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Sum-sets of small upper density
by

GUILLAUME BORDES (Bordeaux)

1. Introduction. Let A C N be an infinite set of non-negative integers.
For y > x > 0, we put

Alz) ==[AN[0;z]|,  Alz,y) = AN [x;y]].
We define the lower asymptotic density d(A) and upper asymptotic density

d(A) by

d(A) := liminf M, d(A) :=limsup A(x)

T—00 x T—00 x

Unless explicitly stated otherwise, we assume that

(1) 0€ A, ged(A4)=1.

We define the sum X + Y of two sets X,Y C R by
X+Y={z+ylzeX, yeY}

Inverse additive theory describes sets A with “small” sum-set A + A.
Say, one may ask about sets A of positive lower or upper density with small
quotient d(A + A)/d(A) or d(A + A)/d(A). For example, let N >3 be an
integer. Then for the set A = {0,1} + NN we have

d(A) =d(A) =2/N, d(A+ A)=d(A+ A)=3/N,

so that the above-mentioned quotients are both equal to 3/2. (As we shall
see in a while, this is the minimal possible value under the assumption (1).)

Kneser [7, 4] gave a complete description of sets A satisfying d(A+ A) <
2d(A). In brief, he showed that A should be “approximately” of the form
K + NN, where N is a positive integer and K is a set of residues mod N.

Among other things, Kneser’s theorem implies that d(A4 + A) > 2 d(A)
when A satisfies (1), and the equality d(4 + A) = 2 d(A) is possible only
with [K]| = 2.
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188 G. Bordes

Extending Kneser’s results to upper density seems to be a rather difficult
problem. The following example, due to Jin [5], shows that this time one
cannot get away with sets of the type K + NN.

EXAMPLE 1.1. Let a be a real number satisfying 0 < o < 1/2. Let (T3,)n>1
be an increasing sequence of positive integers such that lim 7,y /T, = oc.
Then the set

A=NnJI[(1 - a)T,],T]

satisfies d(4) = a and d(A + A) = 3a.
In what follows, we use the notation
a=d(A4), ~y=dA+A).

We assume that 0 < a < 1/2 and we put ¢ = 7/a.

It is not difficult to show that o > 3/2 (see Lemma 2.1 below), but the
structure of sets A with o = 3/2 was only recently determined by Jin [6].
He proved that a set A with o =3/2 is “similar” either to K + NN with
|K| =2, or to the set from Example 1.1. For 0 > 3/2 the problem is open.

In the present article we determine the structure of sets A with 3/2 <o
< 5/3 subject to the additional assumption o < g, where ag is a small
absolute constant. For o = 3/2 our result is covered by that of Jin, but for
3/2 < 0 < 5/3 our result is new.

Now, we can formulate the main result of this article.

THEOREM 1.2. There exists a positive absolute constant ag such that the
following holds. Let A be a set of non-negative integers such that 0 € A and
ged(A) = 1. Put a = d(A) and v = d(A + A). Assume that 0 < o = d(A)
< «g and that

v=o0a, where3/2<o<5/3.

Then we have one of the following cases:

1. Non-archimedean case: there exist two positive integers N and t with
ged(N,t) =1 such that A C {0,t} + NN, and

6
*Z g 3N
2. Archimedean case: there exists an increasing sequence (y;)j>1 of inte-
gers with
i A _
J—oo  Yj

and two sequences (b;);>1 and (t;);>1 with 0 < b; < t; <y, such that,
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if we define
b Alts v
Njoi=—2— ::7(]’%) ,
Yi — yj —ti+1
then A(bj,t;) =0 for all j > 1 and
B A =
with

N3 1 - (L (1
“20-2\20-2 ) " " 22" "N\2w-2 "))
_ ExamPLE 1.3. We cannot extend Theorem 1.2 to the case d(A+ A) =
2d(A). It suffices to consider the set A := NN U (1 + 2NN) which satisfies

this condition and for which o« = 3/2N. Putting ¢ = 5/3 in Theorem 1.2
would give o > 18/11N > 3/2N.

The following example proves that the lower bound obtained in the non-
archimedean case of Theorem 1.2 cannot be refined.

ExaMPLE 1.4. Fix 3/2 < ¢ < 5/3. Let (T},)n>1 be an increasing se-
quence of positive integers such that lim, oo T+1/7T, = 0o and set

[e.9]

B = JII0 - o)) T,

n=1
where o = 3/(40 — 3). Let N be a sufficiently large positive integer and
A:=NEU(1+ NE).
We can verify that
6 1+d 60

T o 3N "% VT TN T 4o 3N

2. General results in additive number theory. Before proving the
main theorem, let us show why 3/2 is a lower bound for the quotient o.

LEMMA 2.1. Let A be a set of non-negative integers. Suppose that 0 € A
and ged(A) = 1. Then v > 3a.

We can easily deduce the lemma from the following

THEOREM 2.2 ([9, p. 23]). Let k > 3 be an integer. Let A = {ag,ar,...
...,ax_1} be a set of non-negative integers such that

O=ag< a1 < - <agp_q, ng(A)Zl.
Ifaj_1 > 2k —3, then |A+ A| > 3k — 3.
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Proof of Lemma 2.1. Since d(A) = a, there exists an increasing sequence
(yj)j>1 of integers such that, for all € > 0, if we define A; := AN[0;y;] and
assume j sufficiently large, we have

a—ce<|Ajl/ly; <a+e, ged(4)) =1
In what follows, we will assume that y; € A;.

Under the hypothesis o < 1/2, we can see that A; satisfies the hypothesis
of Theorem 2.2. Thus,
[Aj + Aj = 3|45] =3,
and therefore,
(A+A4)(2y)) > [Aj + A >3 A 3 >3 e
2yj 2yj 2 Yj Qyj 2
This yields d(A + A) > 3 and concludes the proof. m

In the rest of this section, we give some general results in additive number
theory, to be used in the next section.

Let A be a finite set of integers. It is easy to see that |A+ A| > 2|A| —1,
and |A + A| = 2|A| — 1 if and only if A is an arithmetical progression.

Freiman [9, p. 21] generalized this fact.

THEOREM 2.3 (Freiman). Let A be a finite set of non-negative integers
such that |A| > 3 and min(A) = 0. Denote by ay, the greatest element of A.
If

ap < Q‘A‘ - 3,
then
24] > [A] + .

This result has been generalized to distinct sets by V. F. Lev and P. Y.
Smeliansky in [8] and was improved by Y. V. Stanchescu in [10]. We will
use the following version:

THEOREM 2.4 (Lev, Smeliansky). Let A and B be two finite sets of non-
negative integers such that 0 € AN B. Denote by [(A) := max(A) — min(A)
the length of A and by h(A) :=1(A) — |A| + 1 the number of holes in A. If

max(l(A),l(B)) < |A| +|B| — 3,
then
|A+ B| = (JA[ + [B] = 1) + max(h(A), h(B)).
Now, let us introduce some notions taken from [2].

DEFINITION 2.5. Let A and B be two abelian groupsand K C A, L C B.
A map ¢ : K — L is said to be a Freiman homomorphism or an Fs-
homomorphism if, for all (z,y,2,y') € K*, we have

r+y=2+y = o) +ely) =o@)+ey).
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1

Such a ¢ is said to be an Fy-isomorphism if it is invertible and if ¢~ is also

an Fh-homomorphism.

REMARK 2.6. In what follows, we will use some affine maps in Z? which
are clearly Fb-isomorphisms.

The following proposition is clear:
PROPOSITION 2.7. An Fys-isomorphism ¢ : K — L induces a bijective
map K+ K — L+ L.

REMARK 2.8. Similarly, for any positive integer ¢ we can define the
notion of F;-homomorphism. We say that ¢ : K — L is an F;-homomorphism
if for all (z1,...,z;,2),...,7,) € K,

Tkt m =T bt a = p(m) £ (@) = e(@) + o ().
Clearly, an F;-homomorphism is an Fa-homomorphism for any ¢ > 2.

DEFINITION 2.9. A subset P of an abelian group is called a generalized
arithmetical progression of dimension m if it can be written as

(2) P:P((L‘();.ZUl,...,xm;bl,...,bm)

={zo+ f1w1+ -+ BnTm : B =0,...,b; — 1}
where zg, ..., z,, are elements of the group and by, ...,b,, are positive inte-
gers.

We say that P is an Fs-progression if the map
0:{0,....,01 —1} x---x{0,...,by, — 1} CZ™ — P,
(Brs- -y Bm) = xo + G121 + -+ + BmTm,
is an Fy-isomorphism.

We will heavily use the following fundamental theorem due to G. Freiman
whose proof can be found in [2] and whose version below is taken from [1]:

THEOREM 2.10 (Freiman). Let o be a positive real number, and A a
finite set of non-negative integers such that 0 € A and |A| > k(o) where
k = k(o) is a fized constant depending only on o. If

|A+ Al < o]A],
then A is a subset of an Fy-progression
P:P(O;xl,...,xm;bl,...,bm)

of dimension m < |0 — 1] and whose length is bounded from above: |P| <
Ci(0)|Al.
Furthermore, if by < --- < by, then

7> Uogg UJ = b < CQ(U).

Here Ci(0) and Cy(o) are constants depending only on o.
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Our strategy of proof is simple. First, we are going to transform the
infinite problem into a finite one. Then we will use Theorem 2.10 to obtain
the structure of finite sets. Finally, we will come back to the set A using
asymptotic arguments.

In the following, Theorem 2.10 will be used with ¢ < 4 so that it will
give rise to Fy-progressions of dimension at most 2. Then, in view of Defini-
tion 2.9, it will be natural to use results concerning addition of sets in Z2,
particularly the following one whose proof can be found in [3, p. 28]:

THEOREM 2.11 (Freiman). Let A C Z? be a set of at least twelve ele-
ments not on the same line. Assume that

10
A+ Al < ?\A| — 5.
Then A is contained in a set Fo-isomorphic to

A% = {(0,0),(0,1),...,(0,1; — 1)} U{(1,0),(1,1),...,(1,1o — 1)}
with l1,lo > 1 and I + 1o = |[A+ A| — 2|A| + 3.

3. Proof of the main theorem. With a view to use the theorems of
the previous section, let us transform our problem into a problem on finite
sets.

Let € > 0. We can choose y; € N sufficiently large and a strictly increas-
ing sequence (y;);j>1 of positive integers such that for all j,

(A+A)(2y;) < (v+e)-2y;, (a—9)y; <Ay;) < (a+e)y;.
We will use the notation
Aj ::{aeA:aSyj}.

In what follows, all the notations will depend on the sequence (y;);>1. Every
change of the sequence will naturally change the sets A; and all related
objects. We will denote by O(e) any positive function of € bounded above
by Ce where C' is a constant only depending on the set A.

Now, we are able to determine the structure of the sets A;. We have

A+ Al A+ Ayl Y;
3 = .9
) | A 2y; | A
< A+ AQy)
- 2y, | Al

<2. 0% cop i cn
a—¢
where ¢’ = O(g). Thus, for ¢ sufficiently small, we can apply the fundamental
Theorem 2.10 of Freiman to the sets A;. By a simple calculation, we obtain
m < 2 and by < Cs. First, we are going to exclude the case where A; is a
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subset of an arithmetical progression of dimension m = 1 for infinitely many
values of j.

Suppose this is the case. Then, for j sufficiently large, A; C P; where
P; is an arithmetical progression of difference 1 (for gcd(A) = 1) and first
term 0. We can assume it has minimal length. Then, by Theorem 2.10 and
since {0,y;} C P;, we have

(4) 1Pi| = yj,
(5) |[Pj| < C1lA].
Now we combine (4) and (5) to find a lower bound for a:
1 1/]|A;+ A; 1/2|A;]—1
o o 2y, o 2y,
1 1 Qyj
> (2L 1) —¢) >
) )em

for an absolute constant o (remember that € can be chosen sufficiently
small). Thus, we can exclude this case under hypothesis a < ag of Theo-
rem 1.2.

REMARK 3.1. The value of C (one can find an estimate in [2]) implies
a very small value for the bound «g. What happens for o > «q is an open
question.

Thus, for infinitely many integers j, the set A; is a subset of an arith-
metical progression of dimension m = 2. By extracting a subsequence, we
can assume that this is the case for all A;. Then, for all j > 1, there is an
Fy-isomorphism 6; between a subset of Z? and A; (see Definition 2.9). By
Proposition 2.7, the sets Gj_l(Aj) satisfy the inequality

1051 (47) + 0571 (A))] < (20 + €107 (4)).

At this point, using the assumption o < 5/3, we can apply Theorem 2.11
to 9;1(14]-). Composing isomorphisms, we see that, for all j > 1, there
exists an Fy-isomorphism ; : Z? — N such that A; C ¢, (A?) where A? =
{(0,0),(0,1),...,(0,;1; — 1)} U {(1,0),(1,1),...,(1,l2; — 1)}. Combining,
if necessary, those isomorphisms with suitable affine maps, we can assume
that ¢;((0,0)) € A; and ¢;((1,0)) € A;. Furthermore, we have l; j + Iz ; =
|A; + Aj| —2]|A;] + 3.

Notice that the number of elements of ¢~!(4;) in each line cannot
be bounded, since otherwise, for all ¢ > 0, we could obtain d(A + A) >

(2 —€)d(A) by considering the sequence (A + A)(y;)/y;-
We set dyj := ¢;((1,0)) — ¢;((0,0)) and da; := ¢;((0,1)) — ¢;((0,0)).
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Then we can give the explicit Fs-isomorphism
(7) 0j:Zx{0,1} = N, (z,y) — a; + zd1; + yda,j,

where a; = ¢;((0,0)).

Since A C N, the number d;; has to be positive for infinitely many
values of j which we again extract. We can also assume, by switching the
lines if necessary, that the differences ds ; are positive.

LEMMA 3.2. The sequence (d1 j);>1 is bounded.

Proof. Assume the contrary. Then there exists an index j such that
A(dy ;) > 3 and, consequently, there exist distinct a,b € AN [0;d; ;] such
that goj_l(a) and goj_l(b) lie on the same line. We deduce from (7) that |b—a| =
kd, ; where k is a positive integer. This is impossible since |b —a| < d1 ;. w

Since the sequence (d; ;);>1 is bounded, there exists a positive integer N
such that di j = N for infinitely many j. We choose the largest N with this
property, and, again extracting a subsequence, we assume that d; ; = N for
all j.

3.1. The non-archimedean case. In this case, we assume N > 1. We
show that the sequence (ds ;)j>1 can then be supposed to be constant.

LEMMA 3.3. There exist a positive integer t and a sequence (y;)j>1 such
that daj =t for all j > 1.

Proof. Each A; is included in two residue classes mod NN. Since those
sets satisfy A; C Ay for j < k, the whole set A is included in two residue
classes. If we denote by ¢t the smallest term of the part of A not congruent
to 0 mod IV, we can choose, for each j > 1, the isomorphism ¢; such that

gpj((0,0)) =0 and SOJ'((LO)) =1 =

Hence, we can assume that ds ; = t for all j > 1 and we can exhibit an
Fy-isomorphism ¢ between Z? and N such that Pla; = @5t

¢:Zx{0,1} = N, (z,y) — xN + yt.

By hypothesis (1), we must have ged(t, N) = 1 and A is included in two
residue classes mod N which we denote by B and C":

B={acA:a=0mod N}, C={a€A:a=tmodN}.

We define B; := B(y;) and C; := C(y;) and we assume, choosing y; suf-
ficiently large, that those sets are non-empty. We define ¢y := min(C),
b; := max(B;) and ¢; := max(C};). We may assume that b; = y;, replacing
if necessary A by A — ty and extracting a subsequence of (y;);>1.
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LEMMA 3.4. There exists a sequence (y;)j>1 such that, for alle > 0 and
for j sufficiently large,
|Aj] >

@ —2r N )

Proof. Remember that tg is the smallest element of A not divisible by N.
We define Sj = bj + cj — to + 2.
Let € > 0. We have, using Theorem 2.11,
S.
N] < |Aj + Aj’ — 2’Aj’ +3< (20 -2 —l—EI)’AJ“ +3< (20 -2 +E//)|Aj|,

where ¢/ = O(e) and ¢” = O(e). It suffices to choose j sufficiently large to
obtain the result. m

Below, (y;)j>1 is a sequence of integers as in the last lemma.
Now, we are going to refine the last results. We define

Xj = —j', >‘j = ’ ]".
b; bj + ¢;

LEMMA 3.5. There exists a sequence (y;);>1 such that lim;_ X; = 1.

Proof. We will only use the definition of the upper asymptotic density
of A. Given ¢ > 0, for all sufficiently large 7 we have
Ale) _ Alb)
¢j b
Furthermore,
bj — C]'

N
Putting together the last two relations, we obtain
A +e) o Ajlbi ) by

bj T ¢ Cj

Alej) > A(by) —

Ne + + 1.

This yields the following polynomial inequality:

(8) NXF— (1= Ne)X; — (N —1) >0.

It remains to determine the discriminant and the roots. We obtain
A= (2)\; —1)? +¢(N?% — 2N).

Thus, using Lemma 3.4 to bound A; from below, we see that the roots
X} < X7 satisfy
1

1
r— — — = — —
X = 3y (1— Ne —VA) y 1+ O(e),

1
J
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Clearly, X; < 1/Aj — 14 O(¢) is impossible, since the lower bound on A;
obtained in Lemma 3.4 would imply

X;<1/Aj—=140()<20-3+0() <1/3
for e sufficiently small, and hence
(A+A)b; +to) o Bl +IBil+1G+ Gl
bj +to bj +to
which contradicts the main hypothesis of Theorem 1.2. Thus, X; > 1-0(e),
which is the conclusion of the lemma. u

- O(E)v

Now we combine the results of the last two lemmas and apply Theo-
rems 2.3 and 2.4 to the sets

1 1
/. . A .
We have
1
Al > ——— (b; ).
|4 = (20_2_€)N(]+c])
We notice that, for ¢ sufficiently small, since o < 5/3,
1 S 3
20—2—¢ 4
Fix 6 > 0 such that
3 bj +c;
Al> (2 ety
451z (§+6) 2%

Using Lemma 3.5, we obtain
3 (2 =€)y,
Aj| > (546 )—2

for & arbitrarily small. Therefore, there exists a positive constant ¢’ such
that, for j sufficiently large,

3 Yi
Al > = =
! ]!_<2+6)N
It follows that

Yj 1 Yj 1
|Bjl = |Bjl = 14, = 1Cs| = |45 = 57 = <§ +5/>Nj 2 <§ +5/> max(Bj).

Thus we can apply Theorem 2.3 to B;-. We can do the same for Cj’-. Moreover,
we have

3 y
B+l =l = (5+0) %

so we can also apply Theorem 2.4.
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For j sufficiently large, we then have
9) |4+ Ajl = [Bj + Bj| +|Bj + Cj| + |Cj + Cj]
= |B} + Bj| +|B; + C}| + |C; + Cj]
’ Y n Yj / n Yi /
> |Bj|+ﬁ+(1—e)ﬁ+yBj|+(1—e)N+|ij
= 2IB;| +1C;| + (3 - 2¢) 3,
assuming, without loss of generality, that |B;| > |C;|. Here, ¢’ is arbitrarily
small, by Lemma 3.5.
Now, we also have, for j sufficiently large,

(10) |4; + Aj] < (20 + )] 4.
Since |B;| > |C}|, inequality (9) implies that
3 3 n Yy 3 N Yi
. > 2 . e . _ 49 _ = . _ Ly
’AJ+A]’—2|BJ‘+2|C]|+(3 2€)N 2’AJH‘(3 QE)N
Combining this with (10), we obtain
6 —4¢"  y;
Al > ——=< U
4512 40 —3+4+2¢' N
Now, dividing by y; and sending j to infinity, we obtain
6—4¢ 1

3120 N
Since ¢’ is arbitrary, this proves the required inequality of Theorem 1.2:
6
(40 —3)N~

3.2. The archimedean case. Now we assume that N = 1. We show that,
in this case, the sequence (dz ;j);>1 cannot be bounded. Suppose the contrary;
then we could extract a subsequence of (y;);>1 such that dy; = ¢ for all j
and act as in the non-archimedean case, i.e. find a common isomorphism
between every A; and a part of two lines of Z?. This isomorphism could be
written

d(A) >

0:Zx{0,1} = N, (z,y)— z+ty.

This is impossible because, for j sufficiently large, we would have an ele-
ment of AN e({y = 0}) greater than ¢ (remember that there are infinitely
many elements of ¢~ !(A) on each line) so that ¢+ would have two inverse
images under ¢ (one on each line), which contradicts the definition of an
F5-isomorphism.

Therefore, we can choose (y;);>1 and consequently ¢; := dy ; such that
tj is a strictly increasing sequence. Thus, as in the non-archimedean case,
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we can have ¢;((0,0)) =0, ¢;((1,0)) =1, ¢;((1,0)) = t; and
@jZx{0,1} =N, (z,y) — z + yt;.

We shall apply Theorem 2.11 to the sets Aj. Then, we can include A; in
a set Ag which is the union of two arithmetical progressions B? and C;-)
(of difference N = 1 here). We denote as usual by b; := lp; = |BJQ| and
cji=ly; = ]C’j(-]] the respective lengths, where 0 € B? and y; € C]Q. Indeed,
those two elements cannot be in the same progression: in this case, A would
be in an arithmetical progression of dimension 1, say B?. This case, which
is the single line case, is already excluded by a < ag. Those lengths being
supposed minimal, we have y; —t; = l2 ; and max(BjQ) = b;.

LEMMA 3.6. There exists a sequence (yj)j>1 such that, for all ¢ > 0,
there exists jo > 1 such that for all j > jo,

1
|Aj| = (20 —5 8) (I + l2)-
Proof. It suffices to apply Theorem 2.11 for j sufficiently large:

i+l < |Aj+ Aj| —2|A;] +3 < (20 — 24 €')| 4] + 3
< (20 —2+6”)|Aj|,

where £’ is arbitrarily small and ¢’ = O(¢’). »

From now on, (y;);>1 is a sequence of integers as in the last lemma.

It b; > t;, then 1 ;412 ; > y; and, by Lemma 3.6 and the range of values
of o, we have |4;| > 2y;, which is incompatible with o < 1/2. Therefore,
bj < t;j, and thus

(11) A(bj,t;) = 0.
Now we define B; := AN [0;b;] and C; := AN [t;;y;] with b; < t;.

The quotient X; := |Bj|/b; cannot be too large, otherwise we would
obtain, considering the sets A(b;), a too large value for a. Clearly, we have
(12) X :=limsup X; < o

Jj—o0

Let us show in which sense b; is necessarily small compared with [s ;.
LEMMA 3.7. Deﬁne )\j = bj/lQ’j. Then

, 20-3( 1 -
(13) A= limsup \; < ( 2—X> .

j—00 — 20 —2\20 —

Proof. We use Lemma 3.6, noting that
|Aj| = IBj] +[Cjl = XjAjl2,; +[Cjl-
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For all € > 0, and j sufficiently large, we obtain

1
XiAjla; + |Cj] > (20 —5 E) (Aj + 1Dla 4,

and so,

1 1
(14) ]CJ| lg,]<2 5 €—|—>\]<2 5 € XJ>>

Now, we know that |C;| <l ;, and therefore we obtain the upper bound

20 —3 1 !
A < e X;) .
J_<20—2+6>(20—2 c J>

It remains to recall that X < « to obtain

o231 -
=20 -2\20-2 ) "
Let us take as a new sequence (y;);>1 a subsequence such that lim;_,o A;
= \. It suffices to look again at the relation (14) to obtain

G5 1 1
- > A - X
T, 22 N2

for infinitely many values of j.
Then, a last extraction of a subsequence allows us to suppose that the
bounded sequence (7;);>1 has a limit 7 such that

1 1
1 > —a).
(15) 7“—2(;—2+/\<2(;—2 a)

Hence, putting together (11), (12), Lemma 3.7 and (15) we conclude the
proof of the archimedean case of Theorem 1.2.
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