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Galois module structure in weakly ramified 3-extensions

by

Stéphane Vinatier (Limoges)

1. Introduction. Let p be an odd prime number, N a finite Galois
p-extension of Q, O its ring of integers, D its different and G its Galois
group. Since G is of odd order, there exists a unique fractional ideal A of O
such that

A2 = D−1;

A is called the square root of the inverse different. It has the structure of
a Z[G]-module, which Erez has shown to be locally free if and only if the
extension is weakly ramified, that is, if the second ramification groups are
trivial at all places. We assume this condition is fulfilled (it is only relevant
for places above p here) and we denote by (A) the class of A in the class
group Cl(Z[G]) of locally free Z[G]-modules. The main result of this paper
focusses on the case p = 3.

Theorem 1. Let N/Q be a weakly ramified 3-extension. Then (A)3 = 1
in Cl(Z[G]).

This is an improvement, in the case p = 3 considered here, of [V3, Theo-
rem 1], which states that (A)e = 1 (for any odd p, e standing for the ramifi-
cation index of p in N/Q). In other situations, the class (A) is known to be
trivial (and then A is a free Z[G]-module) when N/Q is a tame extension
of odd degree (see [E], which deals more generally with relative extensions)
and when N/Q is a weakly ramified extension of odd degree with abelian
decomposition groups at wild places [V1].

The majorization of the order of (A) obtained here for the non-locally
abelian and non-tame case does not depend on the weakly ramified
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3-extension under consideration (examples of these are constructed in [V2]);
further it is as close as possible to the expected result that (A) is trivial.
There are at least two technical reasons, to be given below, that make (A)3

much easier to handle than (A) itself. Dealing with the general p case is
another problem to solve. The importance of p = 3 will appear in the com-
binatorial computations of Section 3, which we are currently able to make
only under this assumption.

The proof of Theorem 1 builds on results of [V3], namely those preceding
Lemma 2.9 there, which is our starting point. In the next section we recall
useful notations and results from that paper and from the literature; we
also establish useful preliminary results, especially an integrality criterion.
This is done for all p. Eventually, in Section 3, we restrict to the case p = 3,
reformulate our main result in terms of the former integrality criterion (The-
orem 3.1) and give its proof, which makes a crucial use of the symmetries
in the sum of pth powers of resolvents appearing in the criterion.

Let us fix some notations before going any further: if K is a finite
extension of Qp contained in a fixed algebraic closure Qc

p of Qp, we let
ΩK denote its absolute Galois group Gal(Qc

p/K), vK its discrete valuation
from K× onto Z, OK its valuation ring, πK a uniformizing parameter, and
℘K = πKOK its valuation ideal. If L is a finite Galois p-extension of K, we
denote by DL/K and AL/K the different of the extension and the square root
of its inverse. The order of a finite group Λ is denoted by |Λ|, the subgroup
generated by some λ ∈ Λ by 〈λ〉 and the set of irreducible characters of Λ

with values in Qc
p by Λ̂.

2. Preliminaries

2.1. Prerequisites. We need some tools first developed by Fröhlich and
Taylor to study the class of the ring of integers (O) in Cl(Z[G]) when the
extension N/Q is tamely ramified, and adjusted by Erez to the study of our
class (A). Details may be found in [F], [T] and [E]. The most important
tool is Fröhlich’s Hom-description of the class group, which is the following
explicit isomorphism of groups:

Cl(Z[G]) ≃
HomΩQ

(RG, J(E))

HomΩQ
(RG, E

×) Det(U(Z[G]))
,

where RG is the additive group of virtual characters of G with values in an
algebraic closure Qc of Q, E ⊂ Qc is a “big enough” number field, J(E) its
idèle group, ΩQ = Gal(Qc/Q) and U(Z[G]) = R[G]××

∏
l Zl[G]×, l running

over all prime numbers. We shall define the Det morphism at the finite
components of U(Z[G]) below in formula (1).

The class (A) is represented by an ΩQ-equivariant morphism f (namely
f(χω) = f(χ)ω for all χ ∈ RG, ω ∈ ΩQ), which can be explicitly expressed
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in terms of resolvents and twisted Galois Gauss sums [E, Theorem 3.6]. For
each prime number l, we denote by fl the semi-local component of f in
Jl(E) =

∏
L|l E

×
L, where L runs through the prime ideals of OE above l and

EL is the completion of E with respect to its L-adic valuation. Our ultimate
goal is to show that, up to multiplication of f by a suitable global ΩQ-
equivariant morphism (namely in HomΩQ

(RG, E
×)), fl lies in Det(Zl[G]×)

for every prime number l. In this paper we shall content ourselves with
proving it for the pth power of fl when p = 3.

There are several simplifications due to former results at this stage: by
[E, Theorem 2], we know that fl belongs to Det(Zl[G]×) for l 6= p, so we only
have to deal with fp. Further, fp can be written as a product [V3, Prop.
2.2]: fp = f(p),p

∏
l 6=p f

∗
(l),p, in which the factors indexed by l 6= p only involve

tame ramification, so they are dealt with by adapting [T, Theorem 3] (see
[V1, Lemma 4.4]). Since the absolute Galois group ΩQ acts transitively on
the prime ideals ℘ above p in E, it is sufficient to look at what happens
for one of them. We thus fix an embedding jp : Qc →֒ Qc

p and we denote
by Mp the closure in Qc

p of the image jp(M) of a number field M ⊂ Qc; it
yields a surjective morphism that we also denote by jp : Jp(E) →→ Ep, and
an isomorphism between RG and RG,p, the group of virtual characters of G
with values in Qc

p. We also get an embedding j∗p : ΩQp
→֒ ΩQ, ω 7→ j−1

p ◦ω◦jp,
which yields the following isomorphism (see [CNT] for details):

j∗p :
HomΩQ

(RG, Jp(E))

Det(Zp[G]×)

∼
−→

HomΩQp
(RG,p, E

×
p )

Det(Zp[G]×)
,

such that j∗p(f(p),p) = jp ◦ f(p),p ◦ j
−1
p . In fact, j∗p(f(p),p) is easily seen [V1,

§3.4] to be induced from a morphism gp on the group of virtual characters
of G(p), the decomposition group at the place of N above p corresponding
to jp, which we identify through j∗p with Γ = Gal(Np/Qp). In other words,

j∗p(f(p),p)(θ) = IndΓG(gp)(θ) = gp(Res θ),

where Res θ is the restriction of a character θ of G to Γ . Showing that
(A) is trivial is now equivalent to showing that, up to multiplication of f
by a suitable global ΩQ-equivariant morphism, the resulting morphism gp
belongs to Det(Zp[Γ ]×), that is, there exists u =

∑
Γ uγγ ∈ Zp[Γ ]× such that

gp = Det(u). By definition, Det(u) is the ΩQp
-equivariant morphism from

RΓ,p to E×
p such that, for any irreducible character θ of Γ ,

Detθ(u) = det
( ∑

γ∈Γ

uγΘ(γ)
)
,(1)

where Θ is a matrix representation of Γ of character θ.
Now we take advantage of studying the pth power of (A), instead of (A)

itself. The class (A)p is represented in Fröhlich’s Hom-description by fp so,
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by the same arguments as above, we are reduced to showing that gpp belongs
to Det(Zp[Γ ]×). By [V3, Prop. 2.5], we can get rid of the pth power of the
twisted Galois Gauss sum involved in gpp, hence we only have to deal with
the pth power of the resolvent function hp ∈ Hom(RΓ,p,O

×
Ep

), defined by

hp(θ) = (αp | θ) = Detθ

( ∑

γ∈Γ

γ(αp)γ
−1

)
,(2)

where αp denotes a basis of ANp/Qp
as a Zp[Γ ]-module. Further, if we denote

by Γ0 the inertia group of the extension Np/Qp, by N0 the fixed subfield
and by β a basis of ANp/N0

as a ON0
[Γ0]-module (it was denoted by βp in

[V3], but we wish to keep the notation βi for another purpose in Section
3), we know by [E, (6.3)] that there exists λ ∈ ON0

[Γ ]× such that, for every
θ ∈ RΓ,p,

(αp | θ) = (β | Res θ) Detθ(λ),

where Res is now the restriction of the characters of Γ to the inertia group.
We shall characterize bases of ANp/N0

over ON0
[Γ0] in Subsection 2.3. Let

kp ∈ Hom(RΓ0,p, E
×
p ) be defined by kp(χ) = (β |χ) for every χ ∈ RΓ0,p. We

deduce that, for some λ ∈ ON0
[Γ ]×,

hp = IndΓ0

Γ (kp) Det(λ).

[V3, Lemma 2.9] states that the pth power of kp is ΩN0
-equivariant and

takes values in the unit group, namely

kpp ∈ HomΩN0
(RΓ0,p,O

×
Ep

) = Det(M×
0 ),

where M0 is the maximal order of N0[Γ0]. By arguments similar to those
used at the end of [V3, §2.2], we obtain:

Proposition 2.1. If kpp ∈ Det(ON0
[Γ0]

×), then (A)p = 1.

We are thus reduced to studying a function on the characters of Γ0 in-
stead of a function on the characters of Γ . We will see in the next subsection
that Γ0 is a very convenient group to work in (to begin with, it is abelian
in our situation). Further in Subsection 2.4, we give an integrality criterion
in order to establish the hypothesis of Proposition 2.1.

2.2. “Linear duality” of Γ0. Since the second ramification group Γ2 of
Np/N0 is trivial, we know by [S1, IV2, Cor. 3 and 4] that Γ0 = Γ1 is abelian
of exponent p, namely isomorphic, as an abelian group, to the product of
say m ≥ 1 copies of the field Fp with p elements. This gives Γ0 the structure
of an Fp-vector space of dimension m. Notice that a subgroup of index p
of Γ0 becomes a hyperplane for this structure, whereas a subgroup of order
p becomes a line. Further, fixing a group isomorphism from µp, the group
of pth roots of unity in Qc

p, to Fp, enables identifying a character χ of Γ0
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with a linear form, so that the group of irreducible characters Γ̂0 becomes
the dual of Γ0 as an Fp-vector space, namely the “linear dual” of Γ0.

One easily checks that Γ0 has

r =
pm − 1

p− 1
= 1 + p+ · · · + pm−1

subgroups of order p, just by considering the elements of order p. By duality
we get:

Lemma 2.2. The number of subgroups of index p of Γ0 equals r.

The following result, as well as analogous ones, will be used repeatedly
in Section 3.

Lemma 2.3. (i) If γ ∈ Γ0 \ {1}, then the number of characters χ ∈ Γ̂0

such that χ(γ) = 1 equals pm−1.

(ii) If m ≥ 2, γ ∈ Γ0\{1} and γ′ ∈ Γ0\〈γ〉, then the number of characters

χ ∈ Γ̂0 such that χ(γ) = χ(γ′) = 1 equals pm−2.

Proof. The map γ̂ : Γ̂0 → µp, χ 7→ χ(γ), is a linear form with the

previous identifications, so its kernel is a hyperplane of Γ̂0 (since γ 6= 1),
thus of cardinality pm−1. The conditions on γ and γ′ ensure that they are
linearly independent, so the set of characters which are trivial on both of
them is the intersection of two distinct hyperplanes, hence of dimension
m− 2 and of cardinality pm−2.

2.3. Normal basis for the square root of the inverse different. Here we
consider a slightly more general situation: we let K denote any finite exten-
sion of Qp, L/K a finite abelian totally and weakly ramified p-extension,
and we set Λ = Gal(L/K). We characterize bases of AL/K over OK [Λ] and,
for every extension K ′ of K contained in L, we find a particular basis of
AK′/K over OK [Gal(K ′/K)].

By [B, Lemma 4.2], there exists a uniformizing parameter π of K such

that L is contained in the second Lubin–Tate division field K
(2)
π of K corre-

sponding to π. This implies in particular that for K ′ as above, K ′/K is also
weakly ramified. Further, by [B, Theorem 2], any uniformizing parameter
πL of L generates OL as a module over its associated order in the group
algebra K[Λ] (see (3) below). We deduce the following.

Proposition 2.4. Any uniformizing parameter πL of L is a basis of ℘L
over OK [Λ].

By Ullom’s results [U, Theorem 2], we know that ℘L is a free OK [Λ]-
module; it is clear that any generator is of valuation 1. Byott’s work implies
that the converse is true.
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Proof. By [B, Lemma 3.1], the order associated to OL satisfies:

{x ∈ K[Λ] | xOL ⊆ OL} = OK [Λ] + OK(π−1
K TΛ),(3)

where TΛ =
∑

λ∈Λ λ. Thus by [B, Theorem 2], any x ∈ ℘L ⊂ OL may be
expressed as

x =
∑

λ∈Λ

nλλ(πL) + yπ−1
K TΛ(πL),

where y ∈ OK and nλ ∈ OK for every λ ∈ Λ. Notice that
∑

Λ nλλ(πL) ∈ ℘L,
and thus yπ−1

K TΛ(πL) ∈ ℘L ∩ OK = ℘K . We deduce that y ∈ ℘K : indeed,
since L/K is weakly ramified, [S1, III, Prop. 7] shows that TrL/K(℘L) = ℘K
and TrL/K(℘2

L) = ℘2
K . This yields the following surjective additive mor-

phism:

TrL/K :
℘L
℘2
L

→→
℘K
℘2
K

,

where the quotients involved are both isomorphic to the residue field of K,
so the map is a 1-to-1 correspondence. Thus TΛ(πL) = TrL/K(πL) ∈ ℘K \℘2

K
and y ∈ ℘K . Writing y = πKz with z ∈ OK yields x =

∑
Λ(nλ + z)λ(πL),

so ℘L ⊆ OK [Λ]πL, which implies the proposition.

Let e = |Λ| denote the ramification index in L/K.

Corollary 2.5. (i) If β ∈ L, then β is a basis of AL/K over OK [Λ] if

and only if vL(β) = 1 − e.

(ii) Assume the previous condition is fulfilled and let K ′ be any inter-

mediate extension of L/K. Then TrL/K′(AL/K) = AK′/K =
OK [Gal(K ′/K)]β′, where β′ = TrL/K′(β).

Proof. By Hilbert’s formula for the valuation of the different [S1, IV2,
Prop. 4], AL/K =℘1−e

L =π−1
K ℘L; thus AL/K =OK [Λ]β ⇔ ℘L =OK [Λ](πKβ),

and (i) is implied by Proposition 2.4. Set e′ = [K ′ : K]. By [S1, III, Prop.
7], one has

TrL/K′(AL/K) = TrL/K′(℘1−e
L ) = ℘1−e′

K′ = AK′/K ,

so vK′(β′) ≥ 1 − e′. Further, any x ∈ AL/K can be written x =
∑

Λ xλλ(β)
with xλ ∈ OK , hence TrL/K′(x) =

∑
Λ xλλ(β′), which implies vK′(β′) ≤

1 − e′, and (i) yields (ii).

2.4. An integrality criterion. Let again K be a finite extension of Qp

contained in Qc
p and let Λ be any finite abelian group. We denote by MΛ

the maximal order of K[Λ]. Wedderburn’s isomorphism of Qc
p-algebras reads

[S2, Prop. 10]:

Qc
p[Λ] ≃

⊕

χ∈Λ̂

Qc
p, u =

∑

λ∈Λ

uλλ 7→
( ∑

λ∈Λ

uλχ(λ)
)

χ∈Λ̂
.
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Notice that
∑

Λ uλχ(λ) = Detχ(u) by (1). This morphism yields

MΛ ≃
⊕

χ∈Λ̂

OK(χ),

where K(χ) is the extension of K generated by the values of χ. Fourier’s
inversion formula [S2, Prop. 11] links the coordinates uλ of u to its image
by the former isomorphism:

uλ =
1

|Λ|

∑

χ∈Λ̂

χ(λ−1) Detχ(u).

We deduce the integrality criterion we are looking for.

Proposition 2.6. If ψ ∈ Det(M×
Λ), then ψ ∈ Det(OK [Λ]×) if and only

if , for every λ ∈ Λ, the sum

Sψ(λ) =
∑

χ∈Λ̂

χ(λ−1)ψ(χ)

belongs to |Λ|OK .

Proof. Let u ∈ M×
Λ be such that ψ = Det(u). Write u =

∑
Λ uλλ with

uλ ∈ K. Then u ∈ OK [Λ]× if and only if uλ ∈ OK for every λ ∈ Λ, since
OK [Λ] ∩M×

Λ = OK [Λ]×. So we are done thanks to the above formula.

3. The p = 3 case. We now suppose p = 3, so our weakly ramified
extension N/Q is a 3-extension. We still denote by N3 the closure in Qc

3

of j3(N), by Γ the Galois group of the local extension N3/Q3, by Γ0 its
inertia group, by N0 the fixed subfield of N3 under Γ0 and by β a basis of
AN3/N0

over ON0
[Γ0]. The 3-extension N3/N0 is abelian, totally and weakly

ramified, so we may apply the results of Subsection 2.3. In order to prove
Theorem 1, thanks to Propositions 2.1 and 2.6, we are reduced to showing:

Theorem 3.1. For every γ ∈ Γ0, S(γ) =
∑

χ∈Γ̂0
χ(γ−1)(β |χ)3 belongs

to |Γ0|ON0
.

Let m be such that |Γ0| = 3m. We suppose m ≥ 2 in the following,
since [V3, Theorem 1] implies Theorem 1 when m = 1. By Lemma 2.2, Γ0

has r = (3m − 1)/2 subgroups of index 3; to each of them, we attach an

irreducible character χi ∈ Γ̂0, 1 ≤ i ≤ r, which has this subgroup as kernel.
We denote by χ0 the trivial character of Γ0; then the set {χi | 0 ≤ i ≤ r}

represents the orbits of Γ̂0 under the action of ΩN0
. Indeed, two characters χ

and χ′ are conjugate under the action of ΩN0
if and only if ker(χ) = ker(χ′);

one then has χ′ = χ or χ′ = χ2.
For each 1 ≤ i ≤ r, we let Ki denote the fixed subfield of N3 un-

der ker(χi), we set ∆i = Gal(Ki/N0) and βi = TrN3/Ki
(β). Then, by

Corollary 2.5, βi is a basis of AKi/N0
over ON0

[∆i]. Further we set β0 =
TrN3/N0

(β).
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The following diagram sums up the notations for the local extension.

N3

ker(χi)

∋ β

Ki

3m−1

∆i

∋ βi, 1 ≤ i ≤ r.

N0

3

∋ β0

Q3

From the definition (2) of the resolvent, one easily sees that (β |χ0) = β0.
Further, if χ is a non-trivial character of Γ0, there exists 1 ≤ i ≤ r such that
ker(χ) = ker(χi), and one has

(β |χ)Γ0
= (βi |χ)∆i

,

where the subscripts mean that χ is viewed as a character of Γ0 (inflated
from ∆i) on the left side and as a character of ∆i on the right side. We shall
omit such subscripts in the following. We set, for 1 ≤ i ≤ r,

Ti(γ) = χi(γ
−1)(βi |χi)

3 + χ2
i (γ

−1)(βi |χ
2
i )

3;

we then get

S(γ) = β3
0 +

r∑

i=1

Ti(γ).(4)

3.1. Computation of S(1). We let ζ be a primitive 3rd root of unity and
for each 1 ≤ i ≤ r, we choose δi in Γ0 such that χi(δi) = ζ; consequently,
Γ0 = 〈δi〉× ker(χi) and ∆i = 〈δi|Ki

〉. For k ∈ {1, 2, 3}, we denote by σk,i the
sum of all products of k distinct conjugates of βi in Ki/N0 and by τk,i the
sum of the kth powers of all these conjugates. We compute:

Ti(1) = (βi |χi)
3 + (βi |χ

2
i )

3

= (βi + ζ2δi(βi) + ζδ2i (βi))
3 + (βi + ζδi(βi) + ζ2δ2i (βi))

3

= 2τ3,i + 12σ3,i + 3TrKi/N0
(β2
i (−δi(βi) − δ2i (βi)))

= 2τ3,i + 12σ3,i + 3(τ3,i − β0τ2,i).

Using the relations between σ’s and τ ’s [vW, Exercise 5.18] yields

Ti(1) = 2β3
0 − 9β0σ2,i + 27σ3,i,

so that

(5) S(1) = (2r + 1)β3
0 − 9β0

r∑

i=1

σ2,i + 27

r∑

i=1

σ3,i.
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Since β0 = TrN3/N0
(β) and AN0/N0

= ON0
, β0 is a unit by Corollary 2.5; fur-

ther, 2r+1 = 3m, so we only have to deal with 9
∑r

i=1 σ2,i and 27
∑r

i=1 σ3,i.
We first notice that the σk,i are evaluations at the γ(β)’s, γ ∈ Γ0, of

polynomials in indeterminates Xγ ’s, γ ∈ Γ0. As an abuse of language, we
shall say that a property is formally satisfied by the evaluation at the γ(β)’s
of such a polynomial when we mean that it is satisfied by this polynomial.
Notice that Γ0 acts on polynomials in the Xγ ’s by permutation of the inde-
terminates.

Lemma 3.2. Each σk,i, 1 ≤ i ≤ r and 1 ≤ k ≤ 3, is formally invariant

under the action of Γ0.

Since σk,i lies in N0, this is of course stronger than stating that σk,i is
invariant under Γ0. It means for instance that the polynomial

∑
γ∈Γ0

Xγ ,
whose evaluation at the γ(β)’s is β0 = TrKi/N0

(βi) = σ1,i for any i, is
invariant under the action of Γ0. In other words, each σk,i is a symmetric
function of the conjugates of β over N0 with respect to the action of Γ0.

Proof. By definition, σk,i is a symmetric function of the conjugates of
βi with respect to the action of 〈δi〉; further βi = TrN3/Ki

(β) is formally
invariant under the action of ker(χi), as are its conjugates under 〈δi〉, so the
same holds for σk,i, and the result follows since Γ0 = ker(χi) × 〈δi〉.

We denote by σ2 the second elementary symmetric function of the con-
jugates of β over N0.

Lemma 3.3. 9
∑r

i=1 σ2,i = 3m+1σ2 belongs to 3m+1ON0
.

Proof. By definition,

σ2,i = βiδi(βi) + δi(βi)δ
2
i (βi) + δ2i (βi)βi,

so a product βδ(β) with δ ∈ Γ0 \ {1} may formally appear in σ2,i only in
the first or in the third product, that is, in

βi(δi(βi) + δ2i (βi)) =
( ∑

γ∈ker(χi)

γ(β)
)( ∑

γ′∈ker(χi)

(δiγ
′(β) + δ2i γ

′(β))
)
,

and we see that βδ(β) formally appears in σ2,i if and only if δ 6∈ ker(χi). We
deduce from Lemma 2.3 that

#{i ∈ {1, . . . , r} | δ 6∈ ker(χi)} = 3m−1,

so for each δ ∈ Γ0 \ {1}, the product βδ(β) formally appears 3m−1 times
in

∑r
i=1 σ2,i. Thanks to Lemma 3.2, the same happens for its conjugates

under Γ0. It is easy to check that all these conjugates are formally different,
that βδ(β) and βδ2(β) give rise to the same set of conjugates and that no
other formal coincidence occurs. Hence there are 3m 3m−1

2 formally different

products γ1(β)γ2(β) occurring 3m−1 times each in
∑r

i=1 σ2,i; but σ2 is pre-

cisely the sum of these
(

3m

2

)
products, so the equality of the lemma holds.
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It remains to write σ2 = 1
2 TrN3/N0

(
∑

γ∈Γ0\{1}
βγ(β)) and to notice that

βγ(β) ∈ A2
N3

= D−1
N3

to get σ2 ∈ ON0
, hence the result.

Lemma 3.4. 27
∑r

i=1 σ3,i belongs to 3mON0
.

Proof. We follow the same path as in the former proof:

σ3,i =
( ∑

γ1∈ker(χi)

γ1(β)
)( ∑

γ2∈ker(χi)

δiγ2(β)
)( ∑

γ3∈ker(χi)

δ2i γ3(β)
)
,

so a product βδ(β)δ′(β), with δ, δ′ ∈ Γ0 and #{1, δ, δ′} = 3, formally appears
in σ3,i if and only if Γ0 = ker(χi) ∐ δ ker(χi) ∐ δ′ ker(χi), which is also
equivalent to

δ /∈ ker(χi), δδ′ ∈ ker(χi).

We now have to consider two cases:

• if δ′ = δ2, the two conditions above amount to δ /∈ ker(χi), which
happens for 3m−1 values of i, so βδ(β)δ2(β) formally appears 3m−1 times in∑

i σ3,i;

• if δ′ 6= δ2, that is, δ′ /∈ 〈δ〉, there are 3m−1 characters χ of Γ0 such that
δδ′ ∈ ker(χ), among which 3m−2 are such that δ belongs to ker(χ) (indeed
δδ′ /∈ 〈δ〉, so Lemma 2.3(ii) applies). This gives 3m−1 − 3m−2 = 2 · 3m−2

characters of Γ0 whose kernels contain δδ′ but not δ, hence there are 3m−2

values of i such that βδ(β)δ′(β) formally appears in σ3,i (recall χi and χ2
i

share the same kernel). We infer that βδ(β)δ′(β) formally appears 3m−2

times in
∑

i σ3,i.

By Lemma 3.2, each βδ(β)δ2(β) (δ 6= 1) formally appears with its 3m−1

formally distinct conjugates under Γ0 (this product is fixed under 〈δ〉), so

that the sum of these conjugates equals one third of the trace of βδ(β)δ2(β),
whereas a product βδ(β)δ′(β) satisfying the previous conditions has 3m for-
mally distinct conjugates under Γ0. This implies

r∑

i=1

σ3,i =
3m−1

3
TrN3/N0

(
1

2

∑

δ 6=1

βδ(β)δ2(β)

)

+ 3m−2 TrN3/N0

(
1

2

∑

δ,δ′

βδ(β)δ′(β)

)
,

where the last sum runs over the δ ∈ Γ0 \ {1} and δ′ ∈ Γ0 \ 〈δ〉, and the
1
2 ’s correspond to the fact that each given product formally appears twice
in the sums. We eventually get

27

r∑

i=1

σ3,i ∈ 3m+1 TrN3/N0
(A3

N3/N0
) = 3m+1 ·

1

3
ON0

= 3mON0
.
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Notice that, unlike
∑

i σ2,i,
∑

i σ3,i is not a symmetric function of the
conjugates of β over N0 with respect to the whole permutation group S3m of
these conjugates, since the products of the first kind formally appear three
times more often in

∑
i σ3,i than those of the second kind.

Lemmas 3.3 and 3.4 together with formula (5) yield

S(1) ∈ 3mON0
.(6)

Before dealing with S(γ) in the case γ 6= 1, we have the following interlude.

3.2. The square root of the discriminant of AKi/N0
. Let i ∈ {1, . . . , r}

and δi as above; the set {βi, δi(βi), δ
2
i (βi)} is a basis of AKi/N0

over ON0
,

so the discriminant of AKi/N0
over ON0

is the principal fractional ideal
generated by

(βi − δi(βi))
2(δi(βi) − δ2i (βi))

2(δ2i (βi) − βi)
2.

We define Ri to be the following square root of this generator:

Ri = (βi − δi(βi))(δi(βi) − δ2i (βi))(δ
2
i (βi) − βi);

then Ri ∈ N0, since Ri is in Ki, R
2
i ∈ N0 and [Ki : N0] is odd. Of course

Ri is not formally invariant under the action of the whole permutation group
S3m . Yet one has:

Lemma 3.5. Ri is formally invariant under the action of Γ0 and

Ri = TrKi/N0
(β2
i (δ

2
i (βi) − δi(βi)))

= TrN3/N0

(
β

∑

(γ1,γ2)

γ1(β)γ2(δ
2
i (β) − δi(β))

)
,

where the sum runs over ker(χi) × ker(χi).

Proof. The first equality is straightforward, it proves the assertion and
yields the second one immediately.

In fact, the formal invariance property of Ri will not be needed, since
we shall make use of the second trace formula instead. We are now ready to
finish the proof of Theorem 3.1.

3.3. Computation of S(γ) for γ 6= 1. We fix γ ∈ Γ0 with γ 6= 1 and we
define the partition Iγ ∐ Jγ of {1, . . . , r} by

Iγ = {1 ≤ i ≤ r | γ /∈ ker(χi)}, Jγ = {1 ≤ j ≤ r | γ ∈ ker(χj)}.

One easily deduces from Lemma 2.3 that #Iγ = 3m−1 and #Jγ =
(3m−1 − 1)/2. For each i ∈ Iγ , we ensure χi(γ) = ζ (the primitive 3rd
root of unity introduced at the beginning of this section), replacing χi by
its square if necessary, and we choose δi ∈ Γ0 \ ker(χi) such that χi(δi) = ζ.
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We wish to compute (4):

S(γ) = β3
0 +

r∑

i=1

Ti(γ),

where Ti(γ) = χi(γ
−1)(βi |χi)

3 + χ2
i (γ

−1)(βi |χ
2
i )

3. For j ∈ Jγ , we know
from Subsection 3.1 that

Tj(γ) = Tj(1) = 2β3
0 − 9β0σ2,j + 27σ3,j .

We compute Ti(γ) for i ∈ Iγ :

Ti(γ) = ζ2(βi |χi)
3 + ζ(βi |χ

2
i )

3

= ζ2(βi + ζ2δi(βi) + ζδ2i (βi))
3 + ζ(βi + ζδi(βi) + ζ2δ2i (βi))

3

= −τ3,i − 6σ3,i + 3TrKi/N0
(β2
i (2δ

2
i (βi) − δi(βi)))

= −β3
0 + 3β0σ2,i − 9σ3,i + 3TrKi/N0

(β2
i (2δ

2
i (βi) − δi(βi))),

whereas Ti(γ
2) = −β3

0 + 3β0σ2,i − 9σ3,i + 3TrKi/N0
(β2
i (2δi(βi)− δ2i (βi))), so

that
Ti(γ) − Ti(γ

2) = 9Ri,

where Ri is the square root of the discriminant of AKi/N0
introduced in

the previous subsection. On the other hand, Ti(1) + Ti(γ) + Ti(γ
2) = 0, so

Ti(γ) + Ti(γ
2) = −2β3

0 + 9β0σ2,i − 27σ3,i and we get

Ti(γ) = −β3
0 +

9

2
β0σ2,i −

27

2
σ3,i +

9

2
Ri,

which yields

S(γ) =
9

2
β0

r∑

i=1

σ2,i −
27

2

r∑

i=1

σ3,i −
27

2
β0

∑

j∈Jγ

σ2,j +
81

2

∑

j∈Jγ

σ3,j +
9

2

∑

i∈Iγ

Ri.

The first two terms have already been dealt with in Lemmas 3.3 and 3.4,
whose proofs we may now adjust in order to deal with the third and fourth
terms.

Lemma 3.6. −27
2 β0

∑
Jγ
σ2,j belongs to 3m+1ON0

.

Proof. Recall from the proof of Lemma 3.3 that a product βδ(β) formally
appears in σ2,j if and only if δ /∈ ker(χj). This implies that the products
βγ(β) and βγ2(β) do not formally appear in

∑
Jγ
σ2,j, and that any product

βδ(β) with δ ∈ Γ0 \ 〈γ〉 formally appears in σ2,j for some j ∈ Jγ , since
〈γ〉 =

⋂
Jγ

ker(χj).

Let δ ∈ Γ0 \ 〈γ〉. Then δ ∈ ker(χj) with j ∈ Jγ if and only if χj ∈

ker(δ̂)∩ ker(γ̂), where δ̂ denotes the linear form Γ̂0 → µ3, χ 7→ χ(δ) (see Sub-

section 2.2). This intersection of two distinct hyperplanes of Γ̂0 is of codimen-
sion 2 and of cardinality 3m−2, so δ happens to be in ker(χj) for (3m−2 − 1)/2
values of j ∈ Jγ . Hence δ /∈ ker(χj) is true for (3m−1 − 1)/2−(3m−2 − 1)/2 =
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3m−2 values of j ∈ Jγ and βδ(β) formally appears 3m−2 times in
∑

Jγ
σ2,j ,

together with its distinct conjugates under Γ0 by Lemma 3.2. All of them
being formally different but generated by both products βδ(β) and βδ2(β),
we get ∑

j∈Jγ

σ2,j = 3m−2 TrN3/N0

(
1

2

∑

δ /∈〈γ〉

βδ(β)

)
∈ 3m−2ON0

,

which gives the result.

Lemma 3.7. 81
2

∑
Jγ
σ3,j belongs to 3mON0

.

Proof. We deduce from the proof of Lemma 3.4 that a product βδ(β)δ′(β)
with #{1, δ, δ′} = 3 formally appears in σ3,j with j ∈ Jγ if and only if

δ /∈ ker(χj), δδ′ ∈ ker(χj) and γ ∈ ker(χj).

These conditions imply as before that δ and δ′ do not belong to 〈γ〉, but also
that δ′ /∈ δ〈γ〉 (otherwise δδ′ ∈ ker(χj) would never be possible for j ∈ Jγ).

We now fix δ and δ′ in Γ0 such that δ /∈ 〈γ〉 and δ′ /∈ 〈γ〉∐ δ〈γ〉. Observe
first that δ /∈ 〈γ, δδ′〉, because otherwise δδ′ would belong to δ〈γ〉 ∐ δ2〈γ〉,
which contradicts our hypothesis. We have to consider two cases:

• if δ′ ∈ δ2〈γ〉, the three preceding conditions amount to γ ∈ ker(χj)
and δ /∈ ker(χj), so each of the three terms: βδ(β)δ2(β), βδ(β)δ2γ(β) and
βδ(β)δ2γ2(β), formally appears in σ3,j for 3m−2 values of j in Jγ ;

• if δ′ /∈ δ2〈γ〉, then δδ′ /∈ 〈γ〉. If m = 2, this yields Γ0 = 〈γ, δδ′〉,
which contradicts δ /∈ 〈γ, δδ′〉, so that no such product occurs in

∑
Jγ
σ3,j .

If m ≥ 3, the two conditions: γ ∈ ker(χ) and δδ′ ∈ ker(χ), define a codimen-

sion 2 subspace of Γ̂0, in which the additional condition δ ∈ ker(χ) defines a
hyperplane, since δ /∈ 〈γ, δδ′〉. Thus there are 2·3m−3 characters χ of Γ0 such
that γ ∈ ker(χ), δδ′ ∈ ker(χ) and δ /∈ ker(χ), and our product βδ(β)δ′(β)
formally appears in σ3,j for 3m−3 values of j ∈ Jγ .

Using Lemma 3.2 we obtain
∑

Jγ

σ3,j = 3m−3 TrN3/N0

(
1

2

∑

δ /∈〈γ〉

βδ(β)δ2(β)

)

+ 3m−2 TrN3/N0

(
1

2

∑

δ /∈〈γ〉

(βδ(β)δ2γ(β) + βδ(β)δ2γ2(β))

)

+ 3m−3 TrN3/N0

(
1

2

∑

δ /∈〈γ〉

βδ(β)
∑

δ′ /∈〈γ,δ〉

δ′(β)

)

(the last term vanishes if m = 2) and we conclude as in the proof of
Lemma 3.4, taking advantage of the fact that the gain in the valuation
of 81 = 3 · 27 balances the loss in the valuation of 3m−3 = 1

3 · 3m−2.
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Lemma 3.8. 9
2

∑
Iγ
Ri belongs to 3mON0

.

Proof. We start with the second expression of Ri given in Lemma 3.5,
and we note that the only constraint on δi for i ∈ Iγ is that χi(δi) = ζ, so
we may choose δi = γ for any i ∈ Iγ . We get

Ri = TrN3/N0

( ∑

γ1,γ2

βγ1(β)γ2(β
′)
)
,

where γ1 and γ2 both run through ker(χi) and β′ = γ2(β) − γ(β). We have
the following decomposition of the sum inside brackets:

β2β′ + β2
∑

γ2 6=1

γ2(β
′) + β

∑

γ1 6=1

γ1(β)(β′ + γ1(β
′) + γ2

1(β′))

+ β
∑

γ1 6=1

γ1(β)
∑

γ2 /∈〈γ1〉

γ2(β
′).

Clearly β2β′ formally appears in each Ri, so its trace comes with a factor
3m−1 in

∑
Iγ
Ri. The products involving only one parameter δ ∈ Γ0 \ {1},

that is, β2δ(β′), βδ(β)β′, βδ(β)δ(β′) and βδ(β)δ2(β′), formally appear in Ri
if and only if δ ∈ ker(χi), so δ may be any element of Γ0 \ 〈γ〉. If this is the
case, each of the former products formally appears in Ri for 3m−2 values of
i ∈ Iγ (there are 3m−1 characters χ of Γ0 such that δ ∈ ker(χ), among which
2 · 3m−2 are not trivial on γ), and their traces come with a factor 3m−2 in∑

Iγ
Ri.

The last term contains products of the shape βδ(β)δ′(β′) with δ ∈ Γ0\{1}
and δ′ ∈ Γ0 \〈δ〉. Clearly, δ and δ′ cannot lie in 〈γ〉. Further γ cannot belong
to 〈δ, δ′〉, in other words δ′ /∈ 〈δ, γ〉. Consequently, this term vanishes when
m = 2. Suppose m ≥ 3, δ ∈ Γ0 \ 〈γ〉 and δ′ ∈ Γ0 \ 〈δ, γ〉. The characters

χ of Γ0 such that χ(δ) = χ(δ′) = 1 form a codimension 2 subspace of Γ̂0,
in which the additional condition χ(γ) = 1 defines a hyperplane; thus there
are 3m−3 values of i ∈ Iγ such that βδ(β)δ′(β′) formally appears in Ri, and
its trace comes with a factor 3m−3 in

∑
Iγ
Ri.

Eventually we get
∑

Iγ

Ri = 3m−1 TrN3/N0
(β2β′) + 3m−2 TrN3/N0

(
β2

∑

δ /∈〈γ〉

δ(β′)
)

+ 3m−2 TrN3/N0

(
β

∑

δ /∈〈γ〉

δ(β)(β′ + δ(β′) + δ2(β′))
)

+ 3m−3 TrN3/N0

( ∑

δ /∈〈γ〉

βδ(β)
∑

δ′ /∈〈δ,γ〉

δ′(β′)
)
,

keeping in mind that the last term vanishes when m = 2. In fact, it also



Weakly ramified 3-extensions 185

vanishes if m ≥ 3: fix δ ∈ Γ0 \ 〈γ〉; then
∑

δ′ /∈〈δ,γ〉

δ′(β′) =
∑

δ′ /∈〈δ,γ〉

δ′γ2(β) −
∑

δ′ /∈〈δ,γ〉

δ′γ(β) = 0

since γ2〈δ, γ〉 = 〈δ, γ〉 = γ〈δ, γ〉. Let us now have a look at the other sums
involved:

β2
∑

δ /∈〈γ〉

δ(β′) = β2
( ∑

δ /∈〈γ〉

δγ2(β) −
∑

δ /∈〈γ〉

δγ(β)
)

= 0,

β
∑

δ /∈〈γ〉

δ(β)β′ = ββ0β
′ − β(β + γ(β) + γ2(β))β′

= β0ββ
′ − (β2γ2(β) + βγ2(β2)) + γ(β2γ2(β) + βγ2(β2)),

so that
TrN3/N0

(
β

∑

δ /∈〈γ〉

δ(β)β′
)

= β0 TrN3/N0
(ββ′);

and

β
∑

δ /∈〈γ〉

δ(β)δ(β′) = β
( ∑

δ /∈〈γ〉

δ(β)δγ2(β) −
∑

δ /∈〈γ〉

δ(β)δγ(β)
)

= 0.

In order to study the only remaining sum β
∑

δ /∈〈γ〉 δ(β)δ2(β′), we introduce

the binary relation
γ
∼ on Γ0 \ 〈γ〉, defined by

δ
γ
∼ δ′ if δ′ ∈ 〈δ, γ〉 \ 〈γ〉.

It is easily verified that
γ
∼ is an equivalence relation, and that each class of

Γ0\〈γ〉 under
γ
∼ contains 6 elements. Further, one checks that βδ(β)δ′2γ2(β)

and βδ(β)δ2γ2(β) (respectively βδ(β)δ′2γ(β) and βδ(β)δ2γ(β)) are conju-

gate if δ
γ
∼ δ′, hence

TrN3/N0

(
β

∑

δ /∈〈γ〉

δ(β)δ2(β′)
)

= 6TrN3/N0

(
β

∑

δ∈Γγ

δ(β)δ2(β′)
)
,

where Γγ denotes a set of coset representatives of
γ
∼ in Γ0 \ 〈γ〉.

Collecting the results yields
∑

Iγ

Ri = 3m−1 TrN3/N0
(β2β′) + 3m−2β0 TrN3/N0

(ββ′)

+ 2 · 3m−1 TrN3/N0

(
β

∑

δ∈Γγ

δ(β)δ2(β′)
)
,

which clearly belongs to 3m−2ON0
.

Putting everything together with (6), we obtain

∀γ ∈ Γ0, S(γ) ∈ 3mON0
,

which is Theorem 3.1 and implies Theorem 1.
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Remark. One may compute
∑

Iγ
σk,i for k ∈ {2, 3} in order to check the

coherence of the results for the analogous sums over Jγ with the expressions
of

∑r
i=1 σk,i given in Subsection 3.1. These computations turn out to be

more complicated than the ones presented above.
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