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Green’s sumset problem at density one half
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1. Introduction. In the paper [Bou90] Bourgain first addressed the
question of showing that if A ⊂ {1, . . . , N} has positive relative density
then A + A contains a very long arithmetic progression. Since his work
the problem has received considerable attention, and to help understand it
better Green [Gre05] introduced a model version which has turned out to be
interesting in its own right. It is this question with which we shall concern
ourselves in this note.

Suppose, as we shall throughout, that G := Fn2 and let PG denote the
normalized counting measure on G. We are interested in what size of sub-
space one can guarantee that A + A contains, where A is a subset of G of
density α := PG(A).

It turns out that there are various ranges of the density in which we
see quite different phenomena. To begin note that if α > 1/2 then the
inclusion-exclusion principle tells us that PG(A∩ (x+A)) > 0 for all x ∈ G
and so we have A+A = G; we write this as follows.

Proposition 1.1. Suppose that A ⊂ G := Fn2 has density α > 1/2.
Then A+A contains a subspace of codimension 0.

Once the density dips below 1/2 things begin to change. In this regime
A may be contained in a subspace of codimension 1, and so A + A can, at
best, be guaranteed to contain a subspace of codimension 1. To start with
this is best possible:

Theorem 1.2. Suppose that A ⊂ G := Fn2 has density α > 1/2−ε where
ε ∈ (0, 1/29√n ]. Then A+A contains a subspace of codimension 1.

Once ε ∼ 1/
√
n, however, a different sort of behavior manifests. The

worst known such is exhibited by the so-called niveau set construction of
Ruzsa [Ruz87] and for us this yields the following theorem.
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Theorem 1.3 (Green–Ruzsa). For all ε ∈ (22/
√
n, 1/2], there is a set

A = A(ε) ⊂ G := Fn2 of density α > 1/2−ε such that any subspace contained
in A+A has codimension Ω(ε

√
n).

We are not able to prove a matching upper bound, although we are able
to establish the following weak complement.

Theorem 1.4. Suppose that A ⊂ G := Fn2 has density α > 1/2−ε where
ε ∈ (0, 1/2]. Then A+A contains a subspace of codimension O(n/log ε−1).

All previous work on showing that sumsets contain large subspaces has
concentrated on the case of positive density (rather than density close to 1/2)
and has consequently produced weaker results. It turns out the argument
used for the previous theorem also yields a new result in this case.

Theorem 1.5. Suppose that A ⊂ G := Fn2 has density α > 0. Then
A+A contains a subspace of dimension Ω(αn).

This improves upon [Gre05, Theorem 9.3] where a lower bound on the
dimension of the form Ω(α2n) was given. Recently Croot and Sisask [CS10]
also established an improvement of roughly the strength of Theorem 1.5 but
by different arguments in a much more general setting.

Finally, Fourier analysis is notoriously weak when dealing with thin sets
and, indeed, if α = o(log n/n) then it turns out that an elementary counting
argument of Croot, Ruzsa and Schoen [CRS07] supersedes Theorem 1.5.

As indicated we make use of the Fourier transform on the group G := Fn2 .
In particular we denote the dual group by Ĝ and define the transform to be
the map taking f ∈ L1(G) to

f̂(γ) := Ex∈Gf(x)γ(x).

We use basic results from Fourier analysis without comment and the reader
interested in details may wish to consult Tao and Vu [TV06].

The note now splits into three further sections in which Theorem 1.2,
Theorem 1.3 and Theorem 1.4 (and 1.5) are proved, followed by some con-
cluding remarks in the final section including a discussion of the link with
the integer version of the problem.

2. Proof of Theorem 1.2. The argument involves two main tools. The
first is Plünnecke’s inequality, [Plü69], which we record now. One of the key
ideas in our work is to make use of it in the region where K ∼ 1.

Theorem 2.1 ([TV06, Corollary 6.28]). Suppose that A,B ⊂ G := Fn2
are such that PG(A+ B) ≤ KPG(A). Then for any positive integer k there
is a set X ⊂ A with PG(X + kB) ≤ KkPG(X).

The second tool is measure concentration on the cube, for which we shall
follow McDiarmid [McD89]. The idea of using measure concentration was
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introduced to difference set problems by Wolf in [Wol10] and that is the
inspiration for our application.

For any natural number n we write Qn for the cube {0, 1}n. The Ham-
ming metric on Qn is defined in the usual way:

d(x, y) := |{i : xi 6= yi}| for all x, y ∈ Qn.
For any set A ⊂ Qn and r ≥ 0 we write

Hamr(A) := {x ∈ Qn : d(x, y) ≤ r for some y ∈ A},
that is, the set of points of at most distance r from A. Measure concentration
provides a lower bound for the density of this set.

Theorem 2.2 ([McD89, Proposition 7.7]). Suppose that A is a non-
empty subset of Qn. Then for any r ≥ 0 we have

PQn(Hamr(A)) ≥ 1− exp(−r2/2n)
PQn(A)

.

The formal similarity of Fn2 and Qn immediately tells us how we shall
make use of this result. Suppose that E = {e1, . . . , en} is a basis of G := Fn2 ,
so that the map

φE : Qn → G, x 7→ x1e1 + · · ·+ xnen,

is a bijection. Sets in G inherit certain growth properties from those in Qn
as follows. Writing F := E ∪ {0G} we have

(2.1) A+ rF ⊃ φE(Hamr(φ−1
E (A))).

To see this note that if z is a member of the right hand side then there is
some y ∈ A such that

d(φ−1
E (z), φ−1

E (y)) ≤ r.

This is perfectly well defined since φ−1
E is a bijection. Now, let x ∈ {0, 1}n

be such that

xi =
{

1 if φ−1
E (z)i 6= φ−1

E (y)i,
0 otherwise,

so that
φ−1
E (z) = φ−1

E (y + φE(x)).

On the other hand the number of i such that xi 6= 0 is at most r and 0G ∈ F ,
whence z ∈ y + rF . So (2.1) follows. In light of this we have the following
consequence of Theorem 2.2.

Proposition 2.3. Suppose that G = Fn2 and E is a basis of G, A is a
non-empty subset of G and F := E ∪ {0G}. Then for any r ≥ 0 we have

PG(A+ rF ) ≥ 1− exp(−r2/2n)
PG(A)

.
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The heart of the argument is the following asymmetric version of Theo-
rem 1.2.

Proposition 2.4. Suppose that A ⊂ G := Fn2 has density α > 1/2 − ε
where ε ∈ (0, 1/29√n ]. Then A + A contains a coset of a subspace of codi-
mension 1.

Proof. In view of Proposition 1.1 we may certainly assume that PG(A)
≤ 1/2. Put S := (A+A)c and note that (S+A)∩A = ∅, whence PG(A+S)
≤ 1− PG(A). Since PG(A) = α > 1/2− ε, it follows that

PG(A+ S) <
1 + 2ε
1− 2ε

PG(A) ≤ exp(6ε)PG(A),

since ε ≤ 1/4. Suppose that E is a basis of G such that there is some s ∈ S
with s+E ⊂ S. Since PG is translation invariant we see that F := E∪{0G}
has

PG(A+ F ) = PG(A+ (s+ F )) ≤ PG(A+ S) ≤ exp(6ε)PG(A).

Now, let k=d
√
ne and define a sequence of setsX0, X1, . . . using Plünnecke’s

inequality: let ∅ 6= X0 ⊂ A be such that PG(X0 + kF ) < exp(6εk)PG(X0),
and ∅ 6= Xr+1 ⊂ Xr be such that

(2.2) PG(Xr+1 + 2r+1kF ) ≤ exp(6ε · 2r+1k)PG(Xr+1).

Since Xr 6= ∅ and (Xr)r is nested, the sequence (
√

2 log 8PG(Xr)−1)r is
increasing and bounded above by O(

√
n). It follows that there is some r

such that 2r ≥
√

2 log 8PG(Xr)−1; let r′ be the minimal such. In this case

2r
′−1 <

√
2 log 8PG(Xr′−1)−1 ≤

√
2 log 8PG(Xr′)−1

by nesting of (Xr)r, whence

(2.3)
√

2 log 8PG(Xr′)−1≤2r
′≤2

√
2 log 8PG(Xr′)−1≤25 log

3PG(Xr′)−1

4
.

But by Proposition 2.3 we have

PG(Xr′ + 2r
′
kF ) +

exp(−22r′k2/2n)
PG(Xr′)

≥ 1.

Now by (2.2) and the upper bound in (2.3) we get

PG(Xr′ + 2r
′
kE) ≤ exp(6ε · 2r′k)PG(Xr′) ≤

3
4

since k ≤ 2
√
n ≤ 2−8ε−1 by assumption on ε; whence

exp(−22r′k2/2n)
PG(Xr′)

≥ 1
4
.
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On the other hand this can be bounded above using the lower bound in (2.3)
and the fact that k2 ≥ n:

exp(−22r′k2/2n)
PG(Xr′)

≤ (8PG(Xr′)−1)−k
2/n

PG(Xr′)
≤ 1

8
.

This contradiction means that for all s ∈ S, the set S − s contains at most
n − 1 linearly independent vectors. Thus there is an element s ∈ S and a
subspace H of codimension 1 in G such that S ⊂ s+H. Since S = (A+A)c

it follows that A+A ⊃ (s+H)c; (s+H)c is simply the coset of H not equal
to s+H, whence we are done.

We now use the above result in a straightforward manner.

Proof of Theorem 1.2. Let U be the smallest subspace of G such that
A+A ⊃ U c. Note that such a space exists since A+A ⊃ ∅ = Gc.

By averaging there is a coset x + U on which A has relative density at
least α: write A′ := (A ∩ (x + U) − x) and note that A + A ⊃ A′ + A′

and PU (A′) ≥ α. By Proposition 2.4 there is a subspace U ′ ≤ U of relative
codimension at most 1 and some u ∈ U such that u+U ′ ⊂ A′+A′ ⊂ A+A.
We have three cases:

(i) U ′ = U : then

G = U ∪ U c = U ′ ∪ U c ⊂ A+A;

(ii) U ′ 6= U and u + U ′ 6= U ′: then A + A ⊃ U ′c and dimU ′ < dimU ,
contradicting the minimality of U ;

(iii) U ′ 6= U and u + U ′ = U ′: then let π : G → U be a projection
which is the identity when restricted to U and note that π−1(U ′) is
a subspace of G of codimension 1 with

π−1(U ′) = (π−1(U ′) ∩ U) ∪ (π−1(U ′) ∩ U c) ⊂ U ′ ∪ U c ⊂ A+A.

The result follows.

3. Proof of Theorem 1.3. The argument here is a very slight adap-
tation of [Gre05, Theorem 9.4]. Green established this by reformulating
Ruzsa’s construction from [Ruz91] in the model setting where many of the
details simplify.

Proof of Theorem 1.3. Let

A := {x ∈ Fn2 : x has at most n/2− η
√

2πn/2 ones}.
Let X be the random variable which takes x ∈ G to the number of 1s in x.
Further, PG is the uniform distribution on G, and X is the sum of n inde-
pendent identically distributed Bernoulli random variables with parameter
p = 1/2.
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The mean of each individual Bernoulli trial is 1/2 and the variance 1/4
so that the mean of X is n/2 and the variance is n/4. It follows from the
Berry–Esseen inequality (see, e.g. [Shi96, p. 374]) that

sup
x∈G
|PG(A)− Φ(−η

√
2π)| ≤ 3.2√

n
.

Thus
PG(A) ≥ Φ(−η

√
2π)− 3.2√

n
.

On the other hand

Φ(2bη
√

2πn/2c/
√
n) =

1
2
− 1√

2π

η
√

2π�

0

exp(−x2/2) dx ≥ 1
2
− η.

Therefore
PG(A) ≥ 1

2
− η − 3.2√

n
.

It follows that for ε
√
n ≥ 22 we may pick η = 0.8ε and get PG(A) > 1/2− ε.

Now we shall show that if V ≤ G has codimension at most d := bη
√

2πnc
then V contains a vector with at most bη

√
2πnc zeros in the standard basis.

Since any x ∈ A+A has at least η
√

2πn zeros in the standard basis we shall
be done. Such a V can be written as

V = {λ1v1 + · · ·+ λn−dvn−d : λi ∈ F2},
where the vis are linearly independent. The vis may be written in the stan-
dard basis (ei)i as

vi = ε
(1)
i e1 + · · ·+ ε

(n)
i en.

The column rank of the matrix (ε(j)i )ij is n−d, hence so is its row rank. With-
out loss of generality we may suppose that the first n−d rows (ε(j)1 , . . . , ε

(j)
n−d),

j = 1, . . . , n − d, are linearly independent. It follows that we can solve the
n− d equations

λ1ε
(j)
1 + · · ·+ λn−dε

(j)
n−d = 1

for the λi giving a vector in V with no more than d zeros. The result fol-
lows.

4. Proof of Theorem 1.4. We shall prove the following stronger the-
orem from which both Theorems 1.4 and 1.5 follow.

Theorem 4.1. Suppose that A ⊂ G := Fn2 has density α ≤ 1/2. Then
A+A contains a subspace of codimension⌈

n
/

log2

2− 2α
1− 2α

⌉
.
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Before proving this we establish our two consequences.

Proof of Theorem 1.4. Apply Theorem 4.1 with α = 1/2− ε.

Proof of Theorem 1.5. It is easy to see that⌈
n
/

log2

2− 2α
1− 2α

⌉
≤ n(1− α/log 2) +O(1).

Theorem 4.1 then tells us that A + A contains a subspace of dimension at
least αn/log 2−O(1).

The proof is inspired by the standard iterative method of Roth intro-
duced in [Rot52] and the more commonly cited [Rot53], which was adapted
to finite fields by Meshulam in [Mes95]. The following lemma is the driver.

Lemma 4.2 (Iteration lemma). Suppose that A ⊂ G := Fn2 has density
α > 0 and V ≤ G. Then there is a subspace V ′ ≤ V of relative codimension 1
such that

PV ′(V ′ \ (A+A)) ≤ 1− 2α
1− α

PV (V \ (A+A)).

Proof. For each W ∈ G/V fix some xW ∈W and let AW be A∩W −xW
considered as a subset of V . Since −2xW = 0 we have AW +AW = A∩W +
A ∩W , whence

(A+A) ∩ V =
⋃

W∈G/V

(AW +AW );

write S := V \ (A+A). In view of the definition of S and our above obser-
vation, we deduce from Plancherel’s theorem that

(4.1) 0 =
〈 ∑
W∈G/V

1AW
∗ 1AW

, 1S
〉
L2(V )

=
∑
γ∈bV

∑
W∈G/V

|1̂AW
(γ)|21̂S(γ).

Partition V̂ into two sets N := {γ ∈ V̂ : 1̂S(γ) < 0} and P := {γ ∈ V̂ :
1̂S(γ) ≥ 0}. Since 0bV ∈ P we have∑

γ∈P

∑
W∈G/V

|1̂AW
(γ)|21̂S(γ) ≥ PV (S)

∑
W∈G/V

PV (AW )2.

On the other hand, from (4.1) and the definition of N , we get∑
γ∈N

∑
W∈G/V

|1̂AW
(γ)|2|1̂S(γ)| =

∑
γ∈N

∑
W∈G/V

−|1̂AW
(γ)|21̂S(γ)

=
∑
γ∈P

∑
W∈G/V

|1̂AW
(γ)|21̂S(γ)

≥ PV (S)
∑

W∈G/V

PV (AW )2.
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By Hölder’s inequality and then Parseval’s theorem we have∑
γ∈N

∑
W∈G/V

|1̂AW
(γ)|2|1̂S(γ)| ≤ sup

γ∈N
|1̂S(γ)|

∑
γ 6=0 bG

∑
W∈G/V

|1̂AW
(γ)|2

= sup
γ∈N
|1̂S(γ)|

∑
W∈G/V

(PV (AW )− PV (AW )2).

Combining this with the foregoing we get

(4.2) PV (S)
∑

W∈G/V

PV (AW )2 ≤ sup
γ∈N
|1̂S(γ)|

∑
W∈G/V

(PV (AW )− PV (AW )2).

Now, by the Cauchy–Schwarz inequality

EW∈G/V PV (AW )
∑

W∈G/V

PV (AW ) ≤
∑

W∈G/V

PV (AW )2.

However, EW∈G/V PV (AW ) = α, whence∑
W∈G/V

(PV (AW )− PV (AW )2) ≤ (α−1 − 1)
∑

W∈G/V

PV (AW )2.

Inserting this into (4.2) we get

PV (S)
∑

W∈G/V

PV (AW )2 ≤ sup
γ∈N
|1̂S(γ)|(α−1 − 1)

∑
W∈G/V

PV (AW )2.

Since α > 0 and G/V is finite we may divide by the sum and conclude that

sup
γ∈N
|1̂S(γ)| ≥ α

1− α
PV (S).

Let γ ∈ N be such that this supremum is attained and write V ′ := {γ}⊥.
Then V ′ has relative codimension 1 and, in view of this, we note that V \V ′ =
x0 + V ′ for any x0 ∈ V \ V ′. Now

PV (S ∩ V ′)− PV (S ∩ (x0 + V ′)) = 1̂S(γ) ≤ − α

1− α
PV (S),

since V ′ = {γ}⊥ and γ ∈ N . Furthermore, since V ′ and x0 +V ′ partition V
we have

PV (S ∩ V ′) + PV (S ∩ (x0 + V ′)) = PV (S).

Adding these two expressions tells us that

PV ′(S ∩ V ′) = 2PV (S ∩ V ′) =
(

1− α

1− α

)
PV (S) =

1− 2α
1− α

PV (S).

It only remains to note that S∩V ′ = V ′\(A+A) and the lemma is proved.

Proof of Theorem 4.1. Let σ ∈ (0, 1) be a parameter to be optimized
later. We use the iteration lemma to produce a sequence of subspaces Vi
such that
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(i) Vi ≤ Vi−1 and the codimension of Vi in Vi−1 is 1;
(ii) PVi(Vi \ (A+A)) ≤ 1−2α

1−α PVi−1(Vi−1 \ (A+A)).

We set V0 = G, and apply the iteration lemma (Lemma 4.2) repeatedly
to get the sequence. Now, if |Vi \ (A+A)| < 1 then Vi \ (A+A) = ∅, whence
A + A contains a subspace of codimension i by (i). In view of (i) and (ii)
this certainly happens if

|Vi|PVi(Vi \ (A+A)) ≤ 2n−i
(

1− 2α
1− α

)i
< 1;

taking i minimal such that this inequality is satisfied yields the result.

5. Concluding remarks. As noted in the introduction Theorem 1.2 is
best possible, however there is still a large gap between Theorem 1.3 and
Theorem 1.4. It has been suggested in [Gre05] that the truth is closer to
Theorem 1.3 in the case when the density of the set is Ω(1). One might
take Theorem 1.2 as some support of this conjecture (at least in the case of
density 1/2− o(1)). An intermediate question might be the following.

Question 5.1. Suppose that A ⊂ G := Fn2 has density α > 1/2−C/
√
n.

Does A+A contain a subspace of codimension OC(1)?

Theorem 1.3 tells us that this cannot be sublinear, and while showing
that may be hard it could be that O(C2) is rather more accessible.

Theorems 1.4 and 1.2 are the first results which provide a sensible upper
bound on the codimension rather than lower bound on the dimension of
the subspace found in A + A, and given the proof one might imagine an
improvement to Theorem 1.4 would be possible.

The following is a well-known theorem (see, for example, Metsch [Met03]).

Theorem 5.2. Suppose that G := Fn2 and S ⊂ G \ {0G} meets every
subspace of dimension d. Then |S| ≥ 2n+1−d − 1.

This result can be used in the proof of Theorem 4.1 above to tell us that
once we have

|Vi \ (A+A)| < 2n−i+1−d

in the iteration then A + A must contain a subspace of dimension d. This
certainly happens when

21−d >

(
1− 2α
1− α

)i
;

again taking i minimal such that this inequality holds we get a saving of 1 in
the codimension. This is, of course, not particularly impressive and, indeed,
no näıve attack along these lines will work as it turns out that Theorem 5.2
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is also best possible. (Again, see Metsch [Met03].) This may be contrasted
with the following result of Alon.

Theorem 5.3 ([Alo07, Theorem 4.1]). Suppose that G := Fn2 and S ⊂
G \ {0G} is such that |S| ≤ c

√
|G|/log |G|. Then there is a set A ⊂ G such

that S = (A+A)c.

Here, of course, the set A produced is rather thin and certainly nowhere
near the densities we are looking for.

One may also reasonably ask what happens in the transition to the
integers. Theorem 1.5 can be proved there through the machinery of Bohr
sets as developed by Bourgain [Bou99]. However, as the reader will have
realized from the proof, the strength comes from the rather precise subgroup
structure which is not present in general and as a result the conclusions are
weaker than what is already known [Gre02].
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