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and power generators

by

Pär Kurlberg (Stockholm) and Carl Pomerance (Hanover, NH)

1. Introduction. We consider two standard pseudorandom number
generators from number theory: the linear congruential generator and the
power generator. For the former, we are given integers e, b, n (with e, n > 1)
and a seed u = u0, and we compute the sequence

ui+1 ≡ eui + b (modn).

This sequence was first considered as a pseudorandom number generator by
D. H. Lehmer. For the power generator we are given integers e, n > 1 and
a seed u = u0 > 1, and we compute the sequence

ui+1 ≡ ue
i (modn)

so that ui ≡ uei
(modn). A popular case is e = 2, which is called the

Blum–Blum–Shub (BBS) generator.
Both of these generators are periodic sequences, and it is of interest

to compute the periods. To be useful, a pseudorandom number generator
should have a long period. In this paper we consider the problem of the
period statistically as n varies, either over all integers, or over certain subsets
of the integers that are used in practice, namely the set of primes and the
set of “RSA moduli”, that is, numbers which are the product of two primes
of the same magnitude.

If (e, n) = 1, then the sequence ei (modn) is purely periodic and its pe-
riod is the least positive integer k with ek ≡ 1 (modn). We denote this order
as ℓe(n). If (e, n) > 1, the sequence ei (modn) is still (ultimately) periodic,
with the period given by ℓe(n(e)) where n(e) is the largest divisor of n that is
coprime to e. (The aperiodic lead-in to such a sequence has length bounded
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by the binary logarithm of n.) In this paper we shall denote ℓe(n(e)) by ℓ∗e(n).
The periods of both the linear congruential and power generators may be
described in terms of this function. For the linear congruential generator we
have ui ≡ ei(u + b(e − 1)−1) − b(e − 1)−1 (modn) when e − 1 is coprime
to n, so that if we additionally have u+ b(e− 1)−1 coprime to n, the period
is exactly ℓ∗e(n). In general, the period is always a divisor of ℓ∗e(n)(e− 1, n).

For the power generator, the period is exactly ℓ∗e(ℓ
∗
u(n)). For most of

the paper we shall assume that u is chosen so that ℓ∗u(n) is as large as
possible for a given modulus n. This maximum is denoted λ(n), following
Carmichael. First described by Gauss, λ(n) is the order of the largest cyclic
subgroup of (Z/nZ)×. It satisfies λ([a, b]) = [λ(a), λ(b)], where [ , ] de-
notes the least common multiple. Further, for a prime power pα we have
λ(pα) = φ(pα) = (p − 1)pα−1, except when p = 2, α ≥ 3 in which case
λ(2α) = 2α−2. For the power generator, we thus will study ℓ∗e(λ(n)). Note
that it is especially important to use the function ℓ∗e rather than ℓe when
considering the modulus λ(n), since for n > 2, λ(n) is always even, and in
general, λ(n) is divisible by the fixed number e for a set of numbers n of
asymptotic density 1.

We begin by reviewing some of the literature on statistical properties
of ℓ∗e(n). In [16] Pappalardi showed that there exist α, δ > 0 such that

ℓe(p) ≥ p1/2 exp(logδ p) for all but O(x/log1+α x) primes p ≤ x. He also
asserted, assuming the Generalized Riemann Hypothesis (1) (GRH), that if
ψ(x) is any increasing function tending to infinity as x tends to infinity, then
ℓe(p) > p/ψ(p) for all but O(π(x) log(ψ(x))/ψ(

√
x)) primes p ≤ x, where

as usual, π(x) is the total number of all primes p ≤ x. (Although stated
for any unbounded monotone function ψ(x), it appears that the proof only
supports the case when ψ(x) is increasing rather slowly. A similar result with
ψ(x) ≤ log1−ε x is proved in the first author’s paper [11]. In Theorem 23 we
obtain a small strengthening of this result.) In [4], Erdős and Murty showed
that if ε(x) is any decreasing function tending to zero as x tends to infinity,
then ℓe(p) ≥ p1/2+ε(p) for all but o(π(x)) primes p ≤ x, and in [10] Indlekofer
and Timofeev gave a similar lower bound with an explicit estimate on the
number of exceptional primes. Further, it follows immediately from work
of Goldfeld, Motohashi, Fouvry, and Baker–Harman that there is a positive
constant γ such that ℓe(p) > p1/2+γ for a positive proportion of the primes p.

The period of the power generator uei
(modpl) was studied in Fried-

lander, Pomerance and Shparlinski [7], where p, l are primes of the same
magnitude. One of the results there is that this period is > (pl)1−ε for most

(1) When we refer to the Generalized Riemann Hypothesis in this paper we shall mean
the Riemann Hypothesis for zeta functions ζK , where K runs over the Kummer extensions
K = Q( q

√
e, exp(2πi/q)), e ≥ 2, q prime.
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choices of u, e, p, l. However, once the exponent e is fixed, say at 2, the results
of [7] are noticeably weaker.

As for ℓe(n) for n a positive integer, in [12] Kurlberg and Rudnick proved

that there exists δ > 0 such that ℓe(n) ≫ n1/2 exp(logδ n) for all but o(x)
integers n ≤ x that are coprime to e. Further, in [11], Kurlberg showed that
the GRH implies that for each ε > 0, we have ℓe(n) ≫ n1−ε for all but o(x)
integers n ≤ x that are coprime to n, and in [13] Li and Pomerance improved

the lower bound to ℓe(n) ≥ n(logn)−(1+o(1)) log log log n, a result that is best
possible.

To complement these last theorems we give some new results on ℓe(n)
and ℓ∗e(n).

Theorem 1. Results on ℓe(n) and ℓ∗e(n):

(1) Suppose ε(x) tends to zero arbitrarily slowly as x→ ∞. Then ℓ∗e(n) ≥
n1/2+ε(n) for all but oε(x) integers n ≤ x.

(2) There is a positive constant γ1 such that ℓe(n) ≥ n1/2+γ1 for a posi-

tive proportion of the integers n.

These results, together with the GRH-conditional results mentioned
above, become the model for the principal theorems of this paper. We con-
sider the power generator for three classes of moduli: primes, the products
of two primes of the same magnitude, and general moduli.

Theorem 2. Results on ℓ∗e(p− 1):

(1) Suppose ε(x) tends to zero arbitrarily slowly as x → ∞. Then

ℓ∗e(p− 1) ≥ p1/2+ε(p) for all but oε(π(x)) primes p ≤ x.

(2) There is a positive constant γ2 such that ℓ∗e(p− 1) ≥ p1/2+γ2 for a

positive proportion of the primes p.
(3) (GRH ) For each fixed ε > 0 we have ℓ∗e(p− 1) > p1−ε for all but

oε(π(x)) primes p ≤ x.

Consider moduli pl where p, l are primes with p, l ≤ Q (where Q is an
arbitrary bound). Using our results on ℓ∗e(p− 1), we can prove the following
theorem.

Theorem 3. Results on ℓ∗e(λ(pl)):

(1) Suppose ε(x) tends to zero arbitrarily slowly as x → ∞. Then

ℓ∗e(λ(pl))≥ (pl)1/2+ε(pl) for all but oε(π(Q)2) pairs of primes p, l≤Q.

(2) There is a positive constant γ3 such that for a positive proportion of

the pairs of primes p, l ≤ Q, we have ℓ∗e(λ(pl)) ≥ (pl)1/2+γ3.

(3) (GRH ) For each fixed ε > 0 we have ℓ∗e(λ(pl)) > (pl)1−ε for all but

oε(π(Q)2) pairs of primes p, l ≤ Q.
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Instead of considering specifically RSA moduli n = pl, one may consider
the general case where no restriction is made on the modulus n. As we have
seen, the length of the period for the sequence (ui) is bounded by ℓ∗e(λ(n)).
In our last theorem we establish similar results as above for this order.

Theorem 4. Results on ℓ∗e(λ(n)):

(1) Suppose ε(x) tends to zero arbitrarily slowly as x → ∞. Then

ℓ∗e(λ(n)) ≥ n1/2+ε(n) for all but oε(x) integers n ≤ x.
(2) There is a positive constant γ4 such that ℓ∗e(λ(n)) ≥ n1/2+γ4 for a

positive proportion of the integers n.
(3) (GRH ) For each fixed ε > 0 we have ℓ∗e(λ(n)) > n1−ε for all but

oε(x) integers n ≤ x.

We actually achieve a best-possible result in part 3 of Theorem 4, show-
ing, on assumption of the GRH, that

ℓ∗e(λ(n)) = n · exp(−(1 + o(1))(log logn)2 log log logn)

as n→ ∞ through a set of asymptotic density 1. We also show, on assump-
tion of the GRH, that for any fixed integers u, e > 1, the period of the power

generator uei
(modn) is equal to

n · exp(−(1 + o(1))(log logn)2 log log logn)

as n → ∞ through a set of asymptotic density 1. This last result and our
results on ℓ∗e(λ(n)) employ a recent unconditional theorem of Martin and
Pomerance [14] on the normal order of λ(λ(n)).

Acknowledgements. We would like to thank Igor Shparlinski and the
referee for some helpful comments.

2. Preliminary ideas. In this section we present an argument that
shows that ℓ∗e(n) > n1/2+ε(n) on a set of asymptotic density 1; that is, we
prove the first item in Theorem 1. This argument will then be a model for
the analogous item in each of Theorems 2, 3, 4.

We begin with a useful lemma. The proof appeared in [12, Section 5.1],
but for completeness we give a somewhat shorter argument here.

Lemma 5. For any natural number n we have

ℓ∗e(n) ≥ λ(n)

n

∏

p|n

ℓ∗e(p) =
λ(n)

n

∏

p|n, p∤e

ℓe(p).

Proof. The equality is trivial. For the inequality, note that for positive
integers ai, bi we have

lcm{a1b1, . . . , akbk} | b1 · · · bk · lcm{a1, . . . , ak},
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as each aibi divides b1 · · · bk · lcm{a1, . . . , ak}. We apply this with the ai’s
being the various ℓ∗e(p) for p |n and the corresponding bi’s being λ(pβ)/ℓ∗e(p),
where pβ ‖n. Then lcm{a1b1, . . . , akbk} = λ(n). Further, ℓ∗e(n) is divisible
by lcm{a1, . . . , ak}, so that

λ(n)

n
≤ ℓ∗e(n)

n

∏

pβ‖n

λ(pβ)

ℓ∗e(p)
≤ ℓ∗e(n)

∏

p|n ℓ
∗
e(p)

.

Suppose P is a subset of the prime numbers. We let πP(x) denote the
number of primes p ≤ x with p ∈ P. For a positive integer n we let nP
denote the largest divisor of n that is free of prime factors outside of P.

Let e be an integer with e > 1. Let ε(x) be an arbitrary monotonic
function with

(1) ε(x) = o(1), ε(x) > 1/log log x, ε(x1/log log x) < 2ε(x),

where the last two conditions hold for x sufficiently large. We now partition
the primes into three sets:

L = {p prime : ℓ∗e(p) ≤ p1/2/log p},
M = {p prime : p1/2/log p < ℓe(p) ≤ p1/2+2ε(p)},
H = {p prime : ℓe(p) > p1/2+2ε(p)},

where we use the mnemonic low, medium, high for L,M,H. Note that L
contains the prime factors of e.

Let ω(n) denote the number of prime number divisors of n.

Lemma 6. We have πL(x) = O(x/log3 x) so that
∑

p∈L 1/p = O(1). In

addition, we have

(2)
∑

nL=n

1

n
=

∏

p∈L

(1 − 1/p)−1 = O(1)

and

(3)
∑

nL=n, n≤x

1 ≪ x/log3 x.

Proof. To see the first assertion, let y = x1/2/log x and note that if p ∈ L
and p ≤ x, then ℓ∗e(p) ≤ y. That is, p divides e or some ej−1 with 1 ≤ j ≤ y.
Using the estimate ω(m) ≪ logm/log logm, we have

πL(x) ≤ ω
(

e
∏

1≤j≤y

(ej − 1)
)

≪ y2/log y ≪ x/log3 x.

The result about
∑

p∈L 1/p then follows by partial summation, and (2) fol-
lows trivially as a consequence.

We now prove (3). Let Lk(x) denote the number of integers n ≤ x with
n = nL and ω(n) = k. We show by induction that there is a positive constant
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c such that

(4) Lk(x) ≤ c
x

(k − 1)! log3 x

(

8
∑

p∈L

1

p− 1

)k−1

,

from which (3) directly follows by summing on k getting

∑

nL=n, n≤x

1 ≤ c
x

log3 x
exp

(

8
∑

p∈L

1

p− 1

)

≪ x

log3 x
.

To see (4) note that we have already verified it in the case k = 1. Assume
it is true at k. Since no number can have two coprime prime-power divisors
bigger than the square root, we have

Lk+1(x) ≤
1

k

∑

p∈L, pa≤x1/2

Lk(x/p
a)

≤ c
1

k!

(

8
∑

p∈L

1

p− 1

)k−1
∑

p∈L, pa≤x1/2

x/pa

log3(x/pa)

≤ c
1

k!

(

8
∑

p∈L

1

p− 1

)k x

log3 x
.

This completes the proof of the lemma.

Note that (2) is all we shall need in this section, but we need the stronger
result (3) for our later results.

For a positive integer n, let γ(n) denote the largest squarefree divisor
of n, sometimes called the “core” of n.

Lemma 7. But for a set of natural numbers n of asymptotic density 0
we have

nL < logn, n/γ(n) < logn, and ω(n) < 2 log logn.

Proof. The first assertion follows directly from (2). The assertion about
n/γ(n) follows from the fact that the number of n ≤ x with n/γ(n) > T

is O(x/
√
T ). Indeed, if u = n/γ(n), then uγ(u) |n and uγ(u) is squareful

(divisible by the square of each of its prime factors). The assertion then
follows from partial summation and the fact that the number of squareful
numbers up to x is O(

√
x). The final assertion about ω(n) follows from the

theorem of Hardy and Ramanujan that the normal number of prime factors
of n is log logn.

One question of interest is how large we can expect nM to be for most
numbers n. Since most numbers do not have a divisor very near their square
root, there is hope that this ingredient can be used. Erdős and Murty used
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this idea to show that πM(x) = o(π(x)) and Pappalardi and Indlekofer–
Timofeev got more quantitative versions of this result. We state a conse-
quence from the latter paper.

Lemma 8 ([10, Cor. 6]). With ε(x) as specified in (1), we have

πM(x) = O(ε(x)1/12π(x)).

We now show that as a consequence of Lemma 8 not many integers n have
a large divisor composed of primes from M. Let Λ denote the von Mangoldt
function.

Lemma 9. With ε(x) as specified in (1), the number of integers n ≤ x

with nM > n1/3 is O(ε(x)1/12x).

Proof. We have
∑

n≤x

lognM =
∑

n≤x

∑

d|n
dM=d

Λ(d) =
∑

dM=d
d≤x

Λ(d)

⌊

x

d

⌋

≤ x
∑

p∈M
p≤x

log p

p
+O(x).

Now, using Lemma 8 and (1),

∑

p∈M, p≤x

log p

p
=

log x

x
πM(x) +

x\
2

log t− 1

t2
πM(t) dt

≪
x\
2

ε(t)1/12

t
dt+ o(1)

=

x1/log log x\
2

ε(t)1/12

t
dt+

x\
x1/log log x

ε(t)1/12

t
dt+ o(1)

≪ log x

log log x
+ ε(x)1/12 log x≪ ε(x)1/12 log x.

Thus,
∑

n≤x

lognM ≪ ε(x)1/12x log x,

so that the result follows readily.

Lemma 10. For x sufficiently large, the number of integers n ≤ x with

λ(n) ≤ n exp(−(log logn)3) is at most x/log10 x.

This result follows from Theorem 5 of [7].

We are now ready to prove the first part of Theorem 1.

Theorem 11. Suppose ε(n) satisfies (1). But for a set of integers n of

asymptotic density 0 we have

ℓ∗e(n) > n1/2+ε(n).
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Proof. By Lemma 10 we may assume that λ(n) > n exp(−(log logn)3).
Thus, from Lemmas 5 and 7 we have

ℓ∗e(n) > exp(−(log log n)3)
∏

p|n/nL

ℓe(n)

≥ exp(−(log log n)3)
∏

p|nM

(p1/2/log p)
∏

p|nH

p1/2+2ε(p)

≥ exp(−(log log n)3 − ω(n) log logn)γ(nM)1/2γ(nH)1/2+2ε(n)

≥ exp(−2(log log n)3)n1/2n
2ε(n)
H .

By Lemmas 7 and 9 we may also assume that nH > n3/5. Thus, our result
follows from (1).

3. The 1/2 + ε results. We now consider analogs of Theorem 11 in
certain interesting cases. Say an infinite subset S of the natural numbers
has property P almost always if

∑

s∈S, s≤x
shas property P

1 ∼
∑

s∈S, s≤x

1 as x→ ∞.

In this section P will be the property that ℓ∗e(λ(n)) > n1/2+ε(n). That is, for
ε(x) satisfying (1),

n has property Pε: ℓ∗e(λ(n)) > n1/2+ε(n).

Our goal of this section is to prove the following theorem, which comprises
the union of the first items of Theorems 2, 3, and 4.

Theorem 12. If ε(x) satisfies (1) then the following sets have prop-

erty Pε almost always: the set of prime numbers and the set of all natural

numbers. In addition, but for o(π(Q)2) pairs of primes p, l ≤ Q, we have

ℓ∗e(λ(pl)) ≥ Q1+ε(Q). In particular , the set of integers n = pl, where p, l are

primes with p < l < 2p, has property Pε almost always.

We will need the following form of the Brun–Titchmarsh inequality (see
[8, Theorem 3.8]):

Lemma 13. Suppose k, l are coprime integers with k > 0 and let π(x, k, l)
be the number of primes p ≤ x such that p ≡ l (modk). Then

π(x, k, l) ≪ x

φ(k) log(x/k)

uniformly for x > k.
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We begin with an analog of Lemma 7 for shifted primes.

Lemma 14. But for a set of prime numbers p of relative density 0 within

the set of all primes, we have

(p− 1)L < log p,

(p− 1)/γ(p− 1) < log p,

ω(p− 1) < 2 log log p.

Proof. Using (3) we find that

∑

n=nL, n>T

1

n
≪ 1

log2 T
.

Thus, by a trivial argument we may assume that (p−1)L < p1/2. The Brun–
Titchmarsh inequality and (3) allow one to handle the remaining cases where

(p− 1)L is between log p and p1/2 as follows. It suffices to show that
∑

n≥ 1
2

log x, n=nL

π(x, n, 1) = o(π(x)),

but the sum is ≪ π(x)
∑

n≥ 1
2

log x, n=nL
1/φ(n). Using the well known esti-

mate 1/φ(n) ≪ (log log n)/n, we have our result from (3). The argument for
(p− 1)/γ(p− 1) is similar: a trivial argument is used when (p− 1)/γ(p− 1)
is large and the Brun–Titchmarsh inequality when it is small. The final as-
sertion follows from the main result of [3] that the normal number of prime
factors of p− 1 is log log p.

We now turn our attention to an analog of Lemma 9 for shifted primes.

Lemma 15. With ε(x) as specified in (1), the number of primes p ≤ x

with (p− 1)M > p1/3 is O(ε(x)1/24π(x)).

Proof. Using Brun’s or Selberg’s sieve (see [8, Theorem 2.4 or Theo-
rem 3.12]) we see that the number of primes p ≤ x with p− 1 divisible by a

prime q > x1−ε(x)1/24
is

≤
∑

a≤xε(x)1/24

∑

q≤x/a
aq+1 prime

1 ≪ x

log2 x

∑

a≤xε(x)1/24

1

φ(a)
≪ ε(x)1/24π(x),

where we have used the well known result that
∑

a≤T 1/φ(a) ∼ c log T for
an appropriate constant c. Thus, we may assume that p − 1 has no prime

factor larger than x1−ε(x)1/24
. Trivially we may also assume that p − 1 has

no prime-power factor this large as well. Letting
∑′ denoting a sum over
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primes with these conditions, we have
∑

p≤x

′
log(p− 1)M =

∑

p≤x

′
∑

d|p−1
dM=d

Λ(d) =
∑

dM=d

d≤x1−ε(x)1/24

Λ(d)π(x, d, 1)

≪
∑

dM=d

d≤x1−ε(x)1/24

Λ(d)
x

φ(d) log(x/d)
≤

∑

dM=d

d≤x1−ε(x)1/24

Λ(d)
x

dε(x)1/24 log x
,

the penultimate estimate coming from the Brun–Titchmarsh inequality. Us-
ing the first two displays in the proof of Lemma 9, we have

∑

dM=d
d≤x

Λ(d)

d
≪ ε(x)1/12 log x,

so that with the above estimate, we get
∑

p≤x

′
log(p− 1)M ≪ ε(x)1/24x.

The lemma follows readily.

The proof of Theorem 12 for the set of prime numbers now follows di-
rectly from the proof of Theorem 11 where we replace Lemmas 7 and 9 with
Lemmas 14 and 15, respectively. Note that we may continue to use Lemma 10
since the estimate for the exceptional set in that lemma is o(π(x)).

We next turn our attention to the set of numbers pl where p, l are primes
with p, l ≤ Q. We have from [7, Theorem 6] the following result in analogy
to Lemma 10: But for o(π(Q)2) pairs of primes p, l ≤ Q we have

(5) λ(λ(pl)) > pl/exp(2(log logQ)3).

Note that

(6) ℓ∗e([a, b]) ≥ ℓ∗e(a)ℓ
∗
e(b)

λ([a, b])

λ(a)λ(b)
.

Indeed, with A = ℓ∗e(a), B = ℓ∗e(b), and using λ([a, b]) = [λ(a), λ(b)], we get

ℓ∗e([a, b]) = [A,B] =
AB

(A,B)
≥ AB

(λ(a), λ(b))
,

thus yielding (6). We apply (6) with a = p − 1, b = l − 1, where p, l are
distinct primes. As λ([p− 1, l − 1]) = λ(λ(pl)), we get

(7) ℓ∗e(λ(pl)) > ℓ∗e(p− 1)ℓ∗e(l − 1)
λ(λ(pl))

pl
.

So, to complete the proof of Theorem 12 for numbers pl, we assume that
(5) holds and we apply (7). The result follows from the fact that the set of
primes has property Pε almost always. (To be perfectly precise, we use the
fact that the set of primes has property P2ε almost always.)
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The remaining class of numbers in Theorem 12, namely, the set of all
numbers n, is more difficult. We begin with a new result:

Theorem 16 (Martin–Pomerance [14]). As n → ∞ through a certain

set of integers of asymptotic density 1, we have

λ(λ(n)) = n · exp(−(1 + o(1))(log logn)2 log log logn).

Thus, λ(λ(n)) > n/exp((log log n)3) almost always.

Now we give the result analogous to Lemmas 7 and 14.

Lemma 17. We have

λ(n)L < exp((log logn)2),

λ(n)/γ(λ(n)) < logn,

ω(λ(n)) < (log logn)2,
almost always.

Proof. We have
∑

n≤x

log λ(n)L ≤
∑

n≤x

∑

pa‖λ(n)
p∈L

log pa ≤
∑

pa≤x
p∈L

log pa
∑

n≤x
pa|λ(n)

1.

If a prime power pa divides λ(n) it must be the case that either n is divisible
by some prime q ≡ 1 (mod pa) or pa+1 |n. As

∑

q≤x
q prime

q≡1 (mod d)

1

q
=

log log x+O(log d)

φ(d)

uniformly for all integers d ≥ 2 (see [17, Theorem 1 and Remark 1], or
Norton [15]), we have

∑

n≤x
pa|λ(n)

1 ≤ x

pa+1
+

∑

q≤x
q prime

q≡1 (mod pa)

x

q
=
x log log x

φ(pa)
+O

(

x log pa

pa

)

.

Hence
∑

n≤x

log λ(n)L ≪ x log log x
∑

pa≤x
p∈L

log pa

pa
+ x

∑

pa≤x
p∈L

log2 pa

pa
≪ x log log x,

the last inequality coming from the estimate for πL(x) in Lemma 6. Thus
we immediately get the first assertion in the lemma.

For the second assertion note that from (6) and (7) in [6] we have

log(λ(n)/γ(λ(n))) ≪ log log x/log log log x

for all but o(x) choices of n ≤ x. Thus we have the second assertion.
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The third assertion follows from the fact that the normal order of ω(λ(n))
is 1

2(log logn)2 (see [5]).

Now we give the result analogous to Lemmas 9 and 15.

Lemma 18. Let ε(x) satisfy (1). Almost all numbers n have the property

that λ(n)M < n2/5.

Proof. Let

M′ = {p prime : (p− 1)M > p1/3}.
Lemma 15 tells us that πM′(x) ≪ ε(x)1/24π(x). We apply the proof of

Lemma 9 with M replaced by M′ and with ε(x)1/12 replaced by ε(x)1/24.
Thus, by the final display of Lemma 9 we have

∑

n≤x

lognM′ ≪ ε(x)1/24x log x.

We thus get nM′ ≤ n1/12 almost always. Assume that n has this property.
By Lemma 7, we may also assume that n/γ(n) < n1/90. Thus,

λ(n)M ≤ (n/γ(n))λ(γ(n))M < n1/90
∏

p|n

(p− 1)M

= n1/90
∏

p|n
M′

(p− 1)M
∏

p|n/n
M′

(p− 1)M

≤ n1/90γ(nM′)γ(n/nM′)1/3 ≤ n1/90 n
2/3
M′ n

1/3 ≤ n2/5.

This completes the proof of the lemma.

We are in a position now to complete the proof of Theorem 12. As-
sume that n satisfies the properties in Theorem 16 and Lemmas 17, 18.
By Lemma 10 we may also assume that λ(n) > n exp(−(log logn)3). Thus,

λ(n)H > n3/5/exp(2(log logn)3). Using Lemma 5 and assuming that n is
large, we have

ℓ∗e(λ(n)) ≥ λ(λ(n))

λ(n)

∏

p|λ(n)

ℓ∗e(p)

> exp(−(log logn)3)
∏

p|λ(n)M

(p1/2/log p)
∏

p|λ(n)H

p1/2+2ε(p)

> exp(−2(log logn)3)γ(λ(n)M)1/2γ(λ(n)H)1/2+2ε(n)

> exp(−3(log logn)3)λ(n)1/2λ(n)
2ε(n)
H

> exp(−4(log logn)3)n1/2+(6/5)ε(n) > n1/2+ε(n).

This completes the proof of Theorem 12.
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4. The 1/2+ c results. The spirit of Theorems 11 and 12 concerns the
best that can be said for almost all cases. In this section we relax the “almost
all” to “a positive proportion” and so prove somewhat stronger results. One
could relax further to “infinitely often”, but then it occurs that quite cheap
results can be had. For example, if p is a prime that does not divide e, then
ℓe(p

j) = pj−O(1), so that ℓe(n) ≫ n infinitely often.
We begin with the case of ℓe(p) for p prime. As mentioned in the Intro-

duction, one way of getting a fairly decent result here is to have a very large
prime factor of p − 1 as afforded by a series of papers culminating in the
recent paper [2].

Lemma 19 (Baker–Harman). For a positive proportion of the primes p,
there is a prime q | p− 1 with q > p0.677.

Note that this result follows from (7.1) in [2].

We use this result to immediately get the following:

Lemma 20. We have ℓe(p) > p0.677 for a positive proportion of the

primes p.

Proof. Among the primes p for which p − 1 is divisible by a prime
q > p0.677, consider those for which ℓe(p) is not divisible by q. Then if
p ≤ x, we have ℓe(p) < x0.323. As in the argument for πL(x) in the proof
of Lemma 7, the number of such primes is O(x0.646/log x) = o(π(x)). Thus,
only a negligible number of primes which satisfy the previous lemma do not
satisfy the present lemma.

Our basic strategy in this section to make ℓ∗e(m) large is to manage to
place in m a large prime p for which ℓe(p) is large, and then use the ideas of
the previous sections to show that the remainder of m cannot do too much
damage most of the time. For ℓ∗e(n) the idea is especially transparent.

Theorem 21. We have ℓ∗e(n) > n0.677 for a positive proportion of inte-

gers n.

Proof. The only subtlety here is that we need to extend Lemma 19
slightly. By the Brun–Titchmarsh inequality, the proportion of primes p
with a prime factor q of p−1 in the interval [p0.677, p0.677+2ε] is O(ε). So if ε
is small enough compared to the positive proportion produced in Lemma 19,
then there must be a positive proportion left over with q > p0.677+2ε. And,
for all but a negligible proportion of these numbers, as in Lemma 20, we
have ℓe(p) > p0.677+2ε. Now consider for such primes p, integers of the form
ap ≤ x, where a ≤ xε. For such primes p ≤ x the number of integers a that
may be taken is ≫ x/p, and letting p run from x1−ε to x there is never
any double counting of any ap. Thus, the number of such numbers ap is
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≫ ∑

x/p≫ x. Further,

ℓ∗e(ap) ≥ ℓe(p) > p0.677+2ε > (ap)0.677.

This completes the proof of the theorem.

We say n has property Pc if ℓ∗e(λ(n)) > n1/2+c. In the rest of this section
we take c = 0.092.

Theorem 22. Positive proportions of the set of primes and the set of

all natural numbers have property Pc. Further , there are ≫ π(Q)2 pairs of

primes p, l ≤ Q such that pl has property Pc.

Proof. We begin with the case of primes, from which the other two cases
will follow easily. We actually show a slightly stronger result: there is some
δ > 0 such that a positive proportion of the primes have property Pc+δ. Let
P be the set of primes q for which ℓe(q) > q0.677. Lemma 20 tells us that this
set of primes comprises a positive proportion of all primes. Consider primes
p ≤ x where q | p − 1 for some q ∈ P and with x0.52−ε < q ≤ x0.52. Here,
ε > 0 is arbitrarily small but fixed. It follows from [1, Theorem 1] that a
positive proportion of primes p are so representable. Further, it follows from
Lemma 14 that by neglecting only a relative density 0 of such primes p, we
have

ℓ∗e(p− 1) > (p/q)1/2−o(1)q0.677 = p1/2−o(1)q0.177+o(1)

> p1/2+(0.52−ε)(0.177)−o(1).

As (0.52)(0.177) > c if ε is taken small enough, we have (0.52− ε)(0.177) >

c+ δ for some fixed δ > 0. Thus, ℓ∗e(p− 1) > p1/2+c+δ, with this holding for
a positive proportion of primes p. Thus, we have the theorem for the set of
primes.

Now consider the numbers pl, where p, l are primes with p, l ≤ Q. We
apply (7) where p, l are primes with p, l ≤ Q which have property Pc+δ.
Assuming as we may that pl satisfies (5), we have

ℓ∗e(λ(pl)) > (pl)1/2+c+δ exp(−2(log logQ)3).

Thus, there are ≫ π(Q)2 pairs of primes p, l ≤ Q for which pl has prop-
erty Pc.

We now consider the set of all positive integers. Consider the integers
n = ap where a ≤ pδ/2, where p is a prime with property Pc+δ. By the
first part of the proof, these numbers n comprise a positive proportion of all
numbers n. Further, for such a number n we have

ℓ∗e(λ(n)) ≥ ℓ∗e(p− 1) > p1/2+c+δ > (ap)1/2+c = n1/2+c.

Thus, n has property Pc. This completes the proof of the theorem.
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5. The 1 − ε results. In this section we improve the 1/2 + ε results
to 1 − ε, but we assume the Generalized Riemann Hypothesis (GRH). We
begin with the following slight strengthening of Theorem 2 of [11]:

Theorem 23. Let e ≥ 2 be an integer. If the GRH is true, then for x, y
with 1 ≤ y ≤ log x,

∣

∣

∣

∣

{

p ≤ x : ℓe(p) ≤
p

y

}
∣

∣

∣

∣

≪ π(x)

y
+
x log log x

log2 x
,

where the implied constant depends at most on the choice of e.

Proof. Since the proof is rather similar to the proof of the main theorem
in [9] and the proof of Theorem 2 in [11], we only give a brief outline. With
ip = (p− 1)/ℓe(p), we see that ℓe(p) ≤ p/y implies that ip ≥ y/2.

First step: We first consider primes p such that ip ∈ ((x log x)1/2, x).
As in the first part of the proof of Lemma 6, the number of such primes is
O(x/log2 x).

Second step: Consider primes p such that q | ip for some prime q in the

interval [x1/2/log3 x, (x log x)1/2]. We may bound this by considering primes

p ≤ x such that p ≡ 1 (mod q) for some prime q ∈ [x1/2/log3 x, (x log x)1/2].
The Brun–Titchmarsh inequality then gives that the number of such primes
p is at most

∑

q∈[ x1/2

log3 x
,(x log x)1/2]

x

φ(q) log(x/q)
≪ x

log x

∑

q∈[ x1/2

log3 x
,(x log x)1/2]

1

q
≪ x log log x

log2 x
.

Third step: Now consider primes p such that q | ip for some prime q in the

interval [y, x1/2/log3 x]. In this range the GRH gives useful bounds; by (28)
in [9] or Corollary 6 and Lemma 9 of [11], we have

|{p ≤ x : q | ip}| ≪
π(x)

qφ(q)
+O(x1/2 log(xq2)).

Summing over q, we find that the number of such p is bounded by

∑

q∈[y,x1/2/ log3 x]

(

π(x)

q2
+O(x1/2 log(xq2))

)

≪ π(x)

y
+

x

log2 x
.

Fourth step: For the remaining primes p, any prime divisor q | ip is
smaller than y. Hence ip must be divisible by some integer d in the interval
[y/2, y2]. The analog of (28) in [9] for not-necessarily-squarefree integers, or
more directly, Corollary 6 and Lemma 9 of [11], gives

(8) |{p ≤ x : d | ip}| ≪
π(x)

dφ(d)
+O(x1/2 log(xd2)).
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Hence the total number of such p is bounded by
∑

d∈[y/2,y2]

(

π(x)

dφ(d)
+O(x1/2 log(xd2))

)

≪ π(x)

y
,

where the last estimate follows from the well known result
∑

a≤T 1/φ(a) =

c log T +O(1) (for an appropriate constant c) and partial summation.

Remark. It follows easily from (8) that for 1 ≤ y ≤ x1/4/log x and
assuming the GRH, we have

∣

∣

∣

∣

{

p ≤ x : p1/2y log2 x ≤ ℓe(p) ≤
p

y

}
∣

∣

∣

∣

≪ π(x)

y
.

Let δ(x) =
√

log log x/log x. By a slight abuse of notation, say an integer

n has property P1−δ if ℓ∗e(λ(n)) ≥ n1−δ(n). Theorem 23 is our principal tool
in the proof of the following result.

Theorem 24. Assume the GRH holds. The set of primes and the set

of integers pl with p, l prime and p < l < 2p have property P1−δ almost

always.

Proof. Let
W = {p prime : ℓ∗e(p) < p/log p},

where we use the mnemonic W for weak. From Theorem 23 we have

(9) πW(x) ≪ x log log x/log2 x.

We now consider
S :=

∑

p≤x

log (p− 1)W ,

following the lines of the proof of Lemma 15. We have

(10) S =
∑

d≤x
dW=d

Λ(d)π(x, d, 1) =
∑

p≤x
p∈W

π(x, p, 1) log p+O

(

x

log x

)

.

Using Brun’s or Selberg’s sieve as in the proof of Lemma 15, we have
∑

p>x1−ε π(x, p, 1) ≪ εx/log x, so that the contribution to the last sum in

(10) from the primes p > x1−ε is ≪ εx. For primes p ≤ x1−ε we use the
Brun–Titchmarsh inequality to get π(x, p, 1) ≪ x/(εp log x), so that by (9),
the contribution to the sum from these primes is ≪ x/(ε logx). Letting
ε = 1/

√
log x, we get

(11)
∑

p≤x

log (p− 1)W ≪ x/
√

log x.

Thus, (p − 1)W ≤ pδ(p)/2 almost always. The proof of our theorem for the
set of primes now follows in exactly the same way as in Theorem 12.



Periods of linear congruential and power generators 165

The case for the numbers pl now also follows using (5) and our prior
arguments.

We now begin to examine the normal contribution to λ(n) from primes
in W .

Lemma 25. Assuming the GRH is true, for x, T ≥ 3, the number of

integers n ≤ x such that p |λ(n) for p ∈ W and p > T is

≪ x log log x · log log T

log T
.

Proof. If p |λ(n), then either p2 |n or some prime q ≡ 1 (modp) di-
vides n. The number of n ≤ x in the first case is clearly bounded by x/T .
By the Brun–Titchmarsh inequality and partial summation,

x
∑

q≤x, q≡1 (mod p)

1

q
≪ x log log x

p
,

hence the number of n ≤ x for which the second case occurs is

≪
∑

p>T, p∈W

∑

q≤x, q≡1 (mod p)

x/q ≪ x log log x
∑

p>T, p∈W

1/p,

which, since πW(x) ≪ x log log x/log2 x, is

≪ x log log x · log log T

log T

by partial summation.

We now prove that for most integers n, λ(n)W is fairly small in the
following sense:

Lemma 26. Let f(n) =
∑

p|λ(n), p∈W log p. Assuming the GRH is true,

for almost all integers n, we have

f(n) < (log log n)2.

Proof. Take T = exp((log log x)2) in Lemma 25. The number of n ≤ x
for which some p ∈ W , p > T , divides λ(n) is o(x). Letting

∑′ denote a
sum over n for which no p ∈ W , p > T , divides λ(n), we find as before that

∑

n≤x

′
f(n) =

∑

p≤T, p∈W

log p
∑

n≤x
p|λ(n)

′
1

≪ x
∑

p≤T, p∈W

log p

p2
+ x log log x

∑

p≤T, p∈W

log p

p
.
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Since πW(x) ≪ x log log x/log2 x, partial summation gives
∑

p≤T, p∈W

log p

p
≪ (log log T )2 ≪ (log log log x)2.

Hence
∑

n≤x

′
f(n) ≪ x log log x(log log log x)2.

Thus, the average order of f(n), after removing those integers n where λ(n)
is divisible by some p ∈ W , p > T , is ≪ log logn(log log logn)2. We conclude
that f(n) < (log log n)2 holds for almost all n.

We are now ready to prove a result for ℓ∗e(λ(n)) on the assumption of
the GRH.

Theorem 27. If the GRH is true, then for each fixed integer e ≥ 2,

ℓ∗e(λ(n)) = n · exp(−(1 + o(1))(log logn)2 log log logn)

as n→ ∞ through a set of asymptotic density 1.

Proof. We shall show that if the GRH is true, then

(12) ℓ∗e(λ(n)) ≥ λ(λ(n)) exp(−3(log logn)2(log log log logn)2)

for almost all n. The theorem will then follow from the trivial inequality
ℓ∗e(λ(n)) ≤ λ(λ(n)) and Theorem 16. By Lemma 26 we may assume that
f(n) < (log log n)2. Let

W1 = {p prime : p/log p ≤ ℓ∗e(p) < p/(log log p · log log log p)},
so that by Theorem 23 we have πW1(x) ≪ π(x)/(log log x · log log log x). Let
g(n) =

∑

p|λ(n), p∈W1
1. Then

∑

n≤x

g(n) =
∑

p≤x, p∈W1

∑

n≤x, p|λ(n)

1

≪ x
∑

p≤x, p∈W1

1

p2
+ x log log x

∑

p≤x, p∈W1

1

p

≪ x log log x · log log log log x,

the last estimate coming from partial summation and our inequality for
πW1(x). Thus, for almost all n, g(n) < log logn (log log log logn)2.

Also, let

W2 = {p prime : p/(log log p · log log log p) ≤ ℓ∗e(p) < p/log log log p},
so that by Theorem 23 we have πW2(x) ≪ π(x)/log log log x. We let h(n) =
∑

p|λ(n), p∈W2
1. As in the calculation for g(n), we get

∑

n≤x

h(n) ≪ x(log log x)2/log log log x,
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so that for almost all n we have

h(n) < (log logn)2 log log log logn/log log logn.

Now assume that f(n), g(n), h(n) are bounded as above, and assume
that the inequalities in Lemma 17 hold. We have by Lemma 5

(13) ℓ∗e(λ(n)) ≥ λ(λ(n))

λ(n)

∏

p|λ(n)

ℓ∗e(p) ≥
λ(λ(n))

λ(n)
ABC,

where

A :=
∏

p|λ(n)W1

p

log p
,

B :=
∏

p|λ(n)W2

p

log log p · log log log p
,

C :=
∏

p|λ(n)/λ(n)W∪W1∪W2

p

log log log p
.

Now

ABC ≥
∏

p|λ(n)/λ(n)W
p

DEF
,

where

D := (logn)g(n),

E := (log logn · log log logn)h(n),

F := (log log logn)ω(λ(n)).

By our assumptions on n, and taking n sufficiently large, we have

DEF ≤ exp(2(log log n)2(log log log log n)2).

Further,

∏

p|λ(n)/λ(n)W

p =
γ(λ(n))

exp(f(n))
≥ λ(n)

logn · exp((log logn)2)
.

Hence by the above estimates,

ABC ≥ λ(n) exp(−3(log logn)2(log log log logn)2)

for almost all n. We use this estimate in (13), so that (12) and the theorem
follow.

As mentioned in the Introduction, ℓ∗e(λ(n)) is the period of the power

generator uei
(modn) if ℓ∗u(n) = λ(n), that is, if ℓ∗u(n) is as large as possible.

We now briefly consider the situation for a general modulus n when we do
not make this assumption about u. We have the following result.
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Theorem 28. Assuming the GRH, for any fixed integers e, u ≥ 2, the

period of the sequence uei
(modn) is equal to

n · exp(−(1 + o(1))(log logn)2 log log logn)

as n→ ∞ through a certain set of integers of asymptotic density 1.

Proof. First note the elementary inequality

(14) ℓ∗e(n/j) ≥
1

j
ℓ∗e(n) for j |n.

To see this, as before let j(e), n(e) be the largest divisors of j, n respectively
that are coprime to e, so that ℓ∗e(n) = ℓe(n(e)) and ℓ∗e(n/j) = ℓe(n(e)/j(e)).
Let j(e) = j1j2 where j1 is the largest divisor of j(e) that is coprime to
n(e)/j(e). Then

ℓe(n(e)) = ℓe(j1j2n(e)/j(e)) = [ℓe(j1), ℓe(j2n(e)/j(e))].

Further, ℓe(j2n(e)/j(e)) | j2 · ℓe(n(e)/j(e)), so that

ℓ∗e(n) = ℓe(n(e)) ≤ ℓe(j1) · j2 · ℓe(n(e)/j(e))

≤ j(e) · ℓe(n(e)/j(e)) ≤ j · ℓ∗e(n/j),

which proves (14). Recall that the period for the sequence uei
(modn) is

ℓ∗e(ℓ
∗
u(n)). Thus, if ℓ∗u(n) = λ(n)/j, we have by (14) that the period is

ℓ∗e(λ(n)/j) ≥ 1

j
ℓ∗e(λ(n)).

But, on the GRH we have ℓ∗u(n) > n/(logn)2 log log log n almost always; this
follows from the proof of Corollary 2 in [13]. Thus, we may take j <
(logn)2 log log log n, so the result follows from Theorem 27.
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