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Sum-sets of small upper density
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Guillaume Bordes (Bordeaux)

1. Introduction. Let A ⊆ N be an infinite set of non-negative integers.
For y > x > 0, we put

A(x) := |A ∩ [0; x]|, A(x, y) := |A ∩ [x; y]|.
We define the lower asymptotic density d(A) and upper asymptotic density

d(A) by

d(A) := lim inf
x→∞

A(x)

x
, d(A) := lim sup

x→∞

A(x)

x
.

Unless explicitly stated otherwise, we assume that

(1) 0 ∈ A, gcd(A) = 1.

We define the sum X + Y of two sets X, Y ⊂ R by

X + Y = {x + y | x ∈ X, y ∈ Y }.
Inverse additive theory describes sets A with “small” sum-set A + A.

Say, one may ask about sets A of positive lower or upper density with small
quotient d(A + A)/d(A) or d(A + A)/d(A). For example, let N ≥ 3 be an
integer. Then for the set A = {0, 1} + NN we have

d(A) = d(A) = 2/N, d(A + A) = d(A + A) = 3/N,

so that the above-mentioned quotients are both equal to 3/2. (As we shall
see in a while, this is the minimal possible value under the assumption (1).)

Kneser [7, 4] gave a complete description of sets A satisfying d(A+A) <
2d(A). In brief, he showed that A should be “approximately” of the form
K + NN, where N is a positive integer and K is a set of residues mod N .

Among other things, Kneser’s theorem implies that d(A + A) ≥ 3

2
d(A)

when A satisfies (1), and the equality d(A + A) = 3

2
d(A) is possible only

with |K| = 2.
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188 G. Bordes

Extending Kneser’s results to upper density seems to be a rather difficult
problem. The following example, due to Jin [5], shows that this time one
cannot get away with sets of the type K + NN.

Example 1.1. Let α be a real number satisfying 0 < α < 1/2. Let (Tn)n≥1

be an increasing sequence of positive integers such that limTn+1/Tn = ∞.
Then the set

A = N ∩
∞
⋃

n=1

[⌈(1 − α)Tn⌉, Tn]

satisfies d(A) = α and d(A + A) = 3

2
α.

In what follows, we use the notation

α = d(A), γ = d(A + A).

We assume that 0 < α ≤ 1/2 and we put σ = γ/α.

It is not difficult to show that σ ≥ 3/2 (see Lemma 2.1 below), but the
structure of sets A with σ = 3/2 was only recently determined by Jin [6].
He proved that a set A with σ = 3/2 is “similar” either to K + NN with
|K| = 2, or to the set from Example 1.1. For σ > 3/2 the problem is open.

In the present article we determine the structure of sets A with 3/2 ≤ σ
< 5/3 subject to the additional assumption α < α0, where α0 is a small
absolute constant. For σ = 3/2 our result is covered by that of Jin, but for
3/2 < σ < 5/3 our result is new.

Now, we can formulate the main result of this article.

Theorem 1.2. There exists a positive absolute constant α0 such that the

following holds. Let A be a set of non-negative integers such that 0 ∈ A and

gcd(A) = 1. Put α = d(A) and γ = d(A + A). Assume that 0 < α = d(A)
≤ α0 and that

γ = σα, where 3/2 ≤ σ < 5/3.

Then we have one of the following cases:

1. Non-archimedean case: there exist two positive integers N and t with

gcd(N, t) = 1 such that A ⊆ {0, t} + NN, and

α ≥ 6

(4σ − 3)N
.

2. Archimedean case: there exists an increasing sequence (yj)j≥1 of inte-

gers with

lim
j→∞

A(yj)

yj
= α,

and two sequences (bj)j≥1 and (tj)j≥1 with 0 ≤ bj ≤ tj ≤ yj such that ,
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if we define

λj :=
bj

yj − tj
, rj :=

A(tj, yj)

yj − tj + 1
,

then A(bj , tj) = 0 for all j ≥ 1 and

lim
j→∞

λj = λ, lim
j→∞

rj = r

with

λ ≤ 2σ − 3

2σ − 2

(

1

2σ − 2
− α

)−1

, r ≥
(

1

2σ − 2
+ λ

(

1

2σ − 2
− α

))

.

Example 1.3. We cannot extend Theorem 1.2 to the case d(A + A) =
5

3
d(A). It suffices to consider the set A := NN ∪ (1 + 2NN) which satisfies

this condition and for which α = 3/2N . Putting σ = 5/3 in Theorem 1.2
would give α ≥ 18/11N > 3/2N .

The following example proves that the lower bound obtained in the non-
archimedean case of Theorem 1.2 cannot be refined.

Example 1.4. Fix 3/2 ≤ σ < 5/3. Let (Tn)n≥1 be an increasing se-
quence of positive integers such that limn→∞ Tn+1/Tn = ∞ and set

E :=

∞
⋃

n=1

[⌈(1 − α′)Tn⌉; Tn],

where α′ = 3/(4σ − 3). Let N be a sufficiently large positive integer and

A := NE ∪ (1 + NE).

We can verify that

α =
6

(4σ − 3)N
< α0, γ = 3

1 + α′

2N
=

6σ

(4σ − 3)N
.

2. General results in additive number theory. Before proving the
main theorem, let us show why 3/2 is a lower bound for the quotient σ.

Lemma 2.1. Let A be a set of non-negative integers. Suppose that 0 ∈ A
and gcd(A) = 1. Then γ ≥ 3

2
α.

We can easily deduce the lemma from the following

Theorem 2.2 ([9, p. 23]). Let k ≥ 3 be an integer. Let A = {a0, a1, . . .
. . . , ak−1} be a set of non-negative integers such that

0 = a0 < a1 < · · · < ak−1, gcd(A) = 1.

If ak−1 ≥ 2k − 3, then |A + A| ≥ 3k − 3.
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Proof of Lemma 2.1. Since d(A) = α, there exists an increasing sequence
(yj)j≥1 of integers such that, for all ε > 0, if we define Aj := A ∩ [0; yj ] and
assume j sufficiently large, we have

α − ε < |Aj |/yj < α + ε, gcd(Aj) = 1.

In what follows, we will assume that yj ∈ Aj .
Under the hypothesis α < 1/2, we can see that Aj satisfies the hypothesis

of Theorem 2.2. Thus,

|Aj + Aj | ≥ 3|Aj| − 3,

and therefore,

(A + A)(2yj)

2yj
≥ |Aj + Aj |

2yj
≥ 3

2

|Aj |
yj

− 3

2yj
≥ 3

2
α − 2ε.

This yields d(A + A) ≥ 3

2
α and concludes the proof.

In the rest of this section, we give some general results in additive number
theory, to be used in the next section.

Let A be a finite set of integers. It is easy to see that |A+A| ≥ 2|A| − 1,
and |A + A| = 2|A| − 1 if and only if A is an arithmetical progression.

Freiman [9, p. 21] generalized this fact.

Theorem 2.3 (Freiman). Let A be a finite set of non-negative integers

such that |A| ≥ 3 and min(A) = 0. Denote by ak the greatest element of A.

If

ak ≤ 2|A| − 3,

then

|2A| ≥ |A| + ak.

This result has been generalized to distinct sets by V. F. Lev and P. Y.
Smeliansky in [8] and was improved by Y. V. Stanchescu in [10]. We will
use the following version:

Theorem 2.4 (Lev, Smeliansky). Let A and B be two finite sets of non-

negative integers such that 0 ∈ A ∩B. Denote by l(A) := max(A)−min(A)
the length of A and by h(A) := l(A) − |A| + 1 the number of holes in A. If

max(l(A), l(B)) ≤ |A| + |B| − 3,

then

|A + B| ≥ (|A| + |B| − 1) + max(h(A), h(B)).

Now, let us introduce some notions taken from [2].

Definition 2.5. Let A and B be two abelian groups and K ⊂ A, L ⊂ B.
A map ϕ : K → L is said to be a Freiman homomorphism or an F2-

homomorphism if, for all (x, y, x′, y′) ∈ K4, we have

x + y = x′ + y′ ⇒ ϕ(x) + ϕ(y) = ϕ(x′) + ϕ(y′).
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Such a ϕ is said to be an F2-isomorphism if it is invertible and if ϕ−1 is also
an F2-homomorphism.

Remark 2.6. In what follows, we will use some affine maps in Z
2 which

are clearly F2-isomorphisms.

The following proposition is clear:

Proposition 2.7. An F2-isomorphism ϕ : K → L induces a bijective

map K + K → L + L.

Remark 2.8. Similarly, for any positive integer i we can define the
notion of Fi-homomorphism. We say that ϕ : K → L is an Fi-homomorphism

if for all (x1, . . . , xi, x
′
1, . . . , x

′
i) ∈ K2i,

x1 + · · · + xi = x′
1 + · · · + x′

i ⇒ ϕ(x1) + · · · + ϕ(xi) = ϕ(x′
1) + · · · + ϕ(x′

i).

Clearly, an Fi-homomorphism is an F2-homomorphism for any i ≥ 2.

Definition 2.9. A subset P of an abelian group is called a generalized

arithmetical progression of dimension m if it can be written as

P = P (x0; x1, . . . , xm; b1, . . . , bm)(2)

= {x0 + β1x1 + · · · + βmxm : βi = 0, . . . , bi − 1}
where x0, . . . , xm are elements of the group and b1, . . . , bm are positive inte-
gers.

We say that P is an F2-progression if the map

θ : {0, . . . , b1 − 1} × · · · × {0, . . . , bm − 1} ⊂ Z
m → P,

(β1, . . . , βm) 7→ x0 + β1x1 + · · · + βmxm,

is an F2-isomorphism.

We will heavily use the following fundamental theorem due to G. Freiman
whose proof can be found in [2] and whose version below is taken from [1]:

Theorem 2.10 (Freiman). Let σ be a positive real number , and A a

finite set of non-negative integers such that 0 ∈ A and |A| > k(σ) where

k = k(σ) is a fixed constant depending only on σ. If

|A + A| ≤ σ|A|,
then A is a subset of an F2-progression

P = P (0; x1, . . . , xm; b1, . . . , bm)

of dimension m ≤ ⌊σ − 1⌋ and whose length is bounded from above: |P | ≤
C1(σ)|A|.

Furthermore, if b1 ≤ · · · ≤ bm, then

i > ⌊log2 σ⌋ ⇒ bi ≤ C2(σ).

Here C1(σ) and C2(σ) are constants depending only on σ.
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Our strategy of proof is simple. First, we are going to transform the
infinite problem into a finite one. Then we will use Theorem 2.10 to obtain
the structure of finite sets. Finally, we will come back to the set A using
asymptotic arguments.

In the following, Theorem 2.10 will be used with σ < 4 so that it will
give rise to F2-progressions of dimension at most 2. Then, in view of Defini-
tion 2.9, it will be natural to use results concerning addition of sets in Z

2,
particularly the following one whose proof can be found in [3, p. 28]:

Theorem 2.11 (Freiman). Let A ⊂ Z
2 be a set of at least twelve ele-

ments not on the same line. Assume that

|A + A| <
10

3
|A| − 5.

Then A is contained in a set F2-isomorphic to

A0 = {(0, 0), (0, 1), . . . , (0, l1 − 1)} ∪ {(1, 0), (1, 1), . . . , (1, l2 − 1)}
with l1, l2 ≥ 1 and l1 + l2 = |A + A| − 2|A| + 3.

3. Proof of the main theorem. With a view to use the theorems of
the previous section, let us transform our problem into a problem on finite
sets.

Let ε > 0. We can choose y1 ∈ N sufficiently large and a strictly increas-
ing sequence (yj)j≥1 of positive integers such that for all j,

(A + A)(2yj) ≤ (γ + ε) · 2yj , (α − ε)yj ≤ A(yj) ≤ (α + ε)yj.

We will use the notation

Aj := {a ∈ A : a ≤ yj}.
In what follows, all the notations will depend on the sequence (yj)j≥1. Every
change of the sequence will naturally change the sets Aj and all related
objects. We will denote by O(ε) any positive function of ε bounded above
by Cε where C is a constant only depending on the set A.

Now, we are able to determine the structure of the sets Aj . We have

|Aj + Aj |
|Aj |

=
|Aj + Aj |

2yj
· 2 · yj

|Aj |
(3)

≤ (A + A)(2yj)

2yj
· 2 · yj

|Aj|

≤ 2 · γ + ε

α − ε
≤ 2σ + ε′ < 4,

where ε′ = O(ε). Thus, for ε sufficiently small, we can apply the fundamental
Theorem 2.10 of Freiman to the sets Aj . By a simple calculation, we obtain
m ≤ 2 and b2 ≤ C2. First, we are going to exclude the case where Aj is a
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subset of an arithmetical progression of dimension m = 1 for infinitely many
values of j.

Suppose this is the case. Then, for j sufficiently large, Aj ⊆ Pj where
Pj is an arithmetical progression of difference 1 (for gcd(A) = 1) and first
term 0. We can assume it has minimal length. Then, by Theorem 2.10 and
since {0, yj} ⊆ Pj, we have

|Pj | ≥ yj ,(4)

|Pj | ≤ C1|Aj |.(5)

Now we combine (4) and (5) to find a lower bound for α:

α ≥ 1

σ
γ ≥ 1

σ

( |Aj + Aj |
2yj

− ε

)

≥ 1

σ

(

2|Aj | − 1

2yj
− ε

)

(6)

≥ 1

σ

(

1

2yj

(

2yj

C1

− 1

)

− ε

)

≥ α0,

for an absolute constant α0 (remember that ε can be chosen sufficiently
small). Thus, we can exclude this case under hypothesis α < α0 of Theo-
rem 1.2.

Remark 3.1. The value of C1 (one can find an estimate in [2]) implies
a very small value for the bound α0. What happens for α > α0 is an open
question.

Thus, for infinitely many integers j, the set Aj is a subset of an arith-
metical progression of dimension m = 2. By extracting a subsequence, we
can assume that this is the case for all Aj . Then, for all j ≥ 1, there is an
F2-isomorphism θj between a subset of Z

2 and Aj (see Definition 2.9). By
Proposition 2.7, the sets θ−1

j (Aj) satisfy the inequality

|θ−1

j (Aj) + θ−1

j (Aj)| ≤ (2σ + ε′)|θ−1

j (Aj)|.

At this point, using the assumption σ < 5/3, we can apply Theorem 2.11
to θ−1

j (Aj). Composing isomorphisms, we see that, for all j ≥ 1, there

exists an F2-isomorphism ϕj : Z
2 → N such that Aj ⊆ ϕj(A

0
j ) where A0

j =

{(0, 0), (0, 1), . . . , (0, l1,j − 1)} ∪ {(1, 0), (1, 1), . . . , (1, l2,j − 1)}. Combining,
if necessary, those isomorphisms with suitable affine maps, we can assume
that ϕj((0, 0)) ∈ Aj and ϕj((1, 0)) ∈ Aj . Furthermore, we have l1,j + l2,j =
|Aj + Aj | − 2|Aj | + 3.

Notice that the number of elements of ϕ−1(Aj) in each line cannot
be bounded, since otherwise, for all ε > 0, we could obtain d(A + A) >
(2 − ε)d(A) by considering the sequence (A + A)(yj)/yj .

We set d1,j := ϕj((1, 0)) − ϕj((0, 0)) and d2,j := ϕj((0, 1)) − ϕj((0, 0)).
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Then we can give the explicit F2-isomorphism

(7) ϕj : Z × {0, 1} → N, (x, y) 7→ aj + xd1,j + yd2,j,

where aj = ϕj((0, 0)).

Since A ⊆ N, the number d1,j has to be positive for infinitely many
values of j which we again extract. We can also assume, by switching the
lines if necessary, that the differences d2,j are positive.

Lemma 3.2. The sequence (d1,j)j≥1 is bounded.

Proof. Assume the contrary. Then there exists an index j such that
A(d1,j) > 3 and, consequently, there exist distinct a, b ∈ A ∩ [0; d1,j] such
that ϕ−1

j (a) and ϕ−1

j (b) lie on the same line. We deduce from (7) that |b−a| =
kd1,j where k is a positive integer. This is impossible since |b − a| < d1,j .

Since the sequence (d1,j)j≥1 is bounded, there exists a positive integer N
such that d1,j = N for infinitely many j. We choose the largest N with this
property, and, again extracting a subsequence, we assume that d1,j = N for
all j.

3.1. The non-archimedean case. In this case, we assume N > 1. We
show that the sequence (d2,j)j≥1 can then be supposed to be constant.

Lemma 3.3. There exist a positive integer t and a sequence (yj)j≥1 such

that d2,j = t for all j ≥ 1.

Proof. Each Aj is included in two residue classes mod N . Since those
sets satisfy Aj ⊆ Ak for j < k, the whole set A is included in two residue
classes. If we denote by t the smallest term of the part of A not congruent
to 0 mod N , we can choose, for each j ≥ 1, the isomorphism ϕj such that
ϕj((0, 0)) = 0 and ϕj((1, 0)) = t.

Hence, we can assume that d2,j = t for all j ≥ 1 and we can exhibit an
F2-isomorphism ϕ between Z

2 and N such that ϕ|Aj
= ϕj :

ϕ : Z × {0, 1} → N, (x, y) 7→ xN + yt.

By hypothesis (1), we must have gcd(t, N) = 1 and A is included in two
residue classes mod N which we denote by B and C:

B = {a ∈ A : a ≡ 0 mod N}, C = {a ∈ A : a ≡ t mod N}.
We define Bj := B(yj) and Cj := C(yj) and we assume, choosing y1 suf-
ficiently large, that those sets are non-empty. We define t0 := min(C),
bj := max(Bj) and cj := max(Cj). We may assume that bj = yj , replacing
if necessary A by A − t0 and extracting a subsequence of (yj)j≥1.
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Lemma 3.4. There exists a sequence (yj)j≥1 such that , for all ε > 0 and

for j sufficiently large,

|Aj| ≥
1

(2σ − 2 + ε)N
(bj + cj).

Proof. Remember that t0 is the smallest element of A not divisible by N .
We define Sj := bj + cj − t0 + 2.

Let ε > 0. We have, using Theorem 2.11,

Sj

N
≤ |Aj + Aj | − 2|Aj | + 3 ≤ (2σ − 2 + ε′)|Aj| + 3 ≤ (2σ − 2 + ε′′)|Aj |,

where ε′ = O(ε) and ε′′ = O(ε). It suffices to choose j sufficiently large to
obtain the result.

Below, (yj)j≥1 is a sequence of integers as in the last lemma.

Now, we are going to refine the last results. We define

Xj :=
cj

bj
, λj :=

N |Aj |
bj + cj

.

Lemma 3.5. There exists a sequence (yj)j≥1 such that limj→∞ Xj = 1.

Proof. We will only use the definition of the upper asymptotic density
of A. Given ε > 0, for all sufficiently large j we have

A(cj)

cj
≤ A(bj)

bj
+ ε.

Furthermore,

A(cj) ≥ A(bj) −
bj − cj

N
.

Putting together the last two relations, we obtain

Nε +
λj(bj + cj)

bj
≥ λj(bj + cj)

cj
− bj

cj
+ 1.

This yields the following polynomial inequality:

(8) λjX
2
j − (1 − Nε)Xj − (λj − 1) ≥ 0.

It remains to determine the discriminant and the roots. We obtain

∆ = (2λj − 1)2 + ε(N2ε − 2N).

Thus, using Lemma 3.4 to bound λj from below, we see that the roots
X ′

j < X ′′
j satisfy

X ′
j =

1

2λj
(1 − Nε −

√
∆) =

1

λj
− 1 + O(ε),

X ′′
j =

1

2λj
(1 − Nε +

√
∆) = 1 − O(ε).
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Clearly, Xj < 1/λj − 1 + O(ε) is impossible, since the lower bound on λj

obtained in Lemma 3.4 would imply

Xj ≤ 1/λj − 1 + O(ε) ≤ 2σ − 3 + O(ε) < 1/3

for ε sufficiently small, and hence

(A + A)(bj + t0)

bj + t0
≥ |Bj| + |Bj| + |Cj + Cj |

bj + t0
≥ 2α − O(ε),

which contradicts the main hypothesis of Theorem 1.2. Thus, Xj ≥ 1−O(ε),
which is the conclusion of the lemma.

Now we combine the results of the last two lemmas and apply Theo-
rems 2.3 and 2.4 to the sets

B′
j :=

1

N
Bj , C ′

j :=
1

N
(Cj − t).

We have

|Aj| ≥
1

(2σ − 2 − ε)N
(bj + cj).

We notice that, for ε sufficiently small, since σ < 5/3,

1

2σ − 2 − ε
>

3

4
.

Fix δ > 0 such that

|Aj | ≥
(

3

4
+ δ

)

bj + cj

N
.

Using Lemma 3.5, we obtain

|Aj | ≥
(

3

4
+ δ

)

(2 − ε′)yj

N

for ε′ arbitrarily small. Therefore, there exists a positive constant δ′ such
that, for j sufficiently large,

|Aj | ≥
(

3

2
+ δ′

)

yj

N
.

It follows that

|B′
j| = |Bj | = |Aj| − |Cj | ≥ |Aj| −

yj

N
≥

(

1

2
+ δ′

)

yj

N
≥

(

1

2
+ δ′

)

max(B′
j).

Thus we can apply Theorem 2.3 to B′
j . We can do the same for C ′

j . Moreover,
we have

|B′
j| + |C ′

j| = |Aj | ≥
(

3

2
+ δ′

)

yj

N
,

so we can also apply Theorem 2.4.
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For j sufficiently large, we then have

|Aj + Aj | = |Bj + Bj | + |Bj + Cj | + |Cj + Cj |(9)

= |B′
j + B′

j | + |B′
j + C ′

j | + |C ′
j + C ′

j |
≥ |B′

j| +
yj

N
+ (1 − ε′)

yj

N
+ |B′

j | + (1 − ε′)
yj

N
+ |C ′

j |

= 2|Bj| + |Cj| + (3 − 2ε′)
yj

N
,

assuming, without loss of generality, that |Bj | ≥ |Cj|. Here, ε′ is arbitrarily
small, by Lemma 3.5.

Now, we also have, for j sufficiently large,

(10) |Aj + Aj | ≤ (2σ + ε′)|Aj |.
Since |Bj| ≥ |Cj |, inequality (9) implies that

|Aj + Aj | ≥
3

2
|Bj| +

3

2
|Cj| + (3 − 2ε′)

yj

N
=

3

2
|Aj| + (3 − 2ε′)

yj

N
.

Combining this with (10), we obtain

|Aj | ≥
6 − 4ε′

4σ − 3 + 2ε′
yj

N
.

Now, dividing by yj and sending j to infinity, we obtain

α ≥ 6 − 4ε′

4σ − 3 + 2ε′
1

N
.

Since ε′ is arbitrary, this proves the required inequality of Theorem 1.2:

d(A) ≥ 6

(4σ − 3)N
.

3.2. The archimedean case. Now we assume that N = 1. We show that,
in this case, the sequence (d2,j)j≥1 cannot be bounded. Suppose the contrary;
then we could extract a subsequence of (yj)j≥1 such that d2,j = t for all j
and act as in the non-archimedean case, i.e. find a common isomorphism
between every Aj and a part of two lines of Z

2. This isomorphism could be
written

ϕ : Z × {0, 1} → N, (x, y) 7→ x + ty.

This is impossible because, for j sufficiently large, we would have an ele-
ment of A ∩ ϕ({y = 0}) greater than t (remember that there are infinitely
many elements of ϕ−1(A) on each line) so that t would have two inverse
images under ϕ (one on each line), which contradicts the definition of an
F2-isomorphism.

Therefore, we can choose (yj)j≥1 and consequently tj := d2,j such that
tj is a strictly increasing sequence. Thus, as in the non-archimedean case,
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we can have ϕj((0, 0)) = 0, ϕj((1, 0)) = 1, ϕj((1, 0)) = tj and

ϕj : Z × {0, 1} → N, (x, y) 7→ x + ytj .

We shall apply Theorem 2.11 to the sets Aj . Then, we can include Aj in
a set A0

j which is the union of two arithmetical progressions B0
j and C0

j

(of difference N = 1 here). We denote as usual by bj := l2,j = |B0
j | and

cj := l2,j = |C0
j | the respective lengths, where 0 ∈ B0

j and yj ∈ C0
j . Indeed,

those two elements cannot be in the same progression: in this case, A would
be in an arithmetical progression of dimension 1, say B0

j . This case, which
is the single line case, is already excluded by α < α0. Those lengths being
supposed minimal, we have yj − tj = l2,j and max(B0

j ) = bj .

Lemma 3.6. There exists a sequence (yj)j≥1 such that , for all ε > 0,
there exists j0 ≥ 1 such that for all j ≥ j0,

|Aj | ≥
(

1

2σ − 2
− ε

)

(l1,j + l2,j).

Proof. It suffices to apply Theorem 2.11 for j sufficiently large:

l1,j + l2,j ≤ |Aj + Aj | − 2|Aj | + 3 ≤ (2σ − 2 + ε′)|Aj | + 3

≤ (2σ − 2 + ε′′)|Aj |,
where ε′ is arbitrarily small and ε′′ = O(ε′).

From now on, (yj)j≥1 is a sequence of integers as in the last lemma.

If bj ≥ tj, then l1,j + l2,j ≥ yj and, by Lemma 3.6 and the range of values
of σ, we have |Aj | ≥ 3

4
yj , which is incompatible with α < 1/2. Therefore,

bj < tj, and thus

(11) A(bj , tj) = 0.

Now we define Bj := A ∩ [0; bj ] and Cj := A ∩ [tj; yj ] with bj < tj.

The quotient Xj := |Bj |/bj cannot be too large, otherwise we would
obtain, considering the sets A(bj), a too large value for α. Clearly, we have

(12) X := lim sup
j→∞

Xj ≤ α.

Let us show in which sense bj is necessarily small compared with l2,j .

Lemma 3.7. Define λj := bj/l2,j. Then

(13) λ := lim sup
j→∞

λj ≤
2σ − 3

2σ − 2

(

1

2σ − 2
− X

)−1

.

Proof. We use Lemma 3.6, noting that

|Aj | = |Bj| + |Cj| = Xjλjl2,j + |Cj |.
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For all ε > 0, and j sufficiently large, we obtain

Xjλjl2,j + |Cj| ≥
(

1

2σ − 2
− ε

)

(λj + 1)l2,j ,

and so,

(14) |Cj | ≥ l2,j

(

1

2σ − 2
− ε + λj

(

1

2σ − 2
− ε − Xj

))

.

Now, we know that |Cj | ≤ l2,j , and therefore we obtain the upper bound

λj ≤
(

2σ − 3

2σ − 2
+ ε

)(

1

2σ − 2
− ε − Xj

)−1

.

It remains to recall that X ≤ α to obtain

λ ≤ 2σ − 3

2σ − 2

(

1

2σ − 2
− α

)−1

.

Let us take as a new sequence (yj)j≥1 a subsequence such that limj→∞ λj

= λ. It suffices to look again at the relation (14) to obtain

rj =
|Cj|
l2,j

≥ 1

2σ − 2
+ λ

(

1

2σ − 2
− X

)

for infinitely many values of j.
Then, a last extraction of a subsequence allows us to suppose that the

bounded sequence (rj)j≥1 has a limit r such that

(15) r ≥ 1

2σ − 2
+ λ

(

1

2σ − 2
− α

)

.

Hence, putting together (11), (12), Lemma 3.7 and (15) we conclude the
proof of the archimedean case of Theorem 1.2.
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