On the group of circular units
of any compositum of quadratic fields

by

Zdeněk Polický (Brno)

Introduction. The aim of this paper is to describe the group of circular units C of a compositum k of quadratic fields in the last case that has not been covered yet, namely when the ramification index e of 2 equals 4. It is easy to see that e always divides 4. If $e = 1$ or $e = 2$ we already know a basis of C and an explicit formula for the index of C in the full group of units E (see [2, Theorem 1] and [4, Proposition 1.4]). The main ingredient of these results was the observation that the action of the augmentation ideal of $\mathbb{Z}[G]$, where $G = \text{Gal}(k/\mathbb{Q})$, on the quotient C/W, where W is the group of all roots of unity in k, gives squares in C/W. In other words, for any $\varepsilon \in C$ and any $\sigma \in G$ there is $\rho \in W$ and $\eta \in C$ such that $\varepsilon^{1-\sigma} = \rho \eta^2$. Unfortunately, this key property of the group of circular units of a compositum of quadratic field is not satisfied in the case $e = 4$ (see Example 8 below for $k = \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{-3})$). Therefore if $e = 4$ we cannot use the same approach for k. Nevertheless, using the three maximal subfields of k whose ramification index at 2 is 2, we are able to describe an explicit maximal independent system of units in C. Let \tilde{C} be the group generated by W and by this system. Then we can compute the index $[E : \tilde{C}]$ and give a reasonable upper bound for the index $[C : \tilde{C}]$ (see Theorem 7 and Proposition 5).

1. Definitions and basic results. Let k be a compositum of quadratic fields and let K be the genus field of k in the narrow sense. We assume that both -1 and 2 are squares in K. We put

$$J = \{-1, -2, 2\} \cup \{p \in \mathbb{Z}; p \equiv 1 \pmod{4}, |p| \text{ is a prime ramifying in } k\}.$$
For any \(p \in J \), let
\[
 n_{\{p\}} = \begin{cases}
 |p| & \text{if } p \notin \{-1, -2, 2\}, \\
 4 & \text{if } p = -1, \\
 8 & \text{if } p = \pm 2.
\end{cases}
\]
For any \(S \subseteq J \) let \(n_S \) be the smallest common multiple of \(n_{\{p\}} \) for all \(p \in S \) (by convention \(n_\emptyset = 1 \)), and
\[
 \zeta_S = e^{2\pi i/n_S}, \quad Q_S = \mathbb{Q}(\zeta_S), \quad K_S = \mathbb{Q}(\sqrt{p}; p \in S), \quad k_S = k \cap K_S.
\]
It is easy to see that \(K_J = K \), \(k_J = k \), and \(n_J \) is the conductor of \(k \).

We call a subset \(S \subseteq J \) admissible if \(S \) contains at most one of the numbers \(-1, 2, \) and \(-2\). For any admissible set \(S \subseteq J \) we define
\[
 \varepsilon_S = \begin{cases}
 1 & \text{if } S = \emptyset, \\
 i & \text{if } S = \{-1\}, \\
 \frac{1}{\sqrt{p}} N_{Q_S/K_S}(1 - \zeta_S) & \text{if } S = \{p\}, p \neq -1, \\
 N_{Q_S/K_S}(1 - \zeta_S) & \text{if } \#S > 1,
\end{cases}
\]
and \(\eta_S = N_{K_S/k_S}(\varepsilon_S) \).

Let \(\chi_2 \) and \(\chi_{-2} \) be the unique even and odd Dirichlet character of conductor \(8 \), respectively. For each \(p \in J - \{2, -2\} \) let \(\chi_p \) be the unique Dirichlet character of conductor \(n_{\{p\}} \), so \(\chi_p \) is odd if and only if \(p < 0 \).

Let \(X \) be the group of all even Dirichlet characters corresponding to \(k \). Each \(\chi \in X \) can be written in the form \(\chi = \prod_{p \in S_\chi} \chi_p \) for a unique admissible set \(S_\chi \subseteq J \). Then the conductor of \(\chi \) is equal to \(n_{S_\chi} \).

It is easy to see that, for any admissible set \(S \subseteq J \), a character \(\chi \in X \) belongs to the set of Dirichlet characters corresponding to the field \(k_S \) if and only if \(S_\chi \subseteq S \).

Let \(C \) be the group of circular units of \(k \) defined in [3]. This means that \(C \) is generated by \(W \) and by all conjugates of \(\eta_S \), where \(S \subseteq J \) (see the proof of Proposition 4 below). This group contains the Sinnott group of circular units \(C' \) of \(k \) but it can be slightly bigger. Lemma 3 in [2] implies that the Sinnott group is generated by
\[
 W \cup \{\eta_S; S \subseteq J, \#S > 1\} \cup \{\eta_p^2; p \in J, p > 0, \sqrt{p} \in k\}
\]
and consequently \([C : C'] = 2^a \), where
\[
 0 \leq a \leq \# \{p \in J; p > 0, \sqrt{p} \in k\}.
\]
Similarly, for any \(S \subseteq J \) let \(C_S \) be the group of circular units of \(k_S \) defined in [3]. If \(S \) is admissible then the ramification index of 2 in \(k_S \) is not equal to 4 and so we know the following basis of \(C_S \):

Lemma 1. If \(S \subseteq J \) is admissible then a basis of \(C_S \) is formed by the set of all \(\eta_{S_\chi} \) where \(\chi \in X \) is non-trivial and satisfies \(S_\chi \subseteq S \).
Proof. If $-1 \notin S$ see [2, Lemma 5], otherwise see [4, Proposition 1.4].

Let W be the group of all roots of unity in k. Let \tilde{C} be the subgroup of the multiplicative group k^\times generated by W and by all conjugates of η_S for all admissible sets $S \subseteq J$. Let $G = \text{Gal}(k/\mathbb{Q})$ be the Galois group of k.

Lemma 2. For any $\varepsilon \in \tilde{C}$ and any $\sigma \in G$ there are $\rho \in W$ and $\eta \in \tilde{C}$ such that $\varepsilon^{1-\sigma} = \rho\eta^2$.

Proof. Consider a conjugate of η_S for an admissible set $S \subseteq J$. If $-1 \notin S$ use [2, Lemma 2], otherwise use [4, Lemma 1.2].

Lemma 3. The set $W \cup \{\eta_S; \chi \in X, \chi \neq 1\}$ generates the group \tilde{C}.

Proof. Lemma 2 gives that \tilde{C} is as a group generated by W and by η_S for all admissible sets $S \subseteq J$. For any admissible set $S \subseteq J$ we can show that if $S \neq S_\chi$ for all $\chi \in X$ then η_S can be written as a multiplicative \mathbb{Z}-linear combination of η_L for $L \subseteq S$ (modulo roots of unity). If $-1 \notin S$ use [2, Lemma 5], otherwise use [4, p. 1077].

2. The index of \tilde{C} in C

Proposition 4. The group C of circular units of k is generated by \tilde{C} and by all conjugates of $N_{k_S/k}(1 - \zeta_S)$, where $S \subseteq J$ is not admissible, $S \neq \{-1, 2, -2\}$, and the ramification index of k_S at 2 is 4.

Proof. Let E be the full group of units of k. By definition (see [3]), C is the intersection of E and a group D, where D is generated by -1, by \sqrt{p} for all $p \in J$ such that $p > 0$ and $\sqrt{p} \in k$, and by all conjugates of $N_{k_S/k}(1 - \zeta_S)$ for all non-empty $S \subseteq J$.

For a non-empty $S \subseteq J$, it is well-known that $N_{k_S/k}(1 - \zeta_S)$ is a unit if and only if n_S is not a prime power. Moreover, if $p \in J$ and $p < 0$ then all units of $k_{(p)}$ are roots of unity. Therefore \tilde{C} is the intersection of E and a group \tilde{D}, where \tilde{D} is generated by -1, by \sqrt{p} for all $p \in J$ such that $p > 0$ and $\sqrt{p} \in k$, and by all conjugates of $N_{k_S/k}(1 - \zeta_S)$ for all admissible non-empty $S \subseteq J$.

If S is not admissible and the ramification index of k_S at 2 is not 4 then $k_S = k_{S'}$ for a suitable admissible $S' \subseteq S$. Hence D is generated by \tilde{D} and by $N_{k_{S'}/k_S}(1 - \zeta_S)$ for all non-admissible $S \subseteq J$ such that the ramification index of k_S at 2 is 4. This norm is a unit unless $S = \{-1, 2, -2\}$ and $\sqrt{-1}, \sqrt{2} \in k$, in which case $k_S = \mathbb{Q}(\sqrt{-1}, \sqrt{2})$ is the eighth cyclotomic field. But the group of all units of the latter is generated by ζ_8 and by

$$\eta = \zeta_8^{-1} \cdot \frac{1 - \zeta_8^3}{1 - \zeta_8} = 1 + \zeta_8 + \zeta_8^{-1} = 1 + \sqrt{2}.$$
We have
\[\eta_{\{2\}} = \frac{1}{\sqrt{2}} N_{Q(\zeta_8)/Q(\sqrt{2})}(1 - \zeta_8) = \sqrt{2} - 1 = \eta^{-1}, \]
and the proposition follows. □

Proposition 5. The group \(\tilde{C} \) is of finite index in \(C \) and \([C : \tilde{C}] \leq 2^n \), where \(n \) is the number of all \(S \subseteq J \) such that \(-1, 2, -2 \) \(\subseteq S \) and the ramification index of \(k_S \) at 2 is 4. Moreover, the Galois action of \(G \) on \(C/\tilde{C} \) is trivial.

Proof. Let \(T = J - \{-1, 2, -2\} \). For any \(x \in \{-1, 2, -2\} \) let \(\rho_x \) be the generator of \(\text{Gal}(K/K_{T \cup \{x\}}) \). For any \(L \subseteq T \) we put \(S = L \cup \{-1, 2, -2\} \) and \(\varepsilon = N_{Q^S/k_S}(1 - \zeta_S) \). Then
\[\varepsilon^2 = \varepsilon^{1+\rho-1} \cdot \varepsilon^{1+\rho-2} \cdot (\varepsilon^{1+\rho_2})^{-\rho-1}. \]
For any \(x \in \{-1, 2, -2\} \) we have
\[\varepsilon^{1+\rho_x} = N_{Q^S/k_{T \cup \{x\}}}(1 - \zeta_S) = \eta_{T \cup \{x\}} \]
because \(N_{Q^S/Q^T}(1 - \zeta_S) = 1 - \zeta_{T \cup \{x\}} \). We have obtained \(\varepsilon^2 \in \tilde{C} \) and for any \(\sigma \in G \) Lemma 2 gives \(\varepsilon^{2(1-\sigma)} \in W \cdot \tilde{C}^2 \), which implies \(\varepsilon^{1-\sigma} \in \tilde{C} \). The proposition follows by means of Proposition 4. □

3. A basis of \(\tilde{C} \) and the index of \(\tilde{C} \) in \(E \)

Theorem 6. The set \(\{\eta_{S \chi}^\chi; \chi \in X, \chi \neq 1\} \) is a \(\mathbb{Z} \)-basis of \(\tilde{C} \), i.e. elements of this set are multiplicatively independent and together with \(W \) generate \(\tilde{C} \).

Proof. Proposition 5 gives that \(\tilde{C} \) and \(C \) have the same \(\mathbb{Z} \)-rank. As the index \([E : C] \) is finite, \(\tilde{C} \) and \(E \) have the same \(\mathbb{Z} \)-rank, and the \(\mathbb{Z} \)-rank of \(E \) is equal to the number of elements of the given set. The theorem follows from Lemma 3. □

Having a \(\mathbb{Z} \)-basis allows us to compute the index:

Theorem 7. We have
\[[E : \tilde{C}] = \left(\prod_{\chi \in X, \chi \neq 1} \frac{2 \cdot [k : k_{S \chi}]}{[k : k^+]} \right) \cdot |X|^{-|X|/2} \cdot Qh^+, \]
where \(k^+ \) is the maximal real subfield of \(k \), \(|X| \) means the number of characters in \(X \), \(Q = [E : W \cdot (E \cap k^+)] \) is the Hasse unit index of \(k \), and \(h^+ \) is the class number of \(k^+ \).

Proof. This can be proved in the same way as Theorem 1 in [2]. □
The following example shows that the estimate of the index \([C : \tilde{C}]\) can be precise. It seems to be an interesting question whether this holds true in general.

Example 8. Let \(k = \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{-3})\). Then \(k\) is the 24th cyclotomic field. Sinnott’s formula for the index of the group of circular units of a cyclotomic field (see [5, Theorem]) shows that the Sinnott’s group of circular units of \(k\) equals \(E\) and so we also have \(C = E\). Then [1, Theorem 6.1] gives the following \(\mathbb{Z}\)-basis of \(C\): \(\alpha = 1 - \zeta, \beta = 1 - \zeta^{19}, \gamma = (1 - \zeta^{9})/(1 - \zeta^3)\). As \(\beta\) is a conjugate of \(\alpha\), we see that we obtain \(\alpha \cdot \beta^{-1}\) by an action of the augmentation ideal on \(\alpha\). As both \(\alpha\) and \(\beta\) belong to a basis we see that \(\alpha \cdot \beta^{-1}\) is not a square modulo roots of unity in \(E\). Theorem 6 states that \(\eta_{\{2\}}, \eta_{\{-1,-3\}}\) and \(\eta_{\{-2,-3\}}\) form a \(\mathbb{Z}\)-basis of \(\tilde{C}\). We have

\[
\eta_{\{2\}} = (1 + \sqrt{2})^{-1} = \zeta^3 \cdot \gamma,
\eta_{\{-1,-3\}} = 1 - \zeta^2 = \zeta \cdot \alpha \cdot \beta^{-1} \cdot \gamma,
\eta_{\{-2,-3\}} = \alpha \cdot \beta.
\]

The determinant of the transition matrix gives the index \([C : \tilde{C}] = 2\) for \(k\), which equals the upper bound given by Proposition 5.

This research was supported by the Grant Agency of the Czech Republic by the project 201/07/0191.

References

Department of Mathematics and Statistics
Faculty of Science
Masaryk University
Kotlářská 2
611 37 Brno, Czech Republic
E-mail: alize@seznam.cz

Received on 4.10.2008
and in revised form on 13.12.2008