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Two equations for linear recurrence sequences

by

V. Losert (Wien)

1. Introduction. Our main object will be two equations, the first of
them being

(1.1) aukh + bu
l
n + cu

m
q = 0

with given coefficients a, b, c ∈ C \ {0} and given exponents k, l,m ∈ N
that are pairwise distinct. If (un)n∈Z is a linear recurrence sequence, we will
investigate the set of triples (h, n, q) ∈ Z3 solving this equation. The second
equation is

(1.2) buln + cu
m
q = 1

with given coefficients b, c ∈ C\{0} and given exponents l,m ∈ N satisfying
l 6= m.
For a linear recurrence sequence (un)n∈Z, we denote by α1, . . . , αr the

different roots of its companion polynomial (see [ST, p. 33], note that αi 6= 0
holds always). In [SS2], r is called the rank of (un). The sequence (un) is
called non-degenerate if αi/αj is not a root of unity for i 6= j. Let G be the
multiplicative group generated by α1, . . . , αr. By g we denote the (torsion
free) rank of G.

Theorem 1. Let (un) be a non-degenerate linear recurrence sequence
with rank r ≥ 2. Then, apart from the exceptional cases described below ,
equation (1.1) has only finitely many solutions (h, n, q) ∈ Z3.

The exceptional cases occur (after suitable reordering of the three terms
of the sum) for: m = 1, l = 2 (implying k > 2), r = 2. Thus the exceptional
equations are aukh + bu

2
n + cuq = 0. The exceptions in the case of equation

(1.2) (see below) generate exceptions for this equation by keeping h fixed.
This gives two classes of sequences with infinitely many solutions. For k = 3,

there are two further possibilities. First, if η = 4b
2

9ac is a root of unity, excep-
tions come from sequences un = a2(±α

n/2 + ζn) (ζ a root of unity), when
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a2, α, ζ satisfy some additional algebraic equations: α/ζ has to be an integer
root of 2, a2 = −

4b
3aη1, where η

2
1 = −1/η and ζ is an integer root of η1.

Second, if η = 4
(
4b2

9ac

)5
is a root of unity, exceptions arise from sequences

un = a1
(
α−2n ± 12ζ

nα3n
)
, with similar conditions for a1, α, ζ (e.g., α

5ζ has
to be an integer root of 2). More details are given in Section 9.

Theorem 2. Let (un) be a non-degenerate linear recurrence sequence
with rank r ≥ 1. Then, apart from the exceptional cases described below ,
equation (1.2) has only finitely many solutions (n, q) ∈ Z2.

The exceptional cases are (after suitable reordering of the two terms
of the sum): m = 1, l = 2, η = b/(2c2) is a root of unity, r = 2. This
leads to equations 2ηc2u2n + cuq = 1. The exceptional sequences are all
simple, thus un = a1α

n
1 + a2α

n
2 . There are two possibilities for such a se-

quence (un) so that the equation above has infinitely many solutions (n, q).
First, if there exists an integer t such that a1/α

t
1 = a2/α

t
2 = −1/(2ηc) and

α1α2 is an integer root of η. Prototypes (with t = 0) are the sequences
wn = −

1
2ηc (α

n + (η1α)
−n), where η1 denotes any integer root of η. Second,

if there exists an integer t such that a31/α
t
1 = a

3
2/α

t
2 = −1/(8ηc

3) and α1α2 is
an integer root of 4c2ηa1a2. Prototypes (with t = 0) are the sequences w̃n =
− 1
2η2c
(α̃n + η3(η4α̃)

−n), where η2, η3, η4 are any numbers such that η
3
2 = η,

η33 = 1 and η4 is an integer root of η2η3. In all the exceptions α1α2 is a root of
unity. For η = ±1, the two cases overlap. More details are given in Section 8.

In all these exceptions (for Theorems 1 and 2) the polynomials fi are
constant (in the notation of (2.1) below). Thus the exceptions occur only
for simple sequences (i.e., when the companion polynomial has only simple
roots), in this case the polynomial-exponential equations (2.2), (2.3) arising
in Section 2 reduce to purely exponential equations. In the exceptions for
Theorem 1 the roots αi are algebraic (with respect to a/c, b/c).

An equation similar to (1.1) (with two terms instead of three) has been
investigated by Schlickewei and Schmidt [SS2]. Related (linear) equations
were studied by them in [SS1]. A basic tool are the results of Laurent ([L1],
[L2]) on solutions of polynomial-exponential equations, and he already gave
some applications to linear recurrence sequences (Laurent’s result relies on
the subspace theorem, see also [SS3], [A] and [ESS]). In the binary coun-
terpart of (1.1), auln = bu

k
m, it turned out in [SS2] that (for non-degenerate

sequences (un)) there are only “obvious” exceptions in which the equation
has infinitely many solutions (n,m). In the other case, quantitative estimates
(with explicit bounds) for the number of solutions were given. In [SS2], Lau-
rent’s method led to a combinatorial problem on partitions of certain index
sets. This was solved comparatively easily by an elegant argument and it
turned out that the groups H(P) (see Section 4 below) are trivial for se-
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quences of rank r > 1 and partitions P without singletons (also in most of
the examples of [SS1] and [L1], [L2] a similar behaviour occurred).
In our case, for equation (1.2) one can use quite similar arguments, but at

the end two partitions remain for whichH(P) is non-trivial and they give rise
to the exceptions in Theorem 2. For the ternary equation (1.1), we restrict
to sequences of rank r ≥ 2 (for r = 1 there are still more new phenomena).
The corresponding combinatorial question turns out to be somewhat more
delicate. If g (= rank of G) is at least 2, then (Proposition, Section 6) it is
still true that H(P) is trivial for partitions without singletons (an exposition
of this result is also given in [G]; moreover, quantitative estimates for the
number of solutions of (1.1) in this case are given there, [G, Th. 3.2, p. 13]).
For g = 1, there are quite a number of cases where H(P) is non-trivial, but
further investigations show that nevertheless most of them contribute only
finitely many solutions. At the end, four partitions remain that give rise to
the exceptions of Theorem 1. Of course, the cases where (1.2) has infinitely
many solutions induce exceptions for (1.1) (for appropriate sequences (un))
and in this way two of these partitions can be derived from those appearing
in the study of (1.2). But the other two partitions (and the corresponding
infinite families of solutions of (1.1)) are not derived from (1.2).

2. Polynomial-exponential equations. The basic approach in the
proof of the two theorems is the same as in [SS2], [SS1]. We use the repre-
sentation

(2.1) un =
r∑

i=1

fi(n)α
n
i

(with non-zero complex polynomials fi) of the given sequence (un). Substi-
tuting (2.1) into equation (1.1) and expanding the powers leads as in [SS2,
p. 1046] to an equation

∑

1≤i1≤···≤ik≤r

Fi1...ik(h)α
h
i1 · · ·α

h
ik
+

∑

1≤i1≤···≤il≤r

Gi1...il(n)α
n
i1 · · ·α

n
il

+
∑

1≤i1≤···≤im≤r

Hi1...im(q)α
q
i1
· · ·αqim = 0

(see [G, p. 15] for more details) and this can be written as a polynomial-
exponential equation

(2.2)
∑

i∈A

pi(n)α
n

i
= 0

(with the usual notational conventions for exponents, see [SS2, p. 1045]).
More explicitly, put Ak = {i = (i1, . . . , ik) ∈ Nk : 1 ≤ i1 ≤ · · · ≤ ik ≤ r} and
similarly Al, Am (recall that k, l,m are different). Then A = Ak ∪Al ∪Am,
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n = (h, n, q) ∈ Z3,

αi =





(αi1 · · ·αik , 1, 1),

(1, αi1 · · ·αil , 1),

(1, 1, αi1 · · ·αim),

pi(n) =





Fi1...ik(h) for i ∈ Ak,

Gi1...il(n) for i ∈ Al,

Hi1...im(q) for i ∈ Am.

Similarly, equation (1.2) leads to

(2.3)
∑

i∈A∗

qi(m)β
m

i
= 0

with

m = (n, q) ∈ Z2, A∗ = Al ∪Am ∪ {∗}, β∗ = (1, 1), q∗ = −1.

(∗ stands for an additional index not belonging to Al ∪Am and designating
the constant term of the equation.)

Now one can use the results of Laurent [L2] on polynomial-exponential
equations (an application of the subspace theorem). One has to study par-
titions P of A and associated groups H(P) (see below for their definitions,
and the beginning of Section 11). Partitions P for which H(P) is trivial con-
tribute at most finitely many elements to the set of solutions of the equation
(see e.g. [SS2, Th. A]).

The proof of the two theorems will be organized as follows: first (Sec-
tion 3), we will handle the case of partitions P containing singletons. Then,
for the case of partitions P without singletons, we will (Section 5) investigate
consequences of the non-triviality of H(P) to the structure of P. This leads
to some combinatorial questions. In the case of Theorem 1 and g ≥ 2, we
will show in Section 6 that H(P) is trivial for partitions P without single-
tons (see also [G, Prop. 4.1]). Similarly for Theorem 2, where H(P) is trivial
except for two cases for P leading to the exceptions (Section 7). For equa-
tion (1.1) (Theorem 1) with g = 1, it can happen that H(P) is non-trivial
(see the Remarks at the end of Section 10, containing a complete descrip-
tion of these partitions for r = 2, 3). But (as in [SS1]) the information that
certain sets have to belong to P (Section 10) gives additional equations for
the corresponding solutions (Section 11). Hence, the final step (Section 13)
is the analysis of some of these additional equations. For partitions with
non-trivial H(P) the corresponding solutions lead to polynomial identities
(Section 12, (12.1)) and a large portion of these identities can be handled
using the method of Mason ([M1, Lemma 2, p. 14]; this is a special case
of the abc-inequality in function fields which was used in [BMZ] to derive
bounds for 0-multiplicities of linear recurrence sequences). By this approach
(and there are also some limiting cases with small exponents to be discussed
separately), we will be able to show that even if H(P) is non-trivial, only
finitely many solutions exist (apart from the exceptions).
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3. Partitions with singletons. This means that we study first solu-
tions n = (h, n, q) of (1.1) for which one term pi(n) of the sum (2.2) is zero.
Changing the order of the terms of (1.1) if necessary, we may assume that
i = (i1, . . . , ik) ∈ Ak. By explicit computation (see [G, p. 15]), one can easily

show that Fi1...ik is a non-zero multiple of the polynomial
∏k
j=1 fij . There

are only finitely many integers h for which
∏k
j=1 fij (h) = 0. If h0 is one of

them and a solution (h, n, q) of (1.1) satisfies h = h0, this means that

buln + cu
m
q = −au

k
h0 .

If uh0 = 0, then (n, q) satisfy an equation of the type studied in [SS2], hence
this gives only finitely many solutions. If uh0 6= 0 the resulting equation
for (n, q) is equivalent to (1.2), hence this reduces to Theorem 2. Thus (as
soon as Theorem 2 has been shown), we know that the only instances where
infinitely many solutions of (1.1) with h = h0 can arise are the exceptional
cases for Theorem 2. But by the proof of Theorem 2 in Section 7, this implies
that the polynomials fi are constant, which is impossible for partitions with
singletons.
In the case of partitions for (1.2) with singletons, the procedure is similar.

One variable gets fixed, say q = q0 (finitely many possibilities), and then a
solution of (1.2) satisfies an equation un = c

′ (with finitely many possibilities
for c′). By the Skolem–Mahler–Lech Theorem, this has only finitely many
solutions for a non-degenerate sequence with r ≥ 1 (see [ST, Cor. C.1], the
argument there holds for arbitrary a-multiplicities; see also [SS1, p. 229]).

Remark. For degenerate sequences (e.g., if α2i = −α2i−1 for i ≤ r/2),
it can happen that un = 0 for infinitely many n, and then equation (1.1)
will clearly have infinitely many solutions. Similarly for (1.2).

4. The groups H(P). Given a partition P of the set A, the group H(P)
consists of all n ∈ Z3 such that αn

i
is constant for i ∈ I, whenever I ∈ P

([L2, p. 26]). Again we follow the procedure of [SS2, Sec. 5].
Let T be the torsion subgroup of G. Then G/T ∼= Zg, i.e., we have a

surjective homomorphism ψ : G → Zg. Put vi = ψ(αi) (i = 1, . . . , r). For
i = (i1, . . . , ik) ∈ Ak put

(4.1) σ(i) = vi1 + · · ·+ vik ,

similarly for i ∈ Al ∪ Am. Moreover, ψ induces a homomorphism G
3 → Zg

(again denoted by ψ) by putting ψ(α, β, γ) = ψ(α) + ψ(β) + ψ(γ). Then
ψ(αi) = σ(i) for all i ∈ A. For a fixed n = (K,L,M) ∈ Z3, put

(4.2) σ(i) =





Kσ(i) for i ∈ Ak,

Lσ(i) for i ∈ Al,

Mσ(i) for i ∈ Am.

Then ψ(αn
i
) = σ(i).
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Conversely, given (K,L,M) ∈ Z3 and arbitrary vectors v1, . . . , vr ∈ Rg,
we can define functions σ and σ by (4.1) and (4.2). Those sets of the form
σ−1(v) for v ∈ Rg that are non-empty constitute a partition Pσ of A. It is
easy to see that if vi = ψ(αi) as above, then some multiple of (K,L,M)
(depending on the roots of unity in T ) will belong to H(Pσ).
On the other hand, if we start with some (K,L,M) ∈ H(P), then Pσ is

coarser than P (or possibly equal). Hence, if P contains no singletons (i.e.,
one-element sets), then the same will be true for Pσ. For our purpose (see
also the beginning of Section 11), it will be enough to study partitions Pσ.
Our first target (Sections 5 and 10) will be to derive consequences of the
assumption on Pσ to contain no singletons, i.e., what happens if σ takes
every value at least twice.
For equation (1.2), the procedure is similar. We have to study partitions

of A∗. On Al ∪ Am, σ and σ are defined as in (4.1), (4.2) and we put
σ(∗) = σ(∗) = 0.

5. Properties of σ. The foundation is laid by the case g = 1. Hence,
we now assume that r ≥ 2 and that v1 < · · · < vr are real numbers. We fix a
non-zero triple (K,L,M) ∈ Z3 (or R3). As in [SS2, Proof of the Proposition],
we study the values of σ close to the minimum resp. maximum under the
assumption that Pσ has no singletons. This will lead to a classification into
cases A, B with subcases Baa, Bab, Bba, Bbb, Bbc.
For notational distinction, we often include the length of an ordered tu-

ple as an index, e.g. (1, . . . , 1)k denotes a k-tuple. Remember also that A
contains only non-decreasing tuples, hence the notation (. . . , 1, 2)k deter-
mines the initial segment uniquely. For k = 1, (. . . , 1, 2)k is to be read as
(2) and (r − 1, r, . . .)k stands for (r − 1).

5.1. If K > 0, then σ(1, . . . , 1)k gives the smallest value of σ on Ak,
σ(. . . , 1, 2)k is second smallest , σ(r, . . . , r)k the largest and σ(r − 1, r, . . .)k
the second largest. These four values are taken only once on Ak.

5.2. If K,L,M ≥ 0, Pσ has no singletons and v1 < 0, then there is a
(uniquely determined) reordering of (k, l,m) (and (K,L,M)) such that the
two smallest values of σ on A are given by σ(1, . . . , 1)l = σ(1, . . . , 1)m (the
minimum) and σ(. . . , 1, 2)l = σ(1, . . . , 1)k. (For K > 0, these are the only
elements of A giving these values.) This results in the following relations
(Case A):

0 ≤ Kk < Ll =Mm, L < M,(5.1)

Kkv1 = L(l − 1)v1 + Lv2.(5.2)

Proof. Since (K,L,M) 6= (0, 0, 0), we may assume that L > 0. By Prop-
erty 5.1, we may assume that σ(1, . . . , 1)l is the minimum of σ on A (observe
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that σ(1, . . . , 1)l < 0). Since this value is attained only once on Al, we may
assume that σ(1, . . . , 1)l = σ(1, . . . , 1)m, giving Ll = Mm. By assumption
l 6= m, hence possibly after reordering, we get L < M .
Now assume that Kk = Ll =Mm, i.e., σ(1, . . . , 1)k = σ(1, . . . , 1)l. Then

we may also assume that L < K. The distances of σ(1, . . . , 1)l to the next
smallest values on Al, Ak, Am are L(v2−v1), K(v2−v1),M(v2−v1), respec-
tively. Hence (. . . , 1, 2)l would give a singleton for Pσ. Thus we get Kk < Ll
(since σ(1, . . . , 1)k ≥ σ(1, . . . , 1)l) and, as above, to avoid singletons, we
must have σ(. . . , 1, 2)l = σ(1, . . . , 1)k, i.e., L(l − 1)v1 + Lv2 = Kkv1.

In the case of different signs among K,L,M there are more possibilities
(see also [G, Prop. 4.3, Teil I of the proof] for a more detailed exposition of
the classification). Since σ and −σ define the same partition of A, we can
assume (possibly after reordering) that K < 0, L,M ≥ 0 (Case B).

5.3. (Case Ba) If K < 0, L,M ≥ 0, Ll > Mm and Pσ has no
singletons, then the smallest value of σ on A is given by σ(1, . . . , 1)l =
σ(r, . . . , r)k and the largest by σ(r, . . . , r)l = σ(1, . . . , 1)k. This results in
the following relations:

(5.3) vr = −v1, 0 ≤Mm < Ll = −Kk, L 6= −K.

Proof. First assume that v1 < 0. Since K < 0, the indices in the descrip-
tion of the maximal and minimal values of σ(Ak) in Property 5.1 have to
be reflected. The assumption Ll > Mm implies σ(1, . . . , 1)l < σ(1, . . . , 1)m,
hence arguing as before, we conclude that σ(1, . . . , 1)l = σ(r, . . . , r)k gives
the minimum of σ. In particular, vr > 0. Then the same argument, used
for the maximum, gives σ(r, . . . , r)l = σ(1, . . . , 1)k. From Llv1 = Kkvr,
Llvr = Kkv1, it follows that vr = −v1, Ll = −Kk and then, l 6= k implies
L 6= −K.
If v1 ≥ 0, then vr > 0 and the same argument as above, used for the

maximum, would give v1 < 0, a contradiction.

5.4. Under the assumptions of 5.3 (Case Ba), we have vr−1 = −v2 and
concerning the second smallest (largest) values of σ there are the following
two possibilities:

Case Baa: L < −K, L(l − 1)v1 + Lv2 =Mmv1.
Case Bab: L > −K, K(k − 1)v1 +Kv2 =Mmvr.

(For M > 0 we get again all elements of A that are mapped to the smallest
value, second smallest value, etc.)

Proof. We may assume that v2 − v1 ≤ vr − vr−1, otherwise we consider
the reverted sequence v∗i = −vr+1−i (which produces a partition arising from
Pσ by a corresponding transformation). As in the proof of 5.2, we consider
the distances of σ(1, . . . , 1)l to the next smallest values on Ak and Al. Then
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L < −K implies that σ(. . . , 1, 2)l = σ(1, . . . , 1)m is the second smallest value
of σ, i.e. L(l−1)v1+Lv2 =Mmv1. Then Llvr−Mmvr = −(Ll−Mm)v1 =
L(v2 − v1) < −K(v2 − v1) and it follows that σ(r− 1, r, . . .)l = σ(r, . . . , r)m
gives the second largest value, i.e. L(l − 1)vr + Lvr−1 = Mmvr, and from
vr = −v1 (see 5.3) we get vr−1 = −v2.
Similarly, if L > −K holds, one shows that σ(r−1, r, . . .)k = σ(1, . . . , 1)m

and K(k − 1)vr + Kvr−1 = −Mmv1, Llvr −Mmvr = −K(vr − vr−1) <
L(vr − vr−1), which results in σ(. . . , 1, 2)k = σ(r, . . . , r)m.

5.5. (Case Bb) If K < 0, L,M ≥ 0, Ll = Mm, L < M and Pσ has
no singletons, then the smallest value of σ on A is given by σ(1, . . . , 1)l =
σ(1, . . . , 1)m and the largest by σ(r, . . . , r)l = σ(r, . . . , r)m, in particular
−Kk < Ll. (But here, one cannot exclude that one of these values is attained
also on Ak, see 5.6.)

Proof. As in 5.3. If σ(1, . . . , 1)l > σ(r, . . . , r)k, then (r, . . . , r)k would
give a singleton.

5.6. Under the assumptions of 5.5 (Case Bb), we have the following
three possibilities, resulting from the second smallest (largest) values of σ:

Case Bba: L(l − 1)v1 + Lv2 = Kkvr, L(l − 1)vr + Lvr−1 = Kkv1.
Case Bbb: Llv1 = Kkvr, L(l − 1)vr + Lvr−1 = Kkv1.
Case Bbc: L(l − 1)v1 + Lv2 = Kkvr, Llvr = Kkv1.

Proof. The assumption L < M gives σ(. . . , 1, 2)l < σ(. . . , 1, 2)m. Hence,
if σ(1, . . . , 1)l < σ(r, . . . , r)k (i.e., Llv1 < Kkvr), then σ(. . . , 1, 2)l =
σ(r, . . . , r)k is the second smallest value of σ on A, i.e., L(l − 1)v1 + Lv2 =
Kkvr. Similarly, σ(r, . . . , r)l > σ(1, . . . , 1)k implies that σ(r − 1, r, . . .)l =
σ(1, . . . , 1)k, i.e., L(l−1)vr+Lvr−1 = Kkv1. Thus, it remains to exclude the
possibility that Llv1 = Kkvr and Llvr = Kkv1. As in 5.3 this would imply
vr = −v1, Ll = −Kk and the second smallest (resp. largest) value would be
σ(. . . , 1, 2)l = σ(r − 1, r, . . .)k (resp. σ(r − 1, r, . . .)l = σ(. . . , 1, 2)k). Con-
sidering the distance to the minimum (resp. maximum), this would imply
L(v2 − v1) = K(vr − vr−1) (resp. L(vr−1 − vr) = K(v1 − v2)), which gives
L = −K, contradicting l 6= k.

Remark. Reflecting the sequence (vi) (i.e., replacing it by v
∗
i =−vr+1−i)

transfers Case Bbc to Bbb and conversely. Similarly, forM = 0, multiplying
(K,L,M) by −1 and reordering transfers Case Baa to Bab and conversely.

Up to reordering the sequence (vi), multiplying (K,L,M) by −1 and/or
changing the order of k, l,m, the preceding properties classify all partitions
Pσ without singletons for g = 1, r ≥ 2. (Apart from the two overlappings
described just before, the various cases are distinct.) This can be summarized
as follows (the “main cases” A, Baa, Bab, Bba): the two larger ones of the
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three values |Kk|, |Ll|, |Mm| coincide and they determine the maximum and
the minimum of σ. The third one determines the second smallest (largest)
value. The different cases represent the various distributions of signs among
K,L,M in relation to the “third” value. The only exceptions are Cases Bbb,
Bbc, where one of the two extremal values of σ(A) is taken three times (this
happens also in Case A for vr = 0). We will see later (Property 10.11) that
(at least for K,L,M ∈ Z) these cases occur only rarely, i.e., only for r = 2
and with further restrictions on k, l,m. Nevertheless, they contribute to the
exceptions of Theorem 1 described in Section 9.

6. The case g ≥ 2

Proposition. Take (K,L,M) ∈ R3 \ {0}, consider distinct elements
v1, . . . , vr ∈ Rg and define σ : A → Rg by (4.2). Assume that v1, . . . , vr
are not contained in a one-dimensional subspace of Rg. Then there exists
v ∈ Rg such that σ−1(v) consists of a single point (i.e., the partition Pσ of
A contains a singleton).

Proof. (a) We assume that Pσ has no singletons. Following the method
of [SS2, Proof of the Proposition], we consider linear mappings q : Rg → R.
Observe that if q is any linear mapping, then q◦σ satisfies again (4.2), when
using q(v1), . . . , q(vr) in place of v1, . . . , vr. The partition Pq◦σ is coarser
than Pσ (or possibly equal), hence Pq◦σ will always contain no singletons.
We call a linear mapping q : Rg → R admissible if the values q(v1), . . . , q(vr)
are pairwise different. As observed in [SS2], the set of admissible mappings
q consists of the complement of finitely many hyperplanes in the dual of Rg.

Now let q be an admissible mapping. Possibly after reordering, we may
assume that q(v1) < · · · < q(vr) and (reflecting the sequence v1, . . . , vr if
necessary) that q(v1) < 0 (clearly our assumption implies that r ≥ 2). We
can apply the properties derived in Section 5 to q ◦σ and consider the cases
from there.

(b) Assume that we have Case A, in particular, K,L,M ≥ 0. Then by
Property 5.2, {(. . . , 1, 2)l, (1, . . . , 1)k} ∈ Pq◦σ and L > 0 by (5.1). Pass-
ing from Pq◦σ to the finer partition Pσ, two-element or three-element sets
cannot be split (since this would generate singletons). Hence σ(. . . , 1, 2)l =
σ(1, . . . , 1)k and it follows that Kkv1 = L(l − 1)v1 + Lv2 (alternatively, it
would be no problem to require that q is injective on the finite set σ(A)).
Thus, v1, v2 are linearly dependent.

If r = 2, this gives already a contradiction, hence we can assume that
r > 2. Observe that by the equation above, v2 is determined uniquely by v1.
Hence, if q′ is any other admissible mapping having q′(v1) as minimal value,
then q′(v2) should give the second smallest value.
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Since v1, . . . , vr do not lie in a one-dimensional subspace, there exists
w ⊥ v1−v2 such that (vi |w) < 0 for some i > 2 ((· | ·) denotes the standard
inner product). For t ∈ R, put qt(v) = q(v) + t(v |w). Choose i > 2 such
that c0 = (vi |w) is minimal and put t0 = q(v2 − vi)/c0. Then t0 > 0, and
q̃ = qt0 satisfies q(v2) = q̃(v2) = q̃(vi) ≤ q̃(vj) for all j ≥ 2 and q(v1) =
q̃(v1) < q̃(v2) (observe that (v1 |w) = (v2 |w) = 0 by linear dependence).
Now, qt is admissible except for finitely many t (it is easy to see that if qt
is not admissible for infinitely many t, then it would be non-admissible for
all t, contradicting q0 = q). Choose t > t0 such that qt is admissible and
t − t0 small. Then qt(v1) is still the minimum, but qt(vi) < qt(v2) and this
gives a contradiction.
(c) The same argument works in Case Ba (using Property 5.4). Similarly,

one can treat Case Bbc (note that {(1, . . . , 1)k, (r, . . . , r)l, (r, . . . , r)m} ∈
Pq◦σ implies Kkv1 = Llvr and then Case Bbc has to occur for any other
admissible mapping q′ with the property that q′(v1) is minimal). Case Bbb
can be transferred to Bbc by reflecting the sequence (vi).
(d) Case Bba causes more difficulties. There are various ways to han-

dle it (see the Remark below); we present here a geometric argument. Put
B = {v1, . . . , vr} and let C be the convex hull of B. As above, let q be an
admissible mapping. We may assume (see (c)) that Case Bba occurs for any
such mapping. We take the ordering so that q(v1) < · · · < q(vr). Then the
argument as in (b) and Property 5.6 give Kkvr = L(l−1)v1+Lv2. This can
be written as vr = c(λv1+(1−λ)v2), with c = Ll/Kk < 0 and λ = 1− 1/l.
Observe that L < M implies l ≥ 2, hence 0 < λ < 1. Similarly, we have
v1 = c(λvr + (1− λ)vr−1).
For r = 2 this implies that v1, v2 are linearly dependent, hence we can

assume r > 2. Note that by the equations, vr−1 and vr are determined
uniquely by v1, v2. Hence, if q

′ is any other admissible mapping such that
q′(v1) < q′(v2) < q′(vj) for all j > 2, then q

′(vr) > q′(vr−1) > q′(vj) for all
j < r− 1. Similarly, if q′ is admissible, q′(v1) is minimal, q

′(vr) is maximal,
then q′(v2) has to be the second smallest value.
Now define qt, t0 and q̃ as in (b). We have q̃(v2 − v1) = q(v2 − v1) > 0.

In the limit for t → t0− with qt admissible, we see from the observation
above that q̃(vr) ≥ q̃(vr−1) ≥ q̃(vj) for j < r − 1 and q̃(v1) < q̃(v2) ≤ q̃(vj)
for j > 2. If it happened that q̃(vr) > q̃(vr−1), then for t > t0 and t − t0
small, qt(vr) would still be the maximum and qt(v1) the minimum. For qt
admissible, this would imply qt(v2) < qt(vj) for j > 2, a contradiction to
the choice of t0. Hence we must have q̃(vr) = q̃(vr−1).
In particular, if the dimension of the vector space generated by B were

greater than 2, we could choose w ⊥ v1, v2. Then q̃(vr) = q(vr) > q(vr−1) =
q̃(vr−1) and this is impossible. Hence, we can assume that g = 2, i.e.,
C ⊆ R2.
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Fig. 1

Continuing the investigation of qt, let g = {v ∈ R2 : q̃(v) = q̃(vr)} be the
line passing through vr−1, vr (see Fig. 1). From t0 > 0, q(vr−1) < q(vr), we
find that (vr |w) < (vr−1 |w). Let v = v

∗
r give the maximal value of (v |w)

on B ∩ g and v∗r−1 the second largest. Since for t > t0 with t− t0 small, the
largest and second largest values of qt on B must be given by points of g,
these are attained at v∗r and v

∗
r−1 respectively. For qt admissible, this entails

v1 = c(λv
∗
r + (1− λ)v

∗
r−1). Thus v1/c is a point of g lying between vr, vr−1

and between v∗r−1, v
∗
r . It follows that v

∗
r = vr−1, v

∗
r−1 = vr, λ = 1/2. This

also implies that B ∩ g = {vr−1, vr}.
Since v1 is the unique point where q attains its minimum on C, it has

to be a vertex (extreme point) of C. Similarly, vr and vr−1 (= v∗r ) have
to be vertices. Hence, v2 (giving the second largest value of the admissible
mapping −q) has to be a vertex as well. Let v∗2 ∈ B give the second smallest
value of qt for t > t0, t − t0 small. Then, as above, we get q̃(v

∗
2) = q̃(v2),

vr−1 (= v
∗
r ) =

c
2 (v1 + v

∗
2) and v

∗
2 is a vertex (it is the adjacent vertex to v1

lying opposite to v2).
Since for any v ∈ B that is a vertex of C we can find an admissible

mapping q′ such that q′(v) is minimal, the results obtained so far can be
summarized as follows: All elements of B lying on the boundary of C are ver-
tices. The interior of the triangle spanned by any three consecutive vertices
of C contains no elements of B.
Now, λ = 1/2 = 1 − 1/l implies l = 2, and M > L gives m < l, thus

m = 1, M = 2L, k ≥ 3 (i.e., concerning (1.1) we are left with the equation
of Section 9). In particular, σ(Am) ⊆ σ(Al). We have σ(r − 1, r, . . .)k =
K(k − 1)vr +Kvr−1 = Lv with v = v1 + (1 − 1/k)v2 + (1/k)v

∗
2 . To avoid

singletons, there must be some i = (i1, i2) ∈ Al such that σ(i) = Lv, i.e.,
σ(i)=v. Since q̃(v)= q̃(v1)+q̃(v2) and q̃(σ(i))≥2q̃(v2) as soon as i1>1, we
must have i1=1 and it follows that vi2=(1−1/k)v2+(1/k)v

∗
2 belongs to B.

Since q̃(v1) = cq̃(vr) < 0, we may by scaling assume that q̃(v1) = −1.
Let vj ∈ B be the adjacent vertex to v2 opposite to v1, and v

′
j be the

adjacent vertex to vr opposite to vr−1. As above, we have vj0 := (1−1/k)v1
+ (1/k)vj ∈ B. Using the equations v

′
j =

c
2 (vj + v2), v2 =

c
2 (v
′
j + vr), one

gets

q̃(vj0 − v1) =
4

kc2
q̃(v2 − v1),
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hence 4/(kc2) ≥ 1. On the other hand, q̃(v2) = 1 − 2/c
2 > q̃(v1) = −1

implies c < −1 and it follows that k = 3. The last step is to show that
(1, j0) ∈ Al gives a singleton for Pσ.
The line through v′j , vr−1 intersects the line through 0, v1 at (2/c− c)v1

(since vr−1+
c2

4 (v
′
j − vr−1) = (2/c− c)v1). We apply the statement about B

made above to the triangle spanned by v′j , vr, vr−1 and the next one. This

gives q̃(vi) ≤ c− 2/c for all i < r− 1. It follows (recall that c = 23L/K) that
Kq̃(vi) ≥

2
3L(1− 2/c

2). Hence, for i = (j1, j2, j3) ∈ Ak with j1 < r − 1, we
get

q̃(σ(i)) ≥
2

3
L

(
1−
2

c2
− 2
1

c2

)
,

and consequently

q̃(σ(i)− 2Lv1) ≥ 2L
4

3

(
1−
1

c2

)
.

On the other hand, one computes

q̃(σ(1, j0)− 2Lv1) = 2L
4

3

c2 − 1

c4
< 4L

(
1−
1

c2

)
= 2Lq̃(v2 − v1).

The first inequality shows that σ(1, j0) 6= σ(j1, j2, j3) if j1 < r − 1. But
for j1 ≥ r − 1, we have q̃(σ(j1, j2, j3)) = 2Lq̃(v2), which is excluded by the
second inequality. This shows that σ(1, j0) /∈ σ(Ak), and in a similar way
one gets σ(1, j0) 6= σ(j1, j2) for (j1, j2) 6= (1, j0) (which also entails that
σ(1, j0) /∈ σ(Am)). This finishes the proof of the Proposition.

Remark. An alternative to the last (computational) part of (d) would
be the observation that the equations v1 =

c
2 (vr−1 + vr) etc. for the points

of B lying on the boundary of C give an eigenvalue system for the compo-
nents of the vi. The right hand side defines a circulant matrix and for the
eigenvalue one gets 2/c = 2 cos(πj/r0) where r0 is the number of points of
B on the boundary, 1 ≤ j < r0, j ∈ N (c = ±1 has already been excluded).
For K,L,M ∈ Z (which entails c ∈ Q), this would imply that r0 = 3, i.e.,
C would be a triangle, and this case has been excluded before.
It will be shown later (Property 10.9) by more elaborate investigations

that in Case Bba (at least for K,L,M ∈ Z, r > 3) one always has vr = −v1,
and then the easy argument of (b) can be applied.
Another method of proof which is more in the spirit of Section 10 of our

paper can be found in [G].

7. Proof of Theorem 2. Starting from (1.2), we now have to consider
partitions P of A∗. If P has singletons, then we have shown in Section 3 that
there are only finitely many solutions. Partitions without singletons can be
handled as in [SS2, Proof of the Proposition]. Take (L,M) ∈ H(P) \ {0}



Two equations for linear recurrence sequences 121

and define σ, σ as explained at the end of Section 4. Assume first that
L,M ≥ 0. In addition, we can assume v1 < 0, otherwise replace vi by
v∗i = −vr+1−i. It follows as in [SS2] or in Property 5.2 that Ll = Mm.
Then v1 6= 0 implies r ≥ 2 (otherwise, {∗} would be a singleton). Ordering
so that 0 < L < M , it follows that σ(. . . , 1, 2)l = σ(∗) = 0 and that
σ(r−1, r, . . .)l = σ(∗) = 0. This implies r = 2, l = 2,m = 1, v2 = −v1 and we
arrive at the partition P1 = {{(1, 1), (1)}, {(1, 2), ∗}, {(2, 2), (2)}}. It follows
from [L2, Lemma 7] that f1 and f2 are constant (see also Consequence 11.1).
We write α1 = α, then α2 = 1/(ζα), where ζ is a root of unity and we have
un = a1α

n + a2(ζα)
−n. We are looking for solutions of bu2n + cun = 1.

The equations corresponding to P1 (i.e., for (n, q) ∈ S(P1); compare the
beginning of Section 11) are:

ba21α
2n + ca1α

q = 0, 2ba1a2ζ
−n = 1, ba22(ζα)

−2n + ca2(ζα)
−q = 0.

Putting t = q − 2n, we get by elementary computations b = 2c2ζ−n−t,
a2 = a1ζ

−tα−2t, a1 = −α
tζn+t/(2c). Writing η = ζ−n−t gives the form

stated in Theorem 2.
In the case L > 0 > M , a similar argument gives r, l,m, vi as above

and P2 = {{(1, 1), (2)}, {(1, 2), ∗}, {(2, 2), (1)}}. If we write un as above, the
equations for P2 are

ba21α
2n + ca2(ζα)

−q = 0, 2ba1a2ζ
−n = 1, ba22(ζα)

−2n + ca1α
q = 0.

Putting t = −q − 2n, we compute that b = 2c2ζn−q, a32 = a31ζ
−tα−2t,

a31 = −α
t/(8c3ζn−q). Hence we write η = ζn−q.

A (hopefully) more transparent description of the infinite families of
solutions of (1.2) will be given in the next section.

8. The equation 2ηc2u2n + cuq = 1. As stated after Theorem 2, η is a
root of unity (and of course c 6= 0). For arbitrary α ∈ C which is non-zero and
not a root of unity, and an integer root η1 of η put wn = −

1
2ηc (α

n+(η1α)
−n).

Then r = 2 and (n, q) gives a solution of the equation (with un replaced by
wn) for q = 2n, η

n
1 = 1/η (it is subordinate to the partition P1 defined in

the preceding section).
Similarly, for α̃ ∈ C as above, η2, η3 such that η

3
2 = η, η33 = 1 and an

integer root η4 of η2η3 put w̃n = −
1
2η2c
(α̃n+η3(η4α̃)

−n). This gives solutions

(n, q) for q = −2n, ηn4 = η2η3 (they are subordinate to P2).
It follows from the formulas in Section 7 that for un = wn resp. w̃n

these pairs (n, q) give all solutions subordinate to P1 resp. P2. Moreover,
(wn), (w̃n) are the recurrence sequences leading to t = 0. In the general case
considered in Section 7, the results obtained for P1 can be formulated as
un = wn+t (with η1 = ζ, t is determined by α

t = −2a1cη), and for P2: un =

w̃3n+t (with α̃
3 = α, η34 = ζ, α

t = −8a31c
3η, η2 = −

α̃t

2ca1
, η3 = α̃

2tηt4
a2
a1
).
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If η 6= ±1, it follows from [SS1, Prop. 1] that the intersection of the
sequences (wn) and (w̃n) contains at most finitely many solutions for P1,
hence in this case the set of all solutions (n, q) for (wn) or (w̃n) consists
of finitely many pairs and one infinite arithmetic progression. The same
for (w̃n) with η 6= η2 or η3 6= 1. However, for η = η2 = ±1, η3 = 1,
η1 = η4, α = α̃, we have wn = w̃n and we get two infinite arithmetic
progressions in the set of solutions. For a general sequence (un), we can
summarize our computations by saying that apart from finitely many terms
the set of solutions for (un) always belongs to the intersection of (un) with
one of the “basic” sequences (wn) or (w̃n) (for appropriate α or α̃ and ηi).

Put

w′n = −
1

2ηc
(αn + ηα−n), w′′n = −

1

2ηc
(αn + η2α−n).

If (n, 2n) belongs to the set of solutions for (wn) (subordinate to P1), it
follows (from ηn1 = 1/η) that wn = w′n, w2n = w′′2n. This means that the
corresponding terms of the sequence (wn) do not depend on the choice of
the root η1 of η. The rôle of η1 is to filter out an arithmetic progression
of integers by the condition ηn1 = 1/η. Choosing η1 so that ord(η) | ord(η1)
(order in the group of roots of unity) maximizes the set of solutions for P1.
Similarly for (w̃n) with

w̃′n = −
1

2η2c

(
α̃n +

1

η2
α̃−n
)
, w̃′′n = −

1

2η2c
(α̃n + η22α̃

−n).

For solutions (n,−2n) subordinate to P2, one has w̃n = w̃
′
n, w̃−2n = w̃

′′
−2n.

As above, η4 serves to filter out an arithmetic progression of integers (by
ηn4 = η2η3), the maximal case is obtained for ord(η2η3) | ord(η4).

If ord(η) is a multiple of 3, then it is enough to consider (w̃n) just for
one choice of η2, η3 (i.e., for any other choice of η2, η3, the solutions for
P2 will belong to the intersection of the two sequences if α̃ is modified
by multiplication with an appropriate root of unity and η4 is also chosen
properly). But if 3 does not divide ord(η2η3) (hence 3 ∤ ord(η)), the solutions
for P2 will be only partially in common when changing the parameters
(except for the trivial case when taking roots of α̃ and η4). Along this line,
take for example η = ±1, η2 6= η, η3 = η/η2, η4 = η. Then the corresponding
sequence (w̃n) (and its set of solutions for P2) has infinite intersection with
that for η2 = η, η3 = 1 when α̃ is replaced by α = α̃η3. As mentioned above,
this second sequence coincides with a sequence (wn) (α as above, η1 = η).
But the first sequence contains no solutions for P1.

9. The equation aukh + bu
2
n + cuq = 0. According to the general as-

sumptions of (1.1), we assume that k > 2, a, b, c 6= 0.
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(a) Let η be any root of unity, and put 2ηc′ = b/c. Then this can be
reduced to the equation of Section 8 for (n, q) (with c′ instead of c) as soon
as ukh = −2ηc

2/(ab). Hence if there exists such an integer h and (un) is of
the type described in Section 8, we will get infinitely many solutions. For
example, if un = wn (or un = w̃n), then given a, b, c, k, η there are countably
infinitely many α (or α̃) for which there exists an h such that ukh has the
desired value.
Under the transformation used above, the partition P1 of Section 7

corresponds to a partition P ′1. It is obtained by replacing {(1, 2), ∗} by
{(1, 2)} ∪ Ak. It arises in Case A for K = 0 (see Property 10.1). In the
same way, P2 corresponds to a partition P

′
2. It arises from Case B with

M = 0, K = −2L (see Property 10.8), when interchanging the rôles of k,m
(to fit the equality of the title).
(b) We now assume that k = 3, i.e., we study the equation au3h + bu

2
n +

cuq = 0. Then there are further possibilities to get infinitely many solutions.
For r = 2, we consider the partition P3 = {{(1, 1, 1), (1)}, {(1, 1, 2), (1, 1)},
{(1, 2, 2), (1, 2)}, {(2, 2, 2), (2, 2), (2)}} of A. This is a partition without sin-
gletons arising in Case A for v2 = 0, (K,L,M) = (1, 1, 3) (see Property 10.2;
the rôles of k, l have been interchanged). We write un = a1α

n + a2ζ
n (as

before, α ∈ C\{0} not a root of unity, ζ a root of unity). Searching for solu-
tions subordinate to P3, by translating the sequence we can always assume
that 3h = q (the first of the equations below implies that if this holds for one
solution, then it holds for all solutions for (un) subordinate to P3). Then,
putting t = n − h, one gets the equations: aa21 + c = 0, 3aa2ζ

h + bα2t = 0,
3aa2ζ

h + 2bζtαt = 0, aa22 + ba2ζ
2t−h + c = 0. By elementary computations,

this is equivalent to: αt = 2ζt, a21 = a22/4 = −c/a, a2 = −
4b
3aζ
2t−h. This

shows that equation (1.1) with k = 3 has infinitely many solutions (h, n, q)

subordinate to P3 (for certain α, ζ) if and only if η =
4b2

9ac is a root of unity.
Then α, ζ are determined as follows: take a root α0 of 2, i.e., α

t
0 = 2 for

some t ∈ Z \ {0} and choose ζ so that ζ2h0−4t = −η for some h0 ∈ Z (of
course, h0 6= 2t for η 6= −1). Then put α = α0ζ, η1 = ζ2t−h0 , a2 = −

4b
3aη1,

a1 = ±a2/2 (this implies η
2
1 = −1/η). For such a sequence (un) all solutions

subordinate to P3 are given by ζ
h = ζh0 , n = h+ t, q = 3h. Up to translat-

ing the sequence, this gives all possibilities to have infinitely many solutions
subordinate to P3.
(c) Again for k = 3, we consider the partition P4 = {{(1, 1, 1), (2, 2), (1)},

{(1, 1, 2), (1, 2)}, {(1, 2, 2), (1, 1)}, {(2, 2, 2), (2)}} of A. This arises in Case
Bbb for 2v2 = −3v1, (K,L,M) = (1,−1, 3) (see Property 10.11, again
k, l are interchanged). We write un = a1α

−2n + a2ζ
nα3n. This is somehow

related to (b). After a translation, we can assume 3h = q and then, putting
t = n + h, some computations show that the conditions imposed by P4
are equivalent to: ζtα5t = 2, a21 = 4a

2
2 = −

4c
a , a1 = −

2b
3aζ
t−2hαt. The
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result is that there are infinitely many solutions subordinate to P4 (for

some non-degenerate sequence (un) with r = 2) if and only if η = 4
(
b2

9ac

)5
is

a root of unity. Then α, ζ are determined as follows: take a root α0 of 2, i.e.,
αt0 = 2 for some t ∈ Z \ {0} and choose ζ so that ζ20h0−8t = −η for some
h0 ∈ Z. Then choose α with α5ζ = α0 and put η1 = ζ

t−2h0 , a1 = −
2b
3aη1α

t,
a2 = ±a1/2. If t is not a multiple of 5, the fifth root α of α0/ζ has to be

chosen so that α−2t = −η21
b2

9ac (it results from the expression for η that the
two quantities differ only by a fifth root of unity). If t = 5t0, with t0 ∈ Z, put

η0 = −
b2

9acα
2t0
0 . Then η

5
0 = −η and we have to choose ζ so that ζ

4h0−8t0 = η0
for some h0 ∈ Z (of course, h0 6= 2t0 for η0 6= 1). Then we can take any

fifth root α of α0/ζ (and we always get α
−2t = −η21

b2

9ac ). For such sequences

(un), all solutions subordinate to P4 are given by ζ
2h = ζ2h0 , n = t − h,

q = 3h.

Anticipating a little bit, let us note that in the terminology of Section 13,
the solutions described in (b) and (c) come from the polynomial identity
3x(1+x/2)2− (1+x)3+(1+x3/4) = 0, while those found in (a) result from
2x − (1 + x)2 + (1 + x2) = 0. One could also use the formulas for pi, p̃i in
Section 13(a) to derive the explicit form of the solutions as presented above.

(d) We claim that (given the results of the remaining sections), (a), (b),
(c) describe all the exceptional cases for Theorem 1, i.e., all the cases of
non-degenerate sequences (un) with r ≥ 2 for which equation (1.1) has
infinitely many solutions (h, n, q).

By Section 3, equation (1.1) has at most finitely many solutions that
are subordinate to a partition P with singletons (i.e., they belong to the set
S(P) as defined at the beginning of Section 11). For partitions P without
singletons, it results from the Proposition (Section 6) that for equation (1.1),
S(P) can be infinite only for g = 1, and then Section 13 will give as the only
possibilities Case A with K = 0 (this is described in Property 10.1), Case
B with M = 0 (Property 10.8), and furthermore, for l = 3, m = 1, there is
Case A with vr = 0 (Property 10.2) and Case Bbb (Property 10.11). The
descriptions given in Properties 10.1, 10.2, 10.8, 10.11 show that in all these
cases we have r = 2 and by Section 11 (see in particular the Remark after
Consequence 11.3) f1, f2 have to be constant. This leads to (a), (b), (c),
finishing the proof of our claim.

10. Further properties of σ. We now start with preparations for the
proof of Theorem 1 in the case g = 1, which will be finished in Section 13.
The basis is again Laurent’s theorem (see Section 2), but as mentioned in
the Introduction, for g = 1 partitions P for which the groups H(P) are non-
trivial exist in abundance (making it impossible to use an argument as in
Section 6). The aim of the present section will be to collect further properties
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of these partitions. To make orientation easier, I start with a summary,
indicating the direction of the argument. As explained at the beginning of
the next section, it is enough to investigate the partitions Pσ, defined in
Section 4 by an integer triple (K,L,M) and numbers v1, . . . , vr. Properties
10.1–10.7 will be dealing with Case A. First, we describe two degenerate
cases (K = 0 in 10.1, giving “essentially two-dimensional” partitions, and
vr = 0 in 10.2, giving “asymmetric” partitions). This can happen only for
r = 2, it will need separate treatment in Section 13; the exceptions (for
Case A) are among these. Among the non-degenerate partitions, there is
another side-branch furnished by those partitions with L = gcd(K,L,M)
(in most of the proof, we will assume that gcd(K,L,M) = 1 and write simply
L = 1). This is limited to r = 2, 3 (Property 10.4). It will lead to some nasty
computations in Section 13(f),(g) when m = 1 or k = 1, containing some
cases that come very close to generate further exceptions. For the “generic”
case L > gcd(K,L,M) there is the important Property 10.6 : M = K + L
(which implies 2 ≤ m < k; see the Remark to 10.6). Then Property 10.7 gives
a final distinction. The second option of 10.7 provides a further equation
which has to be satisfied by the solutions subordinate to such a partition (if
there are infinitely many; see 11.4) and this contradicts equations for other
elements of the partition (see Section 13(b)). The first option of 10.7 implies
that the numbers v1, . . . , vr lie sufficiently close together to make Mason’s
method applicable (at least for m > 2); see Section 13(c). The reader who
wants to get a picture of the proof of Theorem 1 in the “generic” case of
type A can pass from 10.7 to the next section.

In 10.8–10.11 corresponding statements for the cases of type B are shown.
There is no complete correspondence between the basic types as introduced
in Section 5 (i.e., we do not have a bijective transformation associating to a
partition of type A a partition of type Baa etc.), but it turns out that the
properties that are relevant to the proof of Theorem 1 have natural coun-
terparts in the other cases. This is formulated as a “transference scheme”
in the final Remark of the section; it will make it possible to do most of the
proof of Theorem 1 in Section 13 parallel for the various cases. 10.12, 10.13
are devoted to the cases r = 3 and r = 2 where a rather complete picture
can be given.

We keep the assumptions of Section 5, i.e., r ≥ 2, v1 < · · · < vr, and we
will always assume that K,L,M are given so that Pσ has no singletons. In
10.1–10.2 we describe some limiting cases for the parameters. Then (10.3,
10.4) we start with a more detailed investigation of Case A.

10.1. In Case A (Property 5.2 and (5.1)), we have K > 0 with the
following exception: r = 2, l = 2, m = 1, M = 2L, K = 0, v2 = −v1.
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Proof. If K = 0, then by (5.2), vr ≥ v2 > 0 and we have Kkvr =
L(l−1)vr+Lvr−1 (see also 10.2 below). (5.1) implies l > m ≥ 1 and it follows
from the preceding equation and (5.2) that vr−1− v2 = (l− 1)(v1− vr) < 0.
This implies r = 2 and then l = 2, m = 1, v2 = −v1. Finally, by (5.1),
M = 2L.

10.2. In Case A, we have vr > 0 with the following exception: r = 2,
k = l − 1, m | l, K = L, M = l

mL, v2 = 0, l ≥ 3. For vr > 0, we have

(10.1) Kkvr = L(l − 1)vr + Lvr−1.

Proof. If vr > 0, then (10.1) follows from (5.2) by considering the re-
flected sequence v∗i = −vr+1−i. Now assume that vr ≤ 0. K = 0 has already
been excluded in 10.1. Thus K > 0. Considering the maximal values (us-
ing Property 5.1 and (5.1)), (r, . . . , r)k gives a singleton unless vr = 0. For
vr = 0 and K < L (resp. K > L), (r−1, r, . . .)k (resp. (r−1, r, . . .)l) gives a
singleton. Thus K = L. Then (5.1) implies k < l and (5.2) gives L(v2−v1) =
L(k− l)v1. Since 0 < v2−v1 ≤ −v1, it follows that v2 = 0, k− l = −1 and in
particular r = 2. Then it is easily seen that σ(Al) = {−Llv1, Llv1}∪ σ(Ak).
Hence, ifm > 1, we must have σ(. . . , 1, 2)m ∈ σ(Al). This givesMv1 = Ltv1
for some t ∈ N, thus Ll = Mm implies l = mt, hence m | l. In particular,
l ≥ 3, since m 6= k, l.

Remark. (5.2) can be rewritten as (Ll−Kk)(−v1) = L(v2 − v1), simi-
larly for (10.1). This gives for Case A with vr > 0:

(10.2) (Ll −Kk)(vr − v1) = L(v2 − v1) + L(vr − vr−1).

10.3. In Case A, we have for r = 3: Kk = L(l − 1) and v2 = 0. For
r = 2, v2 > 0 implies Kk = L(l − 2) and v2 = −v1.

Proof. The first equality for the case r = 3 follows immediately from
(10.2) (and Property 10.2). Inserting this to (5.2) gives v2 = 0. The case
r = 2 is treated in the same way.

10.4. In Case A with r > 3, we have 0 < Ll −Kk < L.

Proof. By (10.2).

The exceptional cases of 10.1, 10.2 above (and also those of 10.8, 10.11)
yield examples of partitions P of A without singletons and non-trivial groups
H(P) (with g = 1, r = 2). 10.12 will give such a (somewhat exceptional)
example for r = 3.

In the remaining properties, we will always assume that K,L,M ∈
Z, v1, . . . , vr ∈ Q, and it is no restriction to assume (by scaling) that
gcd(K,L,M) = 1. Then Property 10.4 can be reformulated as 1 ≤ Ll−Kk
< L.



Two equations for linear recurrence sequences 127

To get further information about the partitions Pσ without singletons
(for the “generic case”, in particular for r > 3), we will investigate the second
smallest value of σ onAk andAm. This will lead to a further relation between
K,L,M . In 10.6, 10.7 this will be done for Case A.
In place of the two-dimensional arguments in the proof of the Proposi-

tion, we will now exploit divisibility properties (see also the proofs in [SS1,
Sec. 6–9]). For a prime p, | |p denotes the usual p-adic absolute value. We
put v′i = vi− v1 and we will assume from now on that v

′
2, . . . , v

′
r ∈ Z (which

is always achievable by scaling). Property 10.5 exhibits further points of Ak
whose values under σ are not attained at another point of Ak (“isolated val-
ues”). The minimality statement for σ(. . . , 1, j0)k generalizes Property 5.1
and holds in fact for any j0 ∈ {1, . . . , r}.

10.5. For a prime p assume that j0 satisfies |v
′
j |p < |v

′
j0
|p for all j < j0.

Then |σ(i) − kv1|p ≤ |v
′
j0
|p for all i = (i1, . . . , ik) ∈ Ak with ik ≤ j0, the

inequality being strict for ik < j0.
σ(. . . , 1, j0)k is the smallest value of σ among those i = (i1, . . . , ik) ∈ Ak

for which ik ≥ j0. This value is not attained at another point of Ak.

Proof. This follows immediately from the definition of σ ((4.1)).

10.6. In Case A with L > 1, we have M = K + L. In particular ,
σ(. . . , 1, 2)m = σ(. . . , 1, 2)k.

Note that by 10.4 this applies always for r > 3.

Proof. First, we want to show that gcd(K,L) = 1. Assume p is a prime
such that |K|p, |L|p < 1. Then our general assumption gcd(K,L,M) = 1
implies |M |p = 1. Now, let s0 be the smallest index such that |v

′
s|p ≤ |v

′
s0 |p

for all s. Then, since by (5.2), (Kk − Ll)v1 = L(v2 − v1) and |L(v2 − v1)|p
< |v′s0 |p, by 10.5 we get |σ(i)−Llv1|p < |v

′
s0 |p for all i ∈ Ak∪Al. On the other

hand, Ll = Mm (by (5.1)), hence |σ(. . . , 1, s0)m − Llv1|p = |v
′
s0 |p. Con-

sequently, by 10.5, (. . . , 1, s0)m would be a singleton. This proves that
gcd(K,L) = 1.
Since L > 1, there is a prime p such that p |L. Then |K|p = 1. De-

fine s0 as above and consider (. . . , 1, s0)k. As above, we get σ(. . . , 1, s0)k 6∈
σ(Al), hence to avoid singletons and using 10.5, σ(. . . , 1, s0)k must belong
to σ(Am). This entails |M |p = 1 and σ(. . . , 1, s0)k ≥ σ(. . . , 1, s0)m. Then
the same argument for (. . . , 1, s0)m gives σ(. . . , 1, s0)k = σ(. . . , 1, s0)m. This
means that Lv′2 +Kv

′
s0 =Mv′s0 . If s0 = 2, the result follows. For later use,

note also that since we have shown that |M |p = 1 for all primes dividing L,
it follows that gcd(L,M) = 1.
Now assume that s0 > 2. Since (M − K)v′s0 = Lv′2 and 0 < v′2 <

· · · < v′r, we conclude that K < M and that (M − K)v′s < Lv′2 for
s < s0. This means that σ(. . . , 1, s)m < σ(. . . , 1, s)k for 1 ≤ s < s0.
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For s = 2, this implies σ(. . . , 1, 2)m ∈ σ(Al). Then, as in the preceding
paragraph, we get σ(. . . , 1, 2)m = σ(. . . , 1, s1)l, where s1 is the smallest in-
dex such that |v′s1 |p > |v

′
2|p. If s1 < s0, we can repeat this argument and

get σ(. . . , 1, s1)m = σ(. . . , 1, s2)l, where s2 is the smallest index such that
|v′s2 |p > |v

′
s1 |p and so on. Finally, sj = s0 (where j ≥ 1). We have Mv′2 =

Lv′s1 , Mv′si = Lv′si+1 (1 ≤ i < j) and this gives v′s0 = v′sj = (M/L)jv′2.

Combined with the earlier equation, we get (M −K)(M/L)j = L. It would
follow that M j |Lj+1, contradicting gcd(L,M) = 1, L < M .

Remark. The proof shows that for any prime p with |L|p < 1 we have
|v′i|p ≤ |v

′
2|p for all i. Properties 5.2 and 10.6 show for Case A with L > 1

that H(Pσ) is cyclic and that (K,L,M) has to be a (rational) multiple of
(l −m,m, l) (in particular, m ≥ 2). Furthermore, m < k (indeed, we have
vr > 0 by 10.2, and (10.2) gives L(l − 2) ≤ Kk, which entails m(l − 2) ≤
(l −m)k).

10.7. In Case A with L > 1 there are the following two alternatives:
either v′2 | v

′
i for all i or there exists an i such that {(. . . , 1, i)k, (. . . , 1, i)l}

belongs to Pσ. In the second case, we have K < L, Lv′2 = (L − K)v
′
i and

gcd(v′2, v
′
i) | v

′
j for all j.

The two alternatives are easily seen to be exclusive, but the final prop-
erties are also compatible with the first alternative v′2 | v

′
i for K = L− 1.

Proof. If the first alternative does not hold, then by the preceding Re-
mark, there is a prime p such that p ∤L and |v′i|p > |v

′
2|p for some i. Let

s0 be the smallest index with |v
′
s0 |p = maxi |v

′
i|p. Then by 10.5, the value

σ(. . . , 1, s0)l is attained nowhere else on Al. Since L < M , it is not attained
on Am. Hence, σ(. . . , 1, s0)l ∈ σ(Ak). This implies p ∤K and then, as in the
first part of the proof of 10.6, it follows that σ(. . . , 1, s0)l = σ(. . . , 1, s0)k.
This means that Lv′s0 = Lv

′
2+Kv

′
s0 . In particular, s0 does not depend on p

and this implies that |v′j |p ≤ max(|v
′
2|p, |v

′
s0 |p) for all j and all primes p. It

also follows from the construction of s0 that the value σ(. . . , 1, s0)k is not
attained at a third point of A, i.e., {(. . . , 1, s0)k, (. . . , 1, s0)l} ∈ Pσ.

Next (10.8–10.11) we prove corresponding statements for the cases of
type B.

10.8. In Case B (Properties 5.3, 5.5), we have K,L,M 6= 0 with the
following exceptions: r = 2, M = 0, K = − lkL, v2 = −v1 and either
(a) l = 2, k = 1 (Case Baa) or (b) k = 2, l = 1 (Case Bab).

As already remarked at the end of Section 5, the two options (a), (b) are
related by interchanging k, l and multiplying K,L by −1.

Proof. This is obvious in Case Bb (Property 5.5), since Ll = Mm >
−Kk, K < 0. In Case Baa (Property 5.4), M = 0 leads to (a) as in the
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proof of Property 10.1, using vr = −v1, vr−1 = −v2. As remarked above,
Case Bab with M = 0 can be reduced to Baa, giving (b).

Remark. Equality (10.2) has obvious analogues, e.g., in Case Bba we
have by Property 5.6,

(10.2′) (Ll +Kk)(vr − v1) = L(v2 − v1) + L(vr − vr−1).

The counterparts of Properties 10.3, 10.4 in Case Bba are as follows:
1 ≤ Ll+Kk < L for r > 3, Kk = −L(l− 1) for r = 3 and Kk = −L(l− 2)
for r = 2. Similarly for Cases Baa and Bab. This is part of the transference
scheme among the cases that is described in the Remark after 10.13.

10.9. In Case Bba with L > 1, we have v1 = −vr, v2 = −vr−1 and
M = L−K. In particular , σ(. . . , 1, 2)m = σ(r − 1, r, . . .)k.

Note that by the statement after (10.2′) this applies always for r > 3.

Proof. The basic strategy is similar to that of 10.6. But since in this
case K < 0, the maxima and minima of σ on the parts of A get interrelated
and the details are becoming more complex. We put v′′i = vr − vi = v

′
r − v

′
i.

Note that v′′i > 0 for i < r and that for any prime p, we have maxi |v
′
i|p =

maxi |v
′′
i |p.

(a) Take a prime p with |L|p < 1. Let s0 be the smallest value and t0 be
the largest value such that |v′s0 |p = |v

′′
t0 |p = maxi |v

′
i|p.

First we want to show that gcd(K,L) = 1. Assume that |K|p < 1. Then
our general assumption gcd(K,L,M) = 1 implies |M |p = 1. As in 10.6,
it follows that the values σ(. . . , 1, s0)m, σ(t0, r, . . .)m are isolated in σ(Am)
and do not belong to σ(Ak) ∪ σ(Al). Hence Pσ would have a singleton.
(b) Fixing now any prime p with |L|p < 1, we get |K|p = 1 by (a).

Then it follows as in 10.6 that in order to avoid singletons, we must have
σ(. . . , 1, s0)m = σ(t0, r, . . .)k and σ(. . . , 1, s0)k = σ(t0, r, . . .)m. In particular,
|M |p = 1, which entails gcd(L,M) = 1. Note that up to this point, a similar
procedure can be used in Cases Baa, Bab (as long as L > 1 resp. K < −1)
and in Cases Bbb and Bbc (when L > 1).
Getting back to Case Bba, the identities for σ result by Property 5.6 in

the following equations:

(10.3) Mv′s0 = Lv
′
2 −Kv

′′
t0 , Mv′′t0 = Lv

′′
r−1 −Kv

′
s0 .

Addition gives (M +K)(v′s0 + v
′′
t0) = Lv

′
2 + Lv

′′
r−1, and since the right side

of this equation is positive, it follows that M > −K.
(c) For 1 ≤ s, t ≤ r, we get from (10.3) and Property 5.6 the following

identities:

M(σ(. . . , 1, s)m − σ(t, r, . . .)k) + (−K)(σ(. . . , 1, s)k − σ(t, r, . . .)m)

= (M2 −K2)(vs − vs0),
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(−K)(σ(. . . , 1, s)m − σ(t, r, . . .)k) +M(σ(. . . , 1, s)k − σ(t, r, . . .)m)

= (M2 −K2)(vt0 − vt).

This has the consequence (using M2 − K2 > 0) that if σ(. . . , 1, s)m ≥
σ(t, r, . . .)k and either 1 ≤ s < s0 or t0 < t ≤ r, then σ(. . . , 1, s)k <
σ(t, r, . . .)m. In particular, since L < M , there cannot exist a pair s, t with
1 ≤ s < s0, σ(. . . , 1, s)l = σ(t, r, . . .)k and σ(. . . , 1, s)k = σ(t, r, . . .)l. Fur-
thermore, 1 ≤ s < s0 and σ(. . . , 1, s)m = σ(t, r, . . .)k implies t > t0.

(d) We will now show that s0 = 2, t0 = r − 1 leads to the desired
conclusion of 10.9. This settles the case r = 2 (where of course a more direct
argument would be possible). The remaining parts (e)–(h) of the proof will
be devoted to excluding the other possibilities for s0, t0.

Now, s0 = 2 implies (M − L)v
′
2 = −Kv

′′
r−1 by (10.3), and t0 = r − 1

implies (M − L)v′′r−1 = −Kv
′
2. Then it follows that (M − L)

2 = K2, hence
(recall that K < 0 < M −L) we get M −L = −K and v′2 = v

′′
r−1. Addition

of the identities in Property 5.6 results in (Ll−Kk)(v1+vr) = 0. This gives
v1 = −vr and (using v

′
2 = v

′′
r−1) v2 = −vr−1.

(e) Assume that s0 > 2, t0 = r−1. Then σ(r−1, r, . . .)k = σ(. . . , 1, s0)m
and it follows that the open interval ]σ(. . . , 1, 2)l, σ(. . . , 1, s0)m[ has empty
intersection with σ(Ak). Hence we can make the same procedure as in the
last paragraph of the proof of Property 10.6 (alternatively, the argument in
(f) could be adapted). One gets a sequence of indices 2 < s1 < · · · < sj = s0
withMv′2 = Lv

′
s1 ,Mv′si = Lv

′
si+1 , resulting in v

′
s0 = (M/L)jv′2. Then (10.3)

with t0 = r − 1 gives

(M − L)(M j+1 − Lj+1)v′2 = (M − L)(−K)L
jv′′r−1 = K

2Ljv′s0 = K
2M jv′2

and this contradicts gcd(L,M) = 1 from (b). By symmetry, one can also
exclude s0 = 2, t0 < r − 1.

(f) Assume that s0 > 2 and t0 < r−1. Let s1 be the minimal index and t1
be the maximal index with |v′s1 |p, |v

′′
t1 |p ≥ |Lv

′
s0 |p (recall that |v

′
s0 |p = |v

′′
t0 |p

by (a)). Clearly, 2 ≤ s1 ≤ s0 and t0 ≤ t1 ≤ r − 1. As a first step, we claim
that either σ(t0, r, . . .)l = σ(t1, r, . . .)m or σ(. . . , 1, s0)l = σ(. . . , 1, s1)m (in
fact, we are aiming to show in (f)–(h) that s1 < s0, t1 > t0 and that both
equalities hold).

By a similar reasoning as before (10.5, 10.6), the values σ(t1, r, . . .)k,
σ(. . . , 1, s0)l, σ(. . . , 1, s1)m are isolated in σ(Ak), σ(Al), σ(Am) respectively,
and (using also s0 > 2) at least two of them have to be equal and if the third
value is not equal it has to be larger. Hence, if we assume σ(. . . , 1, s0)l 6=
σ(. . . , 1, s1)m, then either σ(t1, r, . . .)k = σ(. . . , 1, s0)l < σ(. . . , 1, s1)m or
σ(t1, r, . . .)k = σ(. . . , 1, s1)m < σ(. . . , 1, s0)l. We see that in both cases
σ(t1, r, . . .)k ≤ σ(. . . , 1, s1)m and from (b) that in both cases t1 > t0. By (c),
we get σ(t1, r, . . .)m > σ(. . . , 1, s1)k. Hence, considering now the opposite
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triple σ(. . . , 1, s1)k, σ(t0, r, . . .)l, σ(t1, r, . . .)m, it follows that σ(t0, r, . . .)l =
σ(t1, r, . . .)m.

(g) We keep the notation of (f). Assuming s0 > 2, t0 < r − 1 and
σ(t0, r, . . .)l = σ(t1, r, . . .)m, we claim that σ(. . . , 1, s0)l < σ(t1, r, . . .)k. The
assumption gives Lv′′t0 = Mv′′t1 . Combining with (10.3) and using L < M ,
we get

σ(. . . , 1, s0)p − Llv1 = Lv
′
s0 =

L2

M
v′2 −

LK

M
v′′t0

< Lv′2 −Kv
′′
t = σ(t1, r, . . .)k − Llv1.

(h) Assuming still s0 > 2, t0 < r−1, it follows from (g) and the arguments
in (f) that σ(t0, r, . . .)l = σ(t1, r, . . .)m implies σ(. . . , 1, s0)l = σ(. . . , 1, s1)m
and by symmetry, the converse holds as well. Hence, again by (f), both
equalities should be true, giving Mv′s1 = Lv′s0 , Mv′′t1 = Lv′′t0 , in particular
s1 < s0, t1 > t0.

Let p1 be a prime with |M |p1 < 1. By symmetry, we can assume that
|v′s0 |p1 ≥ |v

′′
t0 |p1 (s0, t0 are still the old ones). Put δ = |v

′
s0 |p1 . From the

relations above (and since |L|p1 = 1 by (b)), we get |v
′
s1 |p1 > δ, in particular

δ < 1. The equalities (10.3) give |v′2|p1 , |v
′′
r−1|p1 ≤ δ (this implies s1 > 2,

hence r > 3). Let s̃ be the smallest index and t̃ be the largest index for
which |v′s̃|p1 , |v

′′

t̃
|p1 > δ (existence of t̃ follows from v′s1 = v′′1 − v

′′
s1). Then

2 < s̃ ≤ s1 and t̃ < r−1. Again (by 10.5) we get an isolated value σ(. . . , 1, s̃)l
in σ(Al) and by minimality of s̃ (and since M > L), it cannot belong to
σ(Am). Hence, it has to belong to σ(Ak) and, since s̃ > 2, it follows from
maximality of t̃ that σ(t̃, r, . . .)k ≤ σ(. . . , 1, s̃)l < σ(. . . , 1, s̃)m. Then by (c),
σ(. . . , 1, s̃)k < σ(t̃, r, . . .)m < σ(t̃, r, . . .)l. But, applying an argument as
above now to (t̃, r, . . .)l, it would follow that this gives a singleton for Pσ,
providing the final contradiction.

Remark. The proof shows that for any prime p with |L|p < 1, we have
|v′i|p, |v

′′
i |p ≤ |v

′
2|p (= |v

′′
r−1|p) for all i.

10.10. In Case Baa with L > 1, we have M = −L − K, in particular
σ(. . . , 1, 2)m = σ(r − 1, r, . . .)k. In Case Bab with K < −1, we have M =
L+K, σ(. . . , 1, 2)l = σ(. . . , 1, 2)m.

Note that the additional conditions (L > 1, resp. K < −1) are always
fulfilled for r > 3.

Proof. This is similar to 10.6, 10.9, but easier than 10.9, since Properties
5.3 and 5.4 already contain the symmetry information v′2 = v′′r−1. Starting
as in (a), (b) of the proof of 10.9, it follows immediately from the equations
corresponding to (10.3) that v′s0 = v′′t0 . Then one can do the construction
from the last paragraph of the proof of 10.6 symmetrically on both sides.
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If r > 3, then M > 0 by 10.8 and L > 1 in Case Baa (resp. K < −1 for
Bab) follows from the analogues of (10.2) and (10.2′).

Remark. Statements similar to 10.7 (with analogous proofs) are true
in the cases of type B. For Case Baa with L > 1, the alternative to v′2 | v

′
i for

all i is the existence of an i such that either {(. . . , 1, i)l, (. . . , 1, i)m} ∈ Pσ or
{(i, r, . . .)l, (i, r, . . .)m} ∈ Pσ. Then M < L, Lv′2 = (L−M)v

′
i (resp. Lv

′
2 =

(L−M)v′′i ).

In Case Bab withK<−1 (resp. Bba with L > 1), the alternative to v′2 | v
′
i

for all i is the existence of i, j such that v′i=v
′′
j , {(. . . , 1, i)k, (j, r, . . .)m} ∈ Pσ

and {(j, r, . . .)k, (. . . , 1, i)m} ∈ Pσ. This impliesM < −K and (−K−M)v′i =
(−K)v′2 (resp. for Bba: {(. . . , 1, i)k, (j, r, . . .)l}, {(j, r, . . .)k, (. . . , 1, i)l} ∈ Pσ,
L > −K and (K + L)v′i = Lv

′
2).

10.11. The only instances of Case Bbb are r = 2, k = l − 1, m | l,
K = −L, M = l

mL, v2 = −
l
kv1, l ≥ 3.

Interchanging v1, v2 in the formulas above describes Case Bbc.

Proof (see also [G, pp. 61–66]). Again we assume that gcd(K,L,M)
= 1. First we claim that K = −1. Otherwise, let p be a prime with p |K.
Then, defining s0 as in the proof of 10.6, we have now excluded Ak from
the competition and the argument from there would give σ(. . . , 1, s0)l =
σ(. . . , 1, s0)m, contradicting L < M .

Next we claim that L = 1. Otherwise, taking p with p |L, define s0, t0
as in part (a) of the proof of 10.9. The analogues of (10.3) in Case Bbb
are Mv′s0 = −Kv

′′
t0 , Mv′′t0 = Lv′′r−1 − Kv′s0 . Since K = −1, this gives

(M − 1)(v′s0 + v′′t0) = Lv′′r−1. Since v
′
s0 + v′′t0 > v′′r−1, this would imply

M − 1 < L, which is impossible.

The analogue of (10.2), (10.2′) for Case Bbb is (Ll + Kk)(vr − v1) =
L(vr− vr−1). Then L = 1 gives r = 2, Ll+Kk = L, which entails k = l− 1.
By Property 5.5, l = Mm, and the equality L(l − 1)vr + Lvr−1 = Kkv1
gives the desired relation for v1, v2.

10.12 and 10.13 will be concerned with the cases r = 3 and r = 2
respectively. For these values of r, they lead to a complete description of the
triples (K,L,M), (k, l,m) and (vi) for which Pσ has no singletons (see the
final Remark in this section).

10.12. For r = 3, we have v3 = −v1, v2 = 0 with the following excep-
tions (belonging to Case Bba): K = −L, M = 2L, k = l−1, l = 2m, m ≥ 2,
and

v2 = −
l − 1

3l − 1
v1, v3 = −

3l − 2

3l − 1
v1 or v2 =

l − 1

3l − 2
v1, v3 = −

3l − 1

3l − 2
v1.
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Proof. For Cases Ba, this is immediate by Properties 5.3 and 5.4. Cases
Bbb, Bbc are impossible for r > 2 by 10.11.

In Case A, we have shown v2 = 0 in 10.3 andKk = L(l−1) (in particular,
l > 1 by 10.1). Assume that v′3 < 2v

′
2 (equivalently, v1 + v3 < 0). Then

σ(1, . . . , 1)l < σ(. . . , 1, 2)l < σ(. . . , 1, 3)l < σ(. . . , 1, 2, 2)l and no other point
of Al is mapped to the closed interval spanned by these points. Similarly for k
andm (of course, the last point exists only for k > 1 resp.m > 1). As before,
we assume gcd(K,L,M) = 1. If L = 1, then it follows from K ≥ 1, M ≥ 2
that σ(. . . , 1, 2)k, σ(. . . , 1, 2)m ≥ σ(. . . , 1, 2, 2)l, hence σ(. . . , 1, 3)l would be
isolated. If L > 1, then by 10.6,M = L+K and σ(. . . , 1, 2)k = σ(. . . , 1, 2)m.
Another consequence is gcd(K,L) = 1, which implies L | k, thus k > 1. We
get σ(. . . , 1, 3)k < σ(. . . , 1, 3)m, hence in order that neither σ(. . . , 1, 3)l nor
σ(. . . , 1, 3)k are isolated, we must have σ(. . . , 1, 3)l = σ(. . . , 1, 3)k (see also
10.7). This gives Lv′3 = Lv′2 +Kv

′
3 and consequently, Mv′3 = Lv′2 + 2Kv

′
3,

which means that σ(. . . , 1, 3)m = σ(. . . , 1, 3, 3)k. Another consequence is
K < L, hence σ(. . . , 1, 2, 2)k < σ(. . . , 1, 2, 2)l, and it would follow that
σ(. . . , 1, 2, 2) is isolated. By symmetry, v′′1 < 2v

′′
2 is impossible, which finishes

Case A.

Finally, in Case Bba, subtracting the equations in Property 5.6 gives
Kk = −L(l − 1) (in particular, l > 1), and then addition leads to v2 =
−(l − 1)(v1 + v3). Again, we assume that v

′
3 < 2v

′
2. Then v

′
2 > v′3 − v

′
2 =

v′′2 and by 10.9, L = 1 (assuming gcd(K,L,M) = 1). Hence σ(1, 3, . . .)l,
σ(. . . , 1, 2)k < σ(2, 2, 3, . . .)l. It follows that σ(2, 2, 3, . . .)l = σ(2, 3, . . .)m
and this gives M = 2. Consequently, σ(. . . , 1, 2)m = σ(. . . , 1, 2, 2)l, and
(see the argument for Case A with L = 1) it follows that σ(. . . , 1, 3)l =
σ(2, 3, . . .)k. This means Lv

′
3 = Lv′2 + Kv

′′
2 , hence K = −1, k = l − 1,

l = 2m. Since m = 1 would give k = 1, we have m ≥ 2, l ≥ 4, k ≥ 3. Now
we consider (2, 2, 3, . . .)k. We have σ(2, 2, 3, . . .)k − σ(1, . . . , 1)l = v

′
2 + 2v

′′
2 .

As M = 2 implies that σ(Am) ⊆ σ(Al), we have σ(2, 2, 3, . . .) ∈ σ(Al), and
(using v′3 = v′2 + v

′′
2 ) this gives v

′
2 + 2v

′′
2 = a1v

′
2 + a2v

′′
2 with 0 ≤ a2 ≤ a1.

Clearly a1 ≥ 2, and v
′′
2 < v′2 implies a1 < 3. The only possibility is a1 = 2,

a2 = 1 (i.e. σ(2, 2, 3, . . .)k = σ(. . . , 1, 2, 3)l). It follows that v
′
2 = 2v

′′
2 , i.e.

2v3+ v1 = 3v2. Combined with the formula for v2 above, this gives the first
solution for v1, v2, v3. The second one is obtained by reflecting the sequence,
it comes from the case v′3 > 2v

′
2.

10.13. For r = 2, Case A, v2 = −v1, K > 0, there are two possibilities:

(i) k = l− 2, m | l, K = L, M = l
mL, l ≥ 4, where for l = 4 only m = 1

is possible,

(ii) k = m− 1, l = 2m, K =M = 2L, l ≥ 4.

Proof. This is similar to the first part of the proof of 10.12.
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Remark. The results show certain interdependencies among the cases.
If the numbers vi lie symmetric with respect to 0 (i.e., vr+1−i = −vi for
all i, then σ(r + 1− ik, . . . , r + 1− i1) = −σ(i1, . . . , ik), i.e. the sets σ(Ak),
σ(Al), σ(Am) are also symmetric. Hence, if there is given a triple (K,L,M),
σ is defined by (4.1), (4.2) and the corresponding partition Pσ has no sin-
gletons, then the same is true if we change the sign of one (or more) of
the numbers K,L,M . If (K,L,M) belongs to Case A, then (reordering
k, l,m correspondingly), the triple (−K,L,M) leads to Case Bba (ifK > 0),
(−L,M,K) gives Case Bab, (−M,L,K) Case Baa and conversely (“trans-
ference scheme”).
For r = 2, one can show that all triples described in 10.13 generate par-

titions without singletons. In Case Bba, it follows easily from Property 5.6
that v2 = −v1, for Cases Ba this is contained in (5.3), and for Case A with
v2 > 0 see 10.3. Hence for r = 2, the partitions of type B except Bbb, Bbc
can all be derived from 10.13 and 10.1 using the transference scheme (where
the limit case 10.1 leads to 10.8). Similarly (but not with the same vi), the
asymmetric case 10.2 of A is related to case 10.11 of Bbb (see also Sec-
tion 13(a)). This gives (up to reorderings) all possibilities (for r = 2) of
partitions Pσ without singletons.
For r = 3, the situation is similar: apart from the exceptional case in

10.12, we always have (by 10.12) v3 = −v1, v2 = 0. Case A is characterized
by K > 0,M > L > 0 (Properties 5.2, 5.6), Ll =Mm, Kk = L(l−1) (10.3)
and either L | gcd(K,M) orM = K+L (10.6). All triples (K,L,M) having
these properties for some natural numbers k, l,m (necessarily distinct) define
partitions Pσ without singletons. Type B (apart from the exception 10.12)
can be derived from this by the transference scheme.
For r ≥ 4, the situation becomes more complicated and a complete

description of all possibilities seems difficult. An example for Case A with
vr 6= −v1 (for r = 10) can be found in [G, p. 80]. The transference scheme
still works for the part of σ(A) near the extremal values: as pointed out
before 10.9, (10.2) carries over to the cases of type B; 10.9, 10.10 are the
counterparts of 10.6. But for 10.7, the corresponding statement described in
the Remark to 10.10 is not the immediate transcription.

11. Consequences of the equations from P. Returning to the start-
ing point in Section 2, let P be a partition of A and write S(P) for the set
of solutions n = (h, n, q) where (2.2) strengthens to

∑
i∈I pi(n)α

n

i
= 0 for

all I ∈ P. Note that this is slightly different from [L2] and [SS2], since S(P)
gets larger when P is replaced by a more coarse partition (P 7→ H(P) has
the opposite behaviour). As mentioned before, it follows from Laurent’s re-
sults (see e.g. [SS2, Th. A]) that if S(P) is infinite, then there is a refinement
P ′ of P such that S(P ′) is still infinite and H(P ′) is non-trivial. Hence, we
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can assume that H(P) is non-trivial. By Section 3 (and Theorem 2) we can
assume that P has no singletons and by the Proposition (Section 6), we
must have g = 1. Then (Section 4) there exists α and roots of unity ζi such
that αi = α

viζi (i = 1, . . . , r). We can assume that ζ1 = 1.
Take a non-zero triple (K,L,M) ∈ H(P) and define σ by (4.2). Then

Pσ is coarser than P (or possibly equal), giving S(P) ⊆ S(Pσ). Hence, it
will be enough to consider partitions P = Pσ without singletons, defined
by some non-zero integer triple (K,L,M). As a first step, we will study
the equations coming from the extremal values of σ (using our knowledge
from Sections 5 and 10). If S(Pσ) is infinite, we will deduce in all cases that
f1, f2, fr−1, fr are constant (see 11.3 and the Remark following it). This will
give various equations for the polynomials fi in the description (2.1) of the
recurrence sequence (un) (recall that all fi are assumed to be non-zero).
In most cases it will result that, possibly after replacing αi by appropriate
roots and translating the sequence (un), we can always assume that S(Pσ) ⊆
Q · (K,L,M) (⊆ Q · H(Pσ)) (compare [L2, Th. 1(i)]): if we have a purely
exponential equation—which means in our case that all the polynomials fi
in (2.1) are constant—then one knows that S(P) is contained in the union of
finitely many cosets of H(P), but still one has to show that the translating
vector can be chosen with three equal coordinates). The exceptions are:
Case A with vr = 0 (Property 10.2) or K = 0 (Property 10.1), Case Ba
with M = 0 (Property 10.8), Case Bba with r = 3, v3 6= −v1 (Property
10.12) and Cases Bbb, Bbc (Property 10.11). Hence, these exceptions occur
for r = 2, 3 only.

11.1. Assume that {(1, . . . , 1)l, (1, . . . , 1)m} ∈ P and that α1 is not a
root of unity (i.e. v1 6= 0). If S(P) is infinite, then f1 is constant and the
equation for this set becomes

(11.1) bf l1α
nl
1 + cf

m
1 α
qm
1 = 0.

If f1 is constant , then t = nl − qm has to be constant for (h, n, q) ∈ S(P).

Proof. Following the expansion leading to (2.2), the equation arising
for this set is bf1(n)

lαnl1 + cf1(q)
mαqm1 = 0. If S(P) is infinite, then (by

arguments as in the last part of Section 3) it comprises infinitely many
values (n, q). Since l 6= m, it follows from [SS1, Lemma 3, p. 234] that f1
has to be constant (in the description of the cases where equation (8.1) of
[SS1] has infinitely many solutions one has that either f or g constant or,
by (8.3), f and g of the same degree; neither possibility can occur in our
situation). For f1 constant, one obtains (11.1). Then t has to be constant,
unless α1 is a root of unity.

Remark. To simplify the formulas, we can always assume that t = 0 by
the following argument: considering appropriate roots of the αi, the sequence
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(un)n∈Z can be extended (using (2.1)) to rational indices (for the present
purpose, n ∈ 1

l−m ·Z is sufficient). Thus, we can define a new recurrence se-
quence (u′n)n∈Z, containing (un)n∈Z as a subsequence, by u

′
n = u(n+t)/(l−m).

Under this transformation, the condition nl − qm = t for members of the
sequence (un) translates to nl − qm = 0 for members of the sequence (u

′
n).

11.2. Assume that f1, fr are constant , the sets {(1, . . . , 1)k, (. . . , 1, 2)l},
{(r, . . . , r)k, (r − 1, r, . . .)l} belong to P and S(P) is infinite. Then f2, fr−1
are constant and the equation for the first of the two sets becomes

(11.2) afk1 α
hk
1 + blf

l−1
1 f2(α

l−1
1 α2)

n = 0.

From the standard setting of Sections 5 and 10, we here need only that
v1 < v2, vr−1 < vr and v1 < 0 ≤ vr.

Proof. Originally, we obtain: afk1 α
hk
1 +blf

l−1
1 f2(n)(α

l−1
1 α2)

n = 0 for the
first set. Now, constancy of f2, fr−1 can be proved by considering this equa-
tion together with the other one (which is obtained by replacing the indices
(1, 2) by (r, r − 1)) and again examining the exceptional cases described in
[SS1, Lemma 3, p. 234 f]. We include here a more direct argument. The first
equation can be written as afk1 α

e1η1 + blf
l−1
1 f2(n) = 0 and the second as

afkr α
erηr + blf

l−1
r fr−1(n) = 0, where η1, ηr are roots of unity (they can be

assumed to be independent of h, n), e1(= e1(h, n)) = (hk−nl)v1+n(v1−v2),
er = (hk−nl)vr+n(vr−vr−1). If e.g., f2 is not constant, then |f2(n)| → ∞
and ln |f2(n)| ≪ ln |n| for |n| → ∞. It follows that |α| 6= 1, |e1| → ∞ and
|e1| ≪ ln |f2(n)|. If fr−1 is also not constant, we get corresponding estimates
for |er|. But observe that vre1 − v1er = n(vr(v1 − v2)− v1(vr − vr−1)) and
v1 < 0 ≤ vr. This gives a contradiction. Similarly, if fr−1 is constant.

11.3. Assume that the triple (K,L,M) defining σ leads to Case A with
vr > 0, K > 0 and furthermore that S(Pσ) is infinite (in particular , Pσ has
no singletons). Then f1, f2, fr−1, fr are constant.

If t = 0 in 11.1, then S(Pσ) ⊆ Z · (K,L,M).

As in Section 10, we here make the assumption gcd(K,L,M) = 1.

Proof. Recall the definition of Case A in Property 5.2. The set considered
in 11.1 and its opposite counterpart belong to Pσ, it follows that f1, fr
are constant. By 11.2, f2, fr−1 are constant. From (11.1) and its opposite
counterpart (replacing the index 1 by r) and the assumption t = 0 (i.e.,
nl = qm), it follows that (f1/fr)

l−m = 1, i.e., f1/fr is a root of unity. Now,
we have to distinguish two subcases that came up in Section 10.

(a) Assume L > 1. Then by Property 10.6, σ(. . . , 1, 2)k = σ(. . . , 1, 2)m
and gcd(L,M) = 1. If σ(. . . , 1, 2)m ∈ σ(Al), then L | v

′
2. Hence, if p is any

prime with p |L, we see from the Remark after 10.6 that |σ(i) − Llv1|p <
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|Mv′2|p for all i ∈ Al, i.e., a contradiction. Consequently (see also Prop-
erty 5.1), {(. . . , 1, 2)k, (. . . , 1, 2)m} ∈ Pσ and the corresponding equation
gives (compare 11.4)

(11.3) akfk1 (α
k−1
1 α2)

h + cmfm1 (α
m−1
1 α2)

q = 0.

Combining with the opposite equation (and bearing in mind that fr/f1
is a root of unity), we find that (αr/α1)

h(k−1)−q(m−1)(αr−1/α2)
h−q is

a root of unity, leading to the equation (h(k − 1) − q(m − 1))(vr − v1) +
(h− q)(vr−1− v2) = 0. Replacing on the left side (h, q) by (K,M) and rear-
ranging gives the term (Kk−Mm)(vr−v1)+(M −K)(vr−1−vr+v1−v2),
and this is also zero by (10.2) and the identities Ll =Mm and M −K = L.
Now t = 0 gives the equation nl = qm. Thus (h, n, q) and (K,L,M) are
common solutions of two linear equations (that are clearly independent),
hence (h, n, q) ∈ Q · (K,L,M) (and in particular q = h+ n).
(b) Assume that L = 1, K > 0. Then by Property 10.4, we have r = 2

or 3. We describe the case r = 3. By Property 10.3, Kk = L(l − 1), and by
Property 10.12, v3 = −v1. Thus α1α3 is a root of unity. Using (11.2) and
its opposite counterpart, it follows that (α1/α3)

hk−m(l−1) is a root of unity.
This gives hk = n(l − 1). Together with nl = qm (from t = 0), we have
again two linear equations for (h, n, q) that are also satisfied by (K,L,M).
The case r = 2 is similar.

Remark. In Case A, K = 0 implies r = 2 (see 10.1), and constancy
of f1, f2 follows from 11.1. In Case A with vr = 0, one has by 10.2, r = 2,
k= l−1, K=L=1. {(1, 2, . . .)k, (1, 2, . . .)l}∈Pσ (compare also Section 9(b))
gives another equality. Then constancy of f2 can be shown as in 11.1.
Quite similarly, one can treat the cases of type B with the exceptions

mentioned at the beginning of the section. We sketch the argument:
For Case Bba we can still apply 11.1 and its opposite counterpart. Equa-

tion (11.2) has to be replaced by afkr α
hk
r + bf

l−1
1 f2(n)(α

l−1
1 α2)

n = 0 and
its counterpart. This can be treated as in 11.2, giving constancy of f2, fr−1
(with e1 = hkvr − nlv1 + n(v1 − v2), er = hkv1 − nlvr + n(vr − vr−1), one
has v1e1 − vrer = nl(v

2
r − v

2
1) + n(v1(v1 − v2)− vr(vr − vr−1))). Up to this

point, the argument applies as well in the exceptional case of Property 10.12.
Then, for vr = −v1, the remaining part can be done as in 11.3. Case Bbb
(resp. Bbc) can be treated as Case A with vr = 0 above.
In Case Ba, the equation used in 11.1 has to be replaced by afr(h)

kαhkr +
bf1(n)

lαnl1 = 0 and its opposite counterpart. A similar reasoning shows that
f1, fr have to be constant. Moreover, t has to be replaced by hk + nl. Also
the arguments of 11.2, 11.3 can be adapted to this case. E.g., in Case Baa
with M > 0, L > 1, the analogues of (11.3) are akfr−1f

k−1
r (αr−1α

k−1
r )

h +
cmfm−11 f2(α

m−1
1 α2)

q = 0 and its counterpart. If hk+nl = 0, it follows that
f1/fr and (αr/α1)

h(k−1)+q(m−1)(αr−1/α2)
h+q(fr−1/f2)

2 are roots of unity.
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11.4. Keep the assumptions of 11.3 (including t = 0) and assume in ad-
dition that {(. . . , 1, i)k, (. . . , 1, i)l} ∈ Pσ for some i. Then fi is a monomial
and the equation for the set becomes (with s = deg fi)

(11.4) akfk1K
sζhi + blf

l
1L
sζni = 0.

Proof. Originally, the equation for the set is

akfk−11 fi(h)(α
k−1
1 αi)

n + blf l−11 fi(n)(α
l−1
1 αi)

n = 0.

From 11.3, we deduce that n = L
Kh and since the assumption gives Lv

′
2 =

(L−K)v′i, we conclude that fi
(
L
Kh
)
/fi(h) has to be constant. Then fi must

be a monomial and (11.4) follows.

Remark. Similar statements hold in the other cases described in the
Remark to Property 10.10. E.g., in Case Bab with K < −1, if {(. . . , 1, i)k,
(j, r, . . .)m}, {(j, r, . . .)k, (. . . , 1, i)m} ∈ Pσ, then fi, fj are monomials of the
same degree and one obtains analogues of the last formula in the Remark to
11.3 (with (r− 1, 2) replaced by (j, i) and additional factors Ks,Ms similar
to (11.4)).

12. Polynomial identities. The proof of Theorem 1 will lead to poly-
nomial identities of the type

(12.1) xep1(x
K)k + p2(x

L)l + p3(x
M )m = 0

where p1, p2, p3 are three non-zero polynomials, and we will use the method
of Mason ([M1, Lemma 2, p. 14], see also [M2]) to show that in most of our
applications (12.1) has no solutions.

Lemma 1. Let ϕ1, ϕ2, ϕ3 be coprime complex polynomials and assume
that ϕ1+ϕ2+ϕ3 = 0. Let ν be the cardinality of the set of zeros of ϕ1ϕ2ϕ3
(i.e., the number of zeros counted without multiplicities). Then degϕi ≤
ν − 1 for i = 1, 2, 3. If equality holds for some i, then ϕ′1ϕ2 − ϕ

′
2ϕ1 divides

ϕ1ϕ2ϕ3.

Proof. The inequality is a special case of [M1, Lemma 2, p. 14]. The idea
is that multiple zeros of ϕ1ϕ2ϕ3 give zeros of ϕ

′
1ϕ2−ϕ

′
2ϕ1 with multiplicity

reduced by 1. In the case of equality, this exhausts all zeros of ϕ′1ϕ2−ϕ
′
2ϕ1.

In our case, the terms of the sum in (12.1) are not necessarily coprime,
i.e., there may be common zeros, but the (rather technical) Lemma 2 shows
that, due to the relations found in Sections 5 and 10, the occurrences are
rather limited.

We take up the notations of Section 5. v1 < · · · < vr are assumed to
be rationals (r ≥ 2). K,L,M denotes integers with gcd(K,L,M) = 1, be-
longing to Case A (Property 5.2) without singletons and with vr > 0. In
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fact, from the properties of partitions without singletons only the state-
ments (5.1), (10.2) and Property 10.6 are used in the following proof. Apart
from the bound on the degree, there are no restrictions on the polynomials
p1, p2, p3 (i.e., the non-zero coefficients need not be located at the powers
v′1, . . . , v

′
r, as in the construction of Section 13(a) for Case A). This addi-

tional generality will be needed when transferring the cases of type B to
Case A.

Lemma 2. In the above setting , assume that v2 − v1 = vr − vr−1 = 1
and p1, p2, p3 are non-zero complex polynomials such that deg pi ≤ vr − v1
for i = 1, 2, 3 and (12.1) holds with e = L.
If ξ 6= 0 defines a common zero with multiplicity νi in pi, then only the

following cases are possible for L > 1:

(α) ν2 = L, ν3 =M , Ll −Kk = 1, L > K, ν1 ≥ K + 1.
(β) ν1 = l/l0, ν2 = k/k0, where l0 = gcd(k, l) = Ll−Kk and furthermore

l =M , m = L > K, ν3 ≥ (k + l)/l0.
(γ) ν1 = m/l1, ν3 = k/l1, where l1 = gcd(k,m) = Ll −Kk and further-
more l =M , m = L ≤ K + 1, ν2 ≥ (k −m)/l1 + 1.

For L = 1, we have necessarily r = 3 and the three cases:

(δ) k = l−1, l = 2m, m ≥ 2, (K,L,M) = (1, 1, 2), (ν1, ν2, ν3) = (2, 1, 2).
(ε) k = 1, m = 2, ν1 = 2.
(ϕ) m = 1, k = 2, ν3 = 2.

Proof. The assumption “ξ defines a common zero” refers to the cor-
responding powers, i.e., p1(ξ

K) = p2(ξ
L) = p3(ξ

M ) = 0 (with the given
multiplicities). Then ξ has multiplicity kν1 in p1(x

K)k, and (12.1) entails
that at least two of the numbers ν1k, ν2l, ν3m have to be equal and the
third one is not smaller than the other two.
For r = 2, our assumption gives deg pi = 1 and since k, l,m are different,

there can be no common zero ξ 6= 0. Hence r ≥ 3 and we will discuss the
following cases:

(α0) ν2l = ν3m ≤ ν1k, (β0) ν1k = ν2l ≤ ν3m, (γ0) ν1k = ν3m ≤ ν2l.

The assumptions on (vi) give by (10.2):

vr − v1 =
2L

Ll −Kk
.

First assume that L > 1. In case (α0) we use (5.1): Ll = Mm and
Property 10.6, giving gcd(L,M) = 1. Put ν0 = gcd(ν1, ν2); it follows that
ν2 = Lν0, ν3 =Mν0. Hence

Mν0 ≤ vr − v1 =
2L

Ll −Kk
≤ 2L

and since M > L, we get ν0 = Ll−Kk = 1 and M ≤ 2L. By Property 10.6
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(and using gcd(K,L) = 1), it follows that K < L, and 1+Kk = Ll = ν2l ≤
ν1k gives ν1 ≥ K + 1, proving all assertions of (α).
In case (β0), we have clearly l | ν1l0, furthermore Ll−Kk ≥ l0 and (again

using Ll =Mm, gcd(L,M) = 1) M | l. This gives

1 ≤
l

M
≤
ν1l0
M
≤
(vr − v1)l0

M
=
2L

M

l0
Ll −Kk

≤
2L

M
< 2;

it follows that l = M = ν1l0 ≤ 2L and Ll − Kk = l0. This entails that
ν2 = k/l0, m = L and (as in (α0)) K < L. Furthermore,

ν3 ≥ ν2
l

m
=

kl

l0m
=
k

l0

M

L
=
k

l0

(
1 +

K

L

)
,

and l/l0−Kk/(Ll0) = 1/L < 1 gives ν3 ≥ (k + l)/l0, proving the assertions
of (β).
Similarly in case (γ0),

1 ≤
m

L
≤
ν1l1
L
≤
(vr − v1)l1

L
≤ 2.

Recall that (Remark after Property 10.6) k > m. This excludes ν1l1 = 2L
and Ll−Kk = 2l1 (since both would imply ν1 = vr−v1, hence ν3 = ν1k/m >
vr−v1). Thus, ν1l1 = L and Ll−Kk = l1, vr−v1 = 2ν1, which entailsm = L.
Consequently, l =M and k = ν3l1. Since ν3 ≤ vr−v1 = 2ν1 = 2L/l1, we get
k ≤ 2L = 2m and l1 = Ll −Kk =Mm−Kk ≥ (M − 2K)m = (L−K)m.
Now, m ≥ l1 gives L−K ≤ 1. Furthermore,

ν2 ≥ ν3
m

l
=
km

l1l
=
k

l1

L

M
=
k

l1

(
1−

K

M

)

and L/l1 −Kk/(Ml1) = 1/M < 1 gives ν2 ≥ (k −m)/l1 + 1 and proves all
assertions of (γ).
For L = 1, recall that by (10.2), r ≤ 3. Hence r = 3, we have νi ≤ 2

(= vr − v1) and by (10.2), Kk = l− 1. If ν2l ≤ ν1k, ν3m, then (using l > m,
k ≤ Kk = l − 1) (ν1, ν2, ν3) = (2, 1, 2). Then case (β0) would imply k | l,
hence k = 1, l = 2, which is impossible. Case (α0) leads to (δ). Finally, in
case (γ0), we have ν3m = ν1k ≤ ν2l. If m > k, then ν1 = 2, ν3 = 1, giving
m = 2k. In combination withKk = l−1,Mm = l, we get 2Mk = l = Kk+1,
hence (2M −K)k = 1, giving k = 1, m = 2, i.e., case (ε). Similarly, m < k
results in ν1 = 1, ν3 = 2, 2m = k, (M − 2K)m = 1, giving m = 1, k = 2,
i.e., case (ϕ).

Corollary. There can be at most one common zero 6= 0 of the three
polynomials.

Proof. In (α)–(γ) we have ν3 > (deg p3)/2 (recall that we have vr−v1 =
2L/(Ll −Kk); in (γ) use k > m) and the claim follows easily. Similarly in
(δ)–(ϕ) (since deg pi ≤ 2).
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13. Proof of Theorem 1 (final). The main steps will be as follows:
in (a) we show that the solutions (h, n, q) ∈ S(Pσ) correspond to certain
identities of rational functions, resp. polynomial identities of the type (12.1).
Then in (b) we consider the case where v′2 does not divide all v

′
i. Here we

can use the equations from Section 11 to get a contradiction. In (c) we
apply Mason’s method and it turns out that in most of our cases where
v′2 = v

′′
r−1 = 1 the polynomial identity (12.1) has no solutions. The method

leaves open several cases where one of the exponents gets small, in particular
all cases where k = 1 or m = 1. These remaining cases are discussed in
(d)–(g).

(a) The state of the affair is as follows (see the introduction to Sec-
tion 11): We assume that we have given an equation (1.1) with infinitely
many solutions. Based on Laurent’s theorem, it is enough to consider non-
zero integer triples (K,L,M) for which S(Pσ) is infinite and the partition
Pσ has no singletons. Furthermore, we are only left with the case g = 1,
i.e., αi = αviζi, where vi ∈ Z, ζi are roots of unity (i = 1, . . . , r), ζ1 = 1.
Recall (2.1): un =

∑r
i=1 fi(n)α

n
i and the notations v

′
i = vi−v1, v

′′
i = vr−vi.

Take (h, n, q) ∈ S(Pσ), fix an integer triple (K0, L0,M0) defining Pσ and
put (h0, n0, q0) = (h, n, q) − (K0, L0,M0). Now we consider the following
rational functions:

(13.1)

p̃1(x) =
r∑

i=1

fi(h)ζ
h
i α
h0vixvi , p̃2(x) =

r∑

i=1

fi(n)ζ
n
i α
n0vixvi ,

p̃3(x) =
r∑

i=1

fi(q)ζ
q
i α
q0vixvi .

Clearly, p̃1(α
K0) = uh, p̃2(α

L0) = un, p̃3(α
M0) = uq. Put

p̃0(x) = ap̃1(x
K0)k + bp̃2(x

L0)l + cp̃3(x
M0)m.

As in Section 2, the power expression p̃1(x
K0)k can be expanded into a

sum indexed by Ak, and for i ∈ Ak, σ0(i) gives the exponent of x in the
corresponding term of the sum (σ0 being defined by (4.2) with (K0, L0,M0);
by assumption Pσ0 = Pσ). Hence, the sets in Pσ collect those terms of the
sum containing the same power of x. If we substitute x = α, this expansion
of aukh = ap̃1(α

K0)k gives (termwise) just the corresponding part of the
sum (2.2). Thus (h, n, q) ∈ S(Pσ) means that in the expansion of p̃0(x)
those terms where the exponent of x has any common value sum up to zero
(formally: if I = {i ∈ A : σ0(i) = j} is any member of Pσ, n = (h, n, q), then
α−j
∑
i∈I pi(n)α

n

i
gives the coefficient of xj in p̃0(x)). Hence, p̃0(x) = 0 and

this leads to the identity of rational functions

(13.2) ap̃1(x
K)k + bp̃2(x

L)l + cp̃3(x
M )m = 0.

This has been shown for (K0, L0,M0) in place of (K,L,M). But if an iden-
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tity (13.2) holds, it remains true if we multiply (K,L,M) by a common
factor. Hence, we can assume that in (13.2) gcd(K,L,M) = 1 (retaining
the assumption used in most of Section 10). Conversely (same argument as
above), (13.2) with (13.1) clearly implies that (h, n, q) ∈ S(Pσ).

For K,L,M ≥ 0 (i.e., Case A) we put

p1(x) = a
1/k p̃1(x)x

−v1 , p2(x) = b
1/lp̃2(x)x

−v1 , p3(x) = c
1/mp̃3(x)x

−v1 .

Then p1, p2, p3 are polynomials and by (5.1), (5.2), they satisfy the identity
(12.1) with e = Lv′2.

Similarly in the other cases, where K < 0, L,M ≥ 0. For example, in
Case Bab, we put

p1(x) = c
1/mp̃3(x)x

−v1 , p2(x) = a
1/kp̃1

(
1

x

)
xvr , p3(x) = b

1/lp̃2(x)x
−v1

and obtain (12.1) with (K,L,M) (resp. (k, l,m)) replaced by (K ′, L′,M ′) =
(M,−K,L) (resp. (k′, l′,m′) = (m, k, l)) and e = (−K)v′′r−1 (this is another
aspect of the transference scheme between the cases, described at the end
of Section 10).

Note that if (h, n, q) ∈ Z·(K,L,M), it is possible to start the construction
with (K0, L0,M0) = (h, n, q). Then (13.1) holds with (h0, n0, q0) = (0, 0, 0).

(b) Assume that (K,L,M) leads to Case A and that v′2 6= gcd(v
′
2, . . . , v

′
r).

By Property 10.1, we have K > 0, by Property 10.2, vr > 0, and by Prop-
erties 10.4, 10.12 (since clearly r ≥ 3), we have L > 1. By the Remark
to 11.1, we can assume t = 0. Then 11.3 gives (h, n, q) ∈ Z · (K,L,M).
Computing the determinant of the coefficients of a, b, c in equations (11.1)–
(11.3) gives mf1 − klf2 = 0. On the other hand, (11.2), (11.4) lead to
f1ζ
n
i L
s − kf2ζ

n
2 ζ
h
i K
s = 0 (using the fact that hkv1 = n((l − 1)v1 + v2)

by (5.2)). Combining these, we get mKsζn2 ζ
h
i = lLsζni , and taking abso-

lute values, this would imply mKs = lLs, hence (by (5.1)) LKs = MLs.
But Property 10.6 gives gcd(M,K) = gcd(M,L) = 1 and this is impossible
(since M > 1).

By the Remark at the end of Section 11, the same argument applies
in the cases of type B (if v′2 6= gcd(v

′
2, . . . , v

′
n)) with the exception of the

asymmetric case described in Property 10.12, where we cannot guarantee
(h, n, q) ∈ Z · (K,L,M). This exception is discussed in (e) and this will
settle all cases where v′2 6= gcd(v

′
2, . . . , v

′
r).

(c) We continue the investigation of (12.1), (13.2). By (b), we can as-
sume that v′2 | v

′
i for all i and the same for v

′′
r−1 (by reflecting the αi).

The exponents appearing in the polynomials p1, p2, p3 are v
′
i or v

′′
i , hence

we can divide them by gcd(v′2, . . . , v
′
r) and assume that gcd(v

′
2, . . . , v

′
r) =

gcd(v′′1 , . . . , v
′′
r−1) = 1 (of course, this can make some vi non-integral). It

follows that v′2 = v
′′
r−1 = 1.
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We want to apply Lemma 1 of Section 12. We start with Case A. First
assume that the parts of the sum in (12.1) have no common zeros. By Section
11, f1, fr are (non-zero) constants and clearly L > 0. Hence deg(p2(x

L)l) =
Llv′r =Mmv′r and pi(0) 6= 0. The cardinality of the set of zeros of the three
parts is bounded by ν = (K+L+M)v′r+1. If L > 1, then by Property 10.6,
M = L+K, hence ν = 2Mv′r+1. Form > 2, Lemma 1 gives a contradiction;
m = 2 (a limiting case) is discussed in (d). For L = 1, Lemma 1 gives
(assuming still that there are no common zeros) lv′r ≤ (K +M + 1)v

′
r. By

Property 10.4 we have r ≤ 3, hence by Property 10.3, Kk = l − 1 for r = 3
and Kk = l − 2 for r = 2, vr > 0. Then (recall that by (5.1) l = Mm)
elementary estimates show that the only possibilities are (k, l,m) = (3, 4, 2)
or k = 1 or m = 1. The first alternative is postponed to (e), the other two
will be discussed in (f) for r = 3 and in (g) for r = 2.

Assume now that L > 1 and that common zeros appear. Then we have
the possibilities (α), (β), (γ) of Lemma 2. By the Corollary to Lemma 2, there
can be only one common zero ξ. In case (α), cancellation of the common
factor (x−ξ)Ll reduces the degree of p2(x

L) by Ll =Mm. The bound ν was
based on simple zeros, and ζξ, where ζL = 1, gives further zeros of p2(x

L)
with multiplicity ν2 = L (similarly for p1, p3). Thus ν can be reduced by
(ν1−1)K+(ν2−1)L+(ν3−1)M ≥ K

2+(L−1)L+(M −1)M ≥M2. Then
Lemma 1 givesMmv′r−Mm ≤ 2Mv′r−M

2, equivalently (m−2)v′r ≤ m−M .
For m ≤M , we get m ≤ 2 and since M > L, m ≥ L ≥ 2, this is impossible.
m > M is also impossible, since v′r = 2L ≥ 4 in case (α). In the alternatives
(β), (γ) the reduction of ν is bigger than the reduction of the degree, hence
this is also impossible.

Similarly, for L = 1, vr > 0, case (δ) gives l ≤ 3 in Lemma 1, which is
impossible. (ε), (ϕ) are covered by the discussion in (f).

Note that if p1, p2 or p3 have multiple zeros, then m = 2 is also covered
by Lemma 1, since in this case the bound ν can be reduced as well.

As observed in (a), the cases of type B can be transferred, leading also to
a polynomial identity (12.1). In some asymmetric cases, the partition defined
by (K ′, L′,M ′) may have singletons (see the Remark at the end of Section
10; for r = 2, 3 the correspondence is almost complete). But the properties
needed in Lemma 2 remain true: (5.1) for (K ′, L′,M ′) results from (5.3)
and Property 5.5, similarly for (10.2) (exclulding Case Bbb, resp. Bbc) and
Property 10.6 (see again the end of Section 10). This is enough to be able
to apply Lemma 2 to (K ′, L′,M ′) and the polynomials obtained from p̃i as
explained above. Hence, the argument above covers the cases of type B as
well, with the exception of Case Bbb (resp. Bbc) where transference leads
to Case A with vr = 0.

Case A with vr = 0 and Case Bbb (resp. Bbc) will be discussed in (g).
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(d) We now examine the limiting case m = 2, L > 1 that arose
in (c). Since L ≤ m, this gives L = 2, l = M = K + 2. First we want
to show that this allows only the following three possibilities for (k, l,m) :
(5, 3, 2), (3, 5, 2), (4, 3, 2). For r > 3, it follows in Case A from Property 10.4
that Ll−Kk = 1. This implies K(k−2) = 3, hence k−2 ∈ {1, 3}, giving the
first two triples above. For r = 3, by Property 10.3 we have Kk = L(l− 1),
which implies K(k − 2) = 2. As K = 2 is impossible (since gcd(K,L) = 1),
we get k = 4, giving the third triple. By a similar argument, r = 2 would
give k = L = 2, which is impossible. The cases of type B can be trans-
ferred to Case A as before (recall that Properties 10.3 and 10.4 are direct
consequences of (10.2)).

The arguments in the three cases are similar, we present them only in
the first one, i.e. for (k, l,m) = (5, 3, 2), which means (K,L,M) = (1, 2, 3),
v′r
(
= 2L
Ll−Kk

)
= 4. Thus (12.1) becomes x2p1(x)

5 + p2(x
2)3 + p3(x

3)2 = 0
with deg pi = 4.

By Section 11, f1, f2, fr−1, fr are (non-zero) constants. By (13.1) and
the definition of pi in (a), pi(0) is a non-zero multiple of f1 or fr, hence
pi(0) 6= 0. As noticed in (c), we can assume that the pi have only simple
zeros and that there are no common zeros in the parts of (12.1). Then the
case of equality in Lemma 1 gives (after cancellation)

(2p1(x) + 5xp
′
1(x))p2(x

2)− 6xp′2(x
2)p1(x) = c0p3(x

3)

for some constant c0 (see also the proof of Lemma 1). Comparing the coeffi-
cients of x (and using p2(0) 6= 0) gives p

′
1(0) = 0, which is impossible, since

f2, fr−1 are non-zero (recall that v
′
2 = v

′′
r−1 = 1).

(e) In the first two cases of Property 10.12 we get (after reducing the
powers) the polynomial identity x2p1(x)

l−1 + p2(x)
l + p3(x

2)l/2 = 0 with
deg pi = 3, where l = 2m ≥ 4 is even. Again, Lemma 1 excludes l > 4 and
multiple zeros of pi. Considering the cases as in the proof of Lemma 2, the
only possibility for common zeros is ν1 = ν3 = 2, ν2 = 1 where a similar
argument as in (c) applies. The limiting case l = 4 leads to an identity
(2p1(x) + 3xp

′
1(x))p2(x) − 4xp1(x)p

′
2(x) = c0p3(x

2), which can be handled
as in (d) (observe that due to the special form of v′i in 10.12, we have
p′2(0) = 0 and we should have p

′
1(0) 6= 0). As remarked in 10.12 the second

of the cases there can be reduced to the first one by reflection.

Consider now the remaining case (k, l,m) = (3, 4, 2), L = 1 from (c)
(excluding Case A with vr = 0 and Case Bbb). Then r = 3 and the identity
(12.1) becomes xp1(x)

3+p2(x)
4+p3(x

2)2 = 0 with deg pi = 2. This is again
a limiting case for Lemma 1, but unfortunately here the conclusion from
Lemma 1 is not sufficient to give decisive information. By examining the
coefficients of the powers of x (in a similar way to (f), (g) below), one can
again derive a contradiction.
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(f) We are left with the cases where L = 1, v′2 = v′′r−1 = 1 and either
m = 1 or k = 1. By Property 10.4, we have r ≤ 3. We now discuss r = 3.
We have Mm = l and by Property 10.3, Kk = l − 1. Thus, for m = 1,
(12.1) becomes xp1(x

K)(l−1)/K + p2(x)
l + p3(x

l) = 0. We have l ≥ 3 and
deg pi = v

′
r = 2, i.e., pi(x) = fi0 + fi1x+ fi2x

2 (i = 1, 2, 3). Here, Lemma 1
gives only few restrictions (and at least for l = 3, the polynomial identity has
non-zero solutions). We compare the coefficients of the polynomials arising
above. For K ≥ 2 (which implies l ≥ 5) the equation coming from x2 and
that from x3 or x4 (for K = 2) have only non-integer common solutions l.
Hence we are left with K = 1.
Now, we have to make use of the special form of the coefficients appearing

in pi. By Section 11, we know that the polynomials f1, f2, f3 are constant
and that we can assume S(P0) ⊆ Z · (K,L,M). As remarked in (a), this has
the consequence that we can take (h0, n0, q0) = (0, 0, 0) in (13.1) and then
the definition of the pi implies (in all cases A, B, see below) that fij 6= 0
and that the quotients f2i1/(fi0fi2) differ only by roots of unity, hence we
get the additional property

(13.3)

∣∣∣∣
f2i1
fi0fi2

∣∣∣∣ is constant for i = 1, 2, 3.

Comparison of the equations for x and x2l−1 gives (f10/f12)
l−1=(f20/f22)

l−1.
Doing the same for x2 and x2l−2 results in (f10/f12)

l−2 = (f20/f22)
l−2.

Hence

(13.4)
f10
f12
=
f20
f22

.

For x3 the equation is (putting f∗31 = f31 for l = 3 and 0 otherwise)

(13.5) (l − 1)f l−310

(
l − 2

2
f211 + f10f12

)

+ l(l − 1)f l−320 f21

(
l − 2

6
f221 + f20f22

)
+ f∗31 = 0.

For l > 3 this can be combined with the equation for x and yields (after
simplification, using (13.4)) (f21/f20)

2 = 3(f11/f10)
2, incompatible with

(13.3) and (13.4).
For l = 3, we consider the equations for 1, x, x3. Taking the determinant

(built of the parts of the three equations corresponding to p1, p2, p3) gives
after simplification

f210f
3
21f30 − 3f

2
11f
2
20f21f30 − f

2
10f
3
20f31 = 0.

This can be rewritten as

(13.6)

(
f21
f20

)2
− 3

(
f11
f10

)2
=
f31
f30

f20
f21

.
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Similarly, from the equations for x, x2 we get

(13.7) 2
f11
f10

f20
f21
− 1 =

f20f22
f221

.

Finally, the equations for x0 and x6 give

(13.8)
f30
f32
=

(
f20
f22

)3
.

In Case A, by (13.1) we have a−1p1(x) = b
−1p2(x) = f1+f2ζ2x+f3ζ3x

2

and c−1/3p3(x) = f1 + f2ζ
3
2x + f3ζ

2
3x
2. Then (13.8) gives f21 = f23 , (13.7):

1 = f1f3ζ3
f22 ζ2

and (13.6): (−2)
(
f2ζ2
f1

)2
= ζ22 , which is impossible.

Case Bba transfers to a−1p1(x) = f3ζ
−1
3 + f2ζ

−1
2 x + f1x

2, p2, p3 as in

Case A. Then (13.7) gives 2 f1f3 ζ
−2
2 ζ3 − 1 =

f1f3
f22

ζ−22 ζ3 and (13.6):
(
f2
f1

)2
ζ22 −

3
(
f2
f3

)2
ζ−22 ζ23 = ζ

2
2 . Since (from (13.8)) f1 = ±f3, these two equations imply

2 ± ζ22ζ
−1
3 = 1 − 3ζ

4
2ζ
−2
3 , hence 1 = ±ζ

2
2ζ
−1
3 − 3ζ

4
2ζ
−2
3 , which is impossible.

Similarly in Cases Baa, Bab. In the case k = 1, r = 3, identity (12.1)
becomes xp1(x

l−1) + p2(x)
l + p3(x

M )l/M = 0 with l ≥ 4, 1 < M < l. This
can be treated similarly to the case m = 1 above and is somewhat easier
since (13.3) is sufficient.
(g) For r = 2, K > 0, v2 > 0 (this also excludes Case Bbb for the

moment), (12.1) becomes for m = 1:

xp1(x
K)(l−2)/K + p2(x)

l + p3(x
l) = 0

and for k = 1:

xp1(x
l−2) + p2(x)

l + p3(x
M )l/M = 0

where deg pi = 1 and l ≥ 4, K < l− 2, 1 < M < l. Again the method of (f)
can be used (and since the degrees are smaller, the computations are much
easier).
The exceptional cases where K = 0 (Properties 10.1 and 10.8) have been

discussed in Sections 8 and 9(a). They give non-trivial solutions.
In Case A with v2 = 0 (Property 10.2) and Case Bbb (Property 10.11)

only m = 1 is possible (use Lemma 1 as in (c); there can be no common
zeros) and (12.1) becomes xp1(x)

l−1 + p2(x)
l + p3(x

l) = 0 with l ≥ 3. Here,
l > 3 can be treated as in (f), and l = 3 leads to non-trivial solutions
discussed in Section 9(b),(c).
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