ratio decays triply exponentially with A.

Theorem 2. With C as defined in (2), we have

N(x,A)� x

exp exp exp((C + o(1))A)
.
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Here “o(1)” indicates a term that tends to zero as A → ∞ (uniformly in
x ≥ 2), and the constant implied by “�” is absolute.

Theorem 2 implies half of Theorem 1, namely that

lim supG(x)/log log log x ≤ 1/C.

The plan for the rest of the paper is as follows: In §2, we prove some
lemmas which are useful in the proofs of both theorems. In §3 we prove
Theorem 2, and in §4 we complete the proof of Theorem 1 by proving that

lim inf G(x)/log log log x ≥ 1/C.

2. Preparation. We begin by recording the following lemma, which
is a special case of [13, Satz I]. Let D∗(t) denote the density of n with
n/σ(n) ≤ t, so that D∗(t) = 1−D(1/t) in the notation of Theorem A.

Lemma 1. Suppose that f is a function of bounded variation on [0, 1].
Then, as A→∞,

1
A

∑
n≤A

f

(
n

σ(n)

)
→

1�

0

f(t) dD∗(t).

Given a natural number B, define FB as the arithmetic function which
returns the B-smooth part of its argument, so that FB(n) :=

∏
p≤B p

vp(n).
(Here we write vp(n) for the exponent with the property that pvp(n) ‖n.)
Put

H(n) := log
σ(n)
n

and HB(n) := log
σ(FB(n))
FB(n)

,

so that HB = H ◦FB. Note that both H and HB are additive functions and
that H ≥ HB pointwise. HB has an important near-periodicity property,
which we state precisely in the following lemma:

Lemma 2. Suppose that m and m′ are natural numbers with m ≡ m′

(mod M), where M := (
∏

p≤B p)
B. Then HB(m)−HB(m′)→ 0 as B →∞,

uniformly in m and m′.

Proof. Let p ≤ B be prime. Since vp(M) = B and M |m − m′, either
vp(m) = vp(m′) or both vp(m) ≥ B and vp(m′) ≥ B. Consequently,

HB(m)−HB(m′) =
∑
p≤B

log
σ(pvp(m))
pvp(m)

−
∑
p≤B

log
σ(pvp(m′))
pvp(m′)

=
∑
p≤B

vp(m)≥B, vp(m′)≥B

log
(
pvp(m)+1 − 1

pvp(m)

pvp(m′)

pvp(m′)+1 − 1

)
�
∑

p

1
pB+1

,

which tends to zero as B →∞ (by dominated convergence).
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Lemma 3. When B →∞, we have

1
M

M∑
m=1

max{log 2−HB(m), 0} →
2�

1

D(u)
u

du,

where M = (
∏

p≤B p)
B, as above.

Proof. By Lemma 1 with f(x) := max{log 2− log (1/x), 0} (interpreted
so that f(0) = 0), we have

(3)
1
M

M∑
m=1

max{log 2−H(m), 0} →
1�

1/2

(log 2 + log u) dD∗(u)

= log 2−
1�

1/2

D∗(u)
u

du =
1�

1/2

1−D∗(u)
u

du =
2�

1

D(u)
u

du

as B, and hence M , tends to infinity. Now notice that

0 ≤ 1
M

∑
m≤M

(max{log 2−HB(m), 0} −max{log 2−H(m), 0})

≤ 1
M

∑
m≤M

(H(m)−HB(m)) =
1
M

∑
m≤M

∑
p|m
p>B

log
σ(pvp(m))
pvp(m)

.

Since

log
σ(pvp(m))
pvp(m)

= log
(

1 +
1
p

+ · · ·+ 1
pvp(m)

)
(4)

< log
(

1 +
1

p− 1

)
<

1
p− 1

,

the above quantity is bounded above by
1
M

∑
m≤M

∑
p|m
p>B

1
p− 1

=
1
M

∑
p>B

1
p− 1

∑
m≤M
p|m

1 ≤
∑
p>B

1
p(p− 1)

≤ 1
B
.

Since B →∞, the result follows from (3).

Combining Lemmas 2 and 3 yields the key estimate for the proofs of
both Theorems 1 and 2.

Lemma 4. For each A > 1, put B := b(logA)1/3c. As A→∞, we have

1
A

n+A∑
m=n+1

max{log 2−HB(m), 0} →
2�

1

D(u)
u

du,

uniformly for nonnegative integers n.
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Proof. Put M = (
∏

p≤B p)
B, and notice that by the prime number theo-

rem (or a more elementary estimate),M ≤ exp(O((logA)2/3)). In particular,
M = o(A). We split the sum in the lemma into a sum over blocks of the
form Mk + 1,Mk + 2, . . . ,M(k + 1), excluding O(M) terms at the begin-
ning and end of the original range of summation. By Lemma 3 and the
near-periodicity established in Lemma 2, we find that

M(k+1)∑
m=Mk+1

max{log 2−HB(m), 0} = (C + o(1))M,

where C =
	2
1D(u)u−1 du. Since there are A/M + O(1) blocks, the total

contribution from all the blocks is (C + o(1))A. Finally, notice that the
contribution from the O(M) excluded initial and final terms is O(M) =
o(A), since each summand is bounded by log 2.

We conclude this section with an estimate for certain reciprocal sums,
which is implicit in much of Erdős’s work:

Lemma 5. Let Q be a finite set of primes. Then for each integer k ≥ 0,∑
n squarefree
p|n⇒p∈Q
ω(n)=k

1
n
≤ 1
k!

(∑
p∈Q

1
p

)k

.

Proof. If p1, . . . , pk are k distinct elements of Q, then by the multinomial
theorem, the term (p1 · · · pk)−1 appears k!

1!1!···1! = k! times in the expansion
of the right-hand side. Thus the right-hand side majorizes the left.

3. Proof of Theorem 2. By adjusting the implied constant, we can
assume that A is large. We can also assume that A ≤ x, since otherwise
N(x,A) = 0. To see this last claim, notice that when A > x > n, the
interval n+ 1, . . . , n+A contains not merely a deficient number but in fact
a prime number. This follows from Bertrand’s postulate, which asserts the
existence of a prime in every interval of the form (n, 2n].

So suppose that n is counted by N(x,A) where A is large but A ≤ x.
Put B = b(logA)1/3c. Then by (4) and Lemma 4,

(5)
n+A∑

m=n+1

∑
p|m
p>B

1
p− 1

≥
n+A∑

m=n+1

∑
p|m
p>B

log
σ(pvp(m))
pvp(m)

=
n+A∑

m=n+1

(H(m)−HB(m)) ≥
n+A∑

m=n+1

max{log 2−HB(m), 0} ≥ (C + o(1))A,
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where C is given by (2). To proceed we need a lower bound on
∑

p|N
1

p−1 ,
where

(6) N := (n+ 1)(n+ 2) · · · (n+A).

To obtain our bound, we remove the overlap from (5), corresponding to
primes p which divide more than one of n+ 1, . . . , n+ A. Clearly any such
p satisfies p < A, and so the contribution of such primes to the sum in (5)
is bounded by∑

B<p<A

1
p− 1

∑
n+1≤m≤n+A

p|m

1 ≤ 2A
∑
p>B

1
p(p− 1)

≤ 2A
B
,

which is o(A) as A → ∞. It follows that we can choose a function r(A),
depending only on A, with r(A) = o(1) as A→∞ and∑

p|N

1
p− 1

≥ (C − r(A))A.

Let Z = Z(A) be the smallest positive integer for which∑
p≤Z

1
p− 1

≥ (C − r(A))A, so Z = exp(exp((C + o(1))A)) as A→∞.

(Here we use the well-known estimate
∑

p≤Z(1/p) = log logZ + O(1).) We
now split the n counted by N(x,A) into two classes:

(i) In the first class, we consider those n for which N , as defined in (6),
has at least Z/(2 logZ) distinct prime divisors not exceeding 4Z.

(ii) In the second class we put all the remaining values of n.

If n belongs to the first class, then for some 1 ≤ i ≤ A, the number
n + i has (at least) (2A)−1Z/logZ prime divisors not exceeding 4Z. Since
n+ i ≤ 2x, the number of possible n that arise this way is at most

A · 2x
k!

(∑
p≤4Z

1
p

)k

where k :=
⌈

1
2A

Z

logZ

⌉
,

by Lemma 5. A short calculation shows that for large A, this bound is

� xA
exp
(
O
(
Z log log log Z

log Z log log Z

))
exp(Z/(4A))

� x

exp exp exp((C + o(1))A)
.

(To verify this, it is helpful to keep in mind that A � log logZ for large A.)
It remains to show that we have a similar estimate for the n belonging

to the second class. Note that for large Z, the first Z/(2 logZ) primes all
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belong to the interval [1, 2Z/3]. Consequently, for n in the second class,∑
p|N

p≤4Z

1
p− 1

≤
∑

p≤2Z/3

1
p− 1

,

once A is sufficiently large. Hence,∑
p|N

p>4Z

1
p− 1

≥
∑
p|N

1
p− 1

−
∑

p≤2Z/3

1
p− 1

(7)

≥ (C − r(A))A−
∑

p≤2Z/3

1
p− 1

≥
∑

2Z/3<p<Z

1
p− 1

,

where for the last inequality we use the minimality of Z. Now

(8)
∑

2Z/3<p<Z

1
p− 1

≥ 1
Z

(π(Z − 1)− π(2Z/3)) >
1

4 logZ

when A, and hence Z, is large. It follows from (7) and (8) that there is some
j ≥ 1 for which ∑

p|N
4jZ<p≤4j+1Z

1
p− 1

≥ 1
2j

1
4 logZ

.

For this j, the number N is divisible by at least 2jZ/(4 logZ) primes from
the interval (4jZ, 4j+1Z], and so one of the numbers n + 1, . . . , n + A is
divisible by at least

Wj :=
⌈

2jZ

4A logZ

⌉
of these primes. By another application of Lemma 5, we deduce that the
number of such n is at most

A
2x
Wj !

( ∑
4jZ<p≤4j+1Z

1
p

)Wj

.

Now we sum this expression over j, noting that for large A the inner sum
here is bounded by 1/2. This gives (for large A) an upper bound on the
number of n in the second class which is

� Ax

∞∑
j=1

1
2WjWj !

.

For large A, the sum here is dominated by its first term, and we obtain a
final bound of
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� Ax

2W1W1!
=

Ax

exp((1 + o(1))W1 logW1)
≤ Ax

exp(Z/(4A))

� X

exp exp exp((C + o(1))A)
,

as desired.
Remark. This proof uses a method introduced by Erdős [6] and applied

by him to estimate D(u) as u → ∞. In this connection, see the recent
paper [15].

4. Proof of Theorem 1. Fix ε > 0, which we assume to be small. For
all large x, we will construct a positive integer n ≤ x/2 with n + 1, n + 2,
. . . , n+A all nondeficient, where

(9) A := d(C + 8ε)−1 log log log xe.
If n′ denotes the first deficient number after n, then (for example, by Bert-
rand’s postulate) n′ ≤ 2n ≤ x, and n′−n > (n+A)−n = A. Thus G(x) > A.
Since ε > 0 is arbitrary, this implies the lower bound implicit in Theorem 1.
(Recall that the upper bound follows from Theorem 2.)

With B := b(logA)1/3c, we let p0 < p1 < · · · be the sequence of consec-
utive primes exceeding B. Put i0 := 0. If i0, i1, . . . , il−1 have been defined,
choose il as small as possible so that

H(Pl) ≥ ε+ max{log 2−HB(l), 0} where Pl :=
∏

il−1≤pj<il

pj .

Suppose now that n is chosen so that

M :=
(∏

p≤B

p
)B
|n and Pl |n+ l for all 1 ≤ l ≤ A.

Such a choice is possible by the Chinese remainder theorem; indeed, the
n which satisfy these conditions make up a nonzero residue class modulo
M
∏A

l=1 Pl. For any such n, and any 1 ≤ l ≤ A, we have

H(n+ l) ≥ H(Pl) +HB(n+ l) ≥ H(Pl) +HB(l)− ε ≥ log 2,

once x is sufficiently large. (Here we use the near-periodicity property estab-
lished in Lemma 2 to obtain the last inequality.) Thus all of n+1, . . . , n+A
are nondeficient.

To show that such a choice is possible with n ≤ x/2, it is enough to show
that

M

A∏
l=1

Pl ≤ x/2,

once x is sufficiently large. Write
∏A

l=1 Pl in the form
∏

B<p≤Z p, where Z
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is chosen as small as possible. Then for large A,∑
B<p≤Z

log
σ(p)
p

=
A∑

l=1

H(Pl) ≤
A∑

l=1

(max{log 2−HB(l), 0}+ ε+ 1/B)

≤ AC + 2Aε+A/B = A(C + 3ε).

(Here the last inequality of the first line follows from our choosing il mini-
mally at each stage.) Since log(σ(p)/p) = 1/p+O(1/p2), it follows that∑

p≤Z

1
p
≤ A(C + 3ε) +O(1) + log logB ≤ A(C + 4ε),

and hence
Z ≤ exp exp(A(C + 5ε)).

Consequently,

M
∏

1≤l≤A

Pl ≤ exp(O((logA)2/3))
∏
p≤Z

p

≤ exp(O((logA)2/3)) exp exp exp(A(C + 6ε))
≤ exp exp exp(A(C + 7ε)) ≤ x/2

by our definition (9) of A.
Remark. The above argument shows that for each ε > 0 and all large x,

we have

(10) N(x,A) ≥
⌊

x

M
∏

1≤l≤A Pl

⌋
≥ x/exp exp exp(A(C + 7ε))

as x → ∞, if A is defined by (9). In fact, our proof shows that if A tends
to infinity with x and if A is bounded above by the expression on the right
of (9), then the inequality (10) holds. This can be viewed as a lower-bound
counterpart of Theorem 2.
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[8] P. Erdős and A. Schinzel, Distributions of the values of some arithmetical functions,

ibid. 6 (1960/1961), 473–485.
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