On the group of circular units of any compositum of quadratic fields

by

Zdeněk Polický (Brno)

Introduction. The aim of this paper is to describe the group of circular units C of a compositum k of quadratic fields in the last case that has not been covered yet, namely when the ramification index e of 2 equals 4. It is easy to see that e always divides 4. If e = 1 or e = 2 we already know a basis of C and an explicit formula for the index of C in the full group of units E (see [2, Theorem 1] and [4, Proposition 1.4]). The main ingredient of these results was the observation that the action of the augmentation ideal of $\mathbb{Z}[G]$, where $G = \operatorname{Gal}(k/\mathbb{Q})$, on the quotient C/W, where W is the group of all roots of unity in k, gives squares in C/W. In other words, for any $\varepsilon \in C$ and any $\sigma \in G$ there is $\rho \in W$ and $\eta \in C$ such that $\varepsilon^{1-\sigma} = \rho \eta^2$. Unfortunately, this key property of the group of circular units of a compositum of quadratic field is not satisfied in the case e = 4 (see Example 8 below for $k = \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{-3})$. Therefore if e = 4 we cannot use the same approach for k. Nevertheless, using the three maximal subfields of k whose ramification index at 2 is 2, we are able to describe an explicit maximal independent system of units in C. Let \tilde{C} be the group generated by W and by this system. Then we can compute the index $[E:\tilde{C}]$ and give a reasonable upper bound for the index $[C:\tilde{C}]$ (see Theorem 7 and Proposition 5).

1. Definitions and basic results. Let k be a compositum of quadratic fields and let K be the genus field of k in the narrow sense. We assume that both -1 and 2 are squares in K. We put

 $J = \{-1, -2, 2\} \cup \{p \in \mathbb{Z}; p \equiv 1 \pmod{4}, |p| \text{ is a prime ramifying in } k\}.$

²⁰⁰⁰ Mathematics Subject Classification: Primary 11R29; Secondary 11R27.

Key words and phrases: compositum of quadratic fields, circular units, the index of circular units, class number.

For any $p \in J$, let

$$n_{\{p\}} = \begin{cases} |p| & \text{if } p \notin \{-1, -2, 2\}, \\ 4 & \text{if } p = -1, \\ 8 & \text{if } p = \pm 2. \end{cases}$$

For any $S \subseteq J$ let n_S be the smallest common multiple of $n_{\{p\}}$ for all $p \in S$ (by convention $n_{\emptyset} = 1$), and

$$\zeta_S = e^{2\pi i/n_S}, \quad \mathbb{Q}^S = \mathbb{Q}(\zeta_S), \quad K_S = \mathbb{Q}(\sqrt{p}; p \in S), \quad k_S = k \cap K_S.$$

It is easy to see that $K_J = K$, $k_J = k$, and n_J is the conductor of k.

We call a subset $S \subseteq J$ admissible if S contains at most one of the numbers -1, 2, and -2. For any admissible set $S \subseteq J$ we define

$$\varepsilon_{S} = \begin{cases} 1 & \text{if } S = \emptyset, \\ i & \text{if } S = \{-1\}, \\ \frac{1}{\sqrt{p}} \operatorname{N}_{\mathbb{Q}^{S}/K_{S}}(1 - \zeta_{S}) & \text{if } S = \{p\}, \, p \neq -1, \\ \operatorname{N}_{\mathbb{Q}^{S}/K_{S}}(1 - \zeta_{S}) & \text{if } \#S > 1, \end{cases}$$

and $\eta_S = \mathcal{N}_{K_S/k_S}(\varepsilon_S)$.

Let χ_2 and χ_{-2} be the unique even and odd Dirichlet character of conductor 8, respectively. For each $p \in J - \{2, -2\}$ let χ_p be the unique Dirichlet character of conductor $n_{\{p\}}$, so χ_p is odd if and only if p < 0.

Let X be the group of all even Dirichlet characters corresponding to k. Each $\chi \in X$ can be written in the form $\chi = \prod_{p \in S_{\chi}} \chi_p$ for a unique admissible set $S_{\chi} \subseteq J$. Then the conductor of χ is equal to $n_{S_{\chi}}$.

It is easy to see that, for any admissible set $S \subseteq J$, a character $\chi \in X$ belongs to the set of Dirichlet characters corresponding to the field k_S if and only if $S_{\chi} \subseteq S$.

Let C be the group of circular units of k defined in [3]. This means that C is generated by W and by all conjugates of η_S , where $S \subseteq J$ (see the proof of Proposition 4 below). This group contains the Sinnott group of circular units C' of k but it can be slightly bigger. Lemma 3 in [2] implies that the Sinnott group is generated by

$$W \cup \{\eta_S; S \subseteq J, \#S > 1\} \cup \{\eta_p^2; p \in J, p > 0, \sqrt{p} \in k\}$$

and consequently $[C:C'] = 2^a$, where

$$0 \le a \le \# \{ p \in J; p > 0, \sqrt{p} \in k \}.$$

Similarly, for any $S \subseteq J$ let C_S be the group of circular units of k_S defined in [3]. If S is admissible then the ramification index of 2 in k_S is not equal to 4 and so we know the following basis of C_S :

LEMMA 1. If $S \subseteq J$ is admissible then a basis of C_S is formed by the set of all $\eta_{S_{\chi}}$ where $\chi \in X$ is non-trivial and satisfies $S_{\chi} \subseteq S$.

112

Proof. If $-1 \notin S$ see [2, Lemma 5], otherwise see [4, Proposition 1.4].

Let W be the group of all roots of unity in k. Let \tilde{C} be the subgroup of the multiplicative group k^{\times} generated by W and by all conjugates of η_S for all admissible sets $S \subseteq J$. Let $G = \operatorname{Gal}(k/\mathbb{Q})$ be the Galois group of k.

LEMMA 2. For any $\varepsilon \in \tilde{C}$ and any $\sigma \in G$ there are $\rho \in W$ and $\eta \in \tilde{C}$ such that $\varepsilon^{1-\sigma} = \rho \eta^2$.

Proof. Consider a conjugate of η_S for an admissible set $S \subseteq J$. If $-1 \notin S$ use [2, Lemma 2], otherwise use [4, Lemma 1.2].

LEMMA 3. The set $W \cup \{\eta_{S_{\chi}}; \chi \in X, \chi \neq 1\}$ generates the group \tilde{C} .

Proof. Lemma 2 gives that \tilde{C} is as a group generated by W and by η_S for all admissible sets $S \subseteq J$. For any admissible set $S \subseteq J$ we can show that if $S \neq S_{\chi}$ for all $\chi \in X$ then η_S can be written as a multiplicative \mathbb{Z} -linear combination of η_L for $L \subsetneq S$ (modulo roots of unity). If $-1 \notin S$ use [2, Lemma 5], otherwise use [4, p. 1077].

2. The index of \tilde{C} in C

PROPOSITION 4. The group C of circular units of k is generated by \tilde{C} and by all conjugates of $N_{\mathbb{Q}^S/k_S}(1-\zeta_S)$, where $S \subseteq J$ is not admissible, $S \neq \{-1, 2, -2\}$, and the ramification index of k_S at 2 is 4.

Proof. Let *E* be the full group of units of *k*. By definition (see [3]), *C* is the intersection of *E* and a group *D*, where *D* is generated by -1, by \sqrt{p} for all $p \in J$ such that p > 0 and $\sqrt{p} \in k$, and by all conjugates of $\mathbb{N}_{\mathbb{Q}^S/k_S}(1-\zeta_S)$ for all non-empty $S \subseteq J$.

For a non-empty $S \subseteq J$, it is well-known that $N_{\mathbb{Q}^S/k_S}(1-\zeta_S)$ is a unit if and only if n_S is not a prime power. Moreover, if $p \in J$ and p < 0 then all units of $k_{\{p\}}$ are roots of unity. Therefore \tilde{C} is the intersection of E and a group \tilde{D} , where \tilde{D} is generated by -1, by \sqrt{p} for all $p \in J$ such that p > 0 and $\sqrt{p} \in k$, and by all conjugates of $N_{\mathbb{Q}^S/k_S}(1-\zeta_S)$ for all *admissible* non-empty $S \subseteq J$.

If S is not admissible and the ramification index of k_S at 2 is not 4 then $k_S = k_{S'}$ for a suitable admissible $S' \subseteq S$. Hence D is generated by \tilde{D} and by $\mathbb{N}_{\mathbb{Q}^S/k_S}(1-\zeta_S)$ for all non-admissible $S \subseteq J$ such that the ramification index of k_S at 2 is 4. This norm is a unit unless $S = \{-1, 2, -2\}$ and $\sqrt{-1}, \sqrt{2} \in k$, in which case $k_S = \mathbb{Q}(\sqrt{-1}, \sqrt{2})$ is the eighth cyclotomic field. But the group of all units of the latter is generated by ζ_8 and by

$$\eta = \zeta_8^{-1} \cdot \frac{1 - \zeta_8^3}{1 - \zeta_8} = 1 + \zeta_8 + \zeta_8^{-1} = 1 + \sqrt{2}.$$

We have

$$\eta_{\{2\}} = \frac{1}{\sqrt{2}} N_{\mathbb{Q}(\zeta_8)/\mathbb{Q}(\sqrt{2})}(1-\zeta_8) = \sqrt{2} - 1 = \eta^{-1},$$

and the proposition follows. \blacksquare

PROPOSITION 5. The group \tilde{C} is of finite index in C and $[C : \tilde{C}] \leq 2^n$, where n is the number of all $S \subseteq J$ such that $\{-1, 2, -2\} \subsetneq S$ and the ramification index of k_S at 2 is 4. Moreover, the Galois action of G on C/\tilde{C} is trivial.

Proof. Let $T = J - \{-1, 2, -2\}$. For any $x \in \{-1, 2, -2\}$ let ρ_x be the generator of $\operatorname{Gal}(K/K_{T\cup\{x\}})$. For any $L \subseteq T$ we put $S = L \cup \{-1, 2, -2\}$ and $\varepsilon = \operatorname{N}_{\mathbb{Q}^S/k_S}(1 - \zeta_S)$. Then

$$\varepsilon^2 = \varepsilon^{1+\rho_{-1}} \cdot \varepsilon^{1+\rho_{-2}} \cdot (\varepsilon^{1+\rho_2})^{-\rho_{-1}}.$$

For any $x \in \{-1, 2, -2\}$ we have

$$\varepsilon^{1+\rho_x} = \mathcal{N}_{\mathbb{Q}^S/k_{T\cup\{x\}}}(1-\zeta_S) = \eta_{T\cup\{x\}}$$

because $N_{\mathbb{Q}^S/\mathbb{Q}^{T\cup\{x\}}}(1-\zeta_S) = 1-\zeta_{T\cup\{x\}}$. We have obtained $\varepsilon^2 \in \tilde{C}$ and for any $\sigma \in G$ Lemma 2 gives $\varepsilon^{2(1-\sigma)} \in W \cdot \tilde{C}^2$, which implies $\varepsilon^{1-\sigma} \in \tilde{C}$. The proposition follows by means of Proposition 4.

3. A basis of \tilde{C} and the index of \tilde{C} in E

THEOREM 6. The set $\{\eta_{S_{\chi}}; \chi \in X, \chi \neq 1\}$ is a \mathbb{Z} -basis of \tilde{C} , i.e. elements of this set are multiplicatively independent and together with W generate \tilde{C} .

Proof. Proposition 5 gives that \tilde{C} and C have the same \mathbb{Z} -rank. As the index [E:C] is finite, \tilde{C} and E have the same \mathbb{Z} -rank, and the \mathbb{Z} -rank of E is equal to the number of elements of the given set. The theorem follows from Lemma 3.

Having a \mathbb{Z} -basis allows us to compute the index:

THEOREM 7. We have

$$[E:\tilde{C}] = \left(\prod_{\chi \in X, \, \chi \neq 1} \frac{2 \cdot [k:k_{S_{\chi}}]}{[k:k^+]}\right) \cdot |X|^{-|X|/2} \cdot Qh^+,$$

where k^+ is the maximal real subfield of k, |X| means the number of characters in $X, Q = [E : W \cdot (E \cap k^+)]$ is the Hasse unit index of k, and h^+ is the class number of k^+ .

Proof. This can be proved in the same way as Theorem 1 in [2]. \blacksquare

The following example shows that the estimate of the index $[C:\tilde{C}]$ can be precise. It seems to be an interesting question whether this holds true in general.

EXAMPLE 8. Let $k = \mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{-3})$. Then k is the 24th cyclotomic field. Sinnott's formula for the index of the group of circular units of a cyclotomic field (see [5, Theorem]) shows that the Sinnott's group of circular units of k equals E and so we also have C = E. Then [1, Theorem 6.1] gives the following \mathbb{Z} -basis of C: $\alpha = 1 - \zeta$, $\beta = 1 - \zeta^{19}$, $\gamma = (1 - \zeta^9)/(1 - \zeta^3)$. As β is a conjugate of α , we see that we obtain $\alpha \cdot \beta^{-1}$ by an action of the augmentation ideal on α . As both α and β belong to a basis we see that $\alpha \cdot \beta^{-1}$ is not a square modulo roots of unity in E. Theorem 6 states that $\eta_{\{2\}}, \eta_{\{-1,-3\}}$ and $\eta_{\{-2,-3\}}$ form a \mathbb{Z} -basis of \tilde{C} . We have

$$\eta_{\{2\}} = (1 + \sqrt{2})^{-1} = \zeta^3 \cdot \gamma, \eta_{\{-1,-3\}} = 1 - \zeta^2 = \zeta \cdot \alpha \cdot \beta^{-1} \cdot \gamma, \eta_{\{-2,-3\}} = \alpha \cdot \beta.$$

The determinant of the transition matrix gives the index $[C : \tilde{C}] = 2$ for k, which equals the upper bound given by Proposition 5.

This research was supported by the Grant Agency of the Czech Republic by the project 201/07/0191.

References

- R. Kučera, On bases of the Stickelberger ideal and of the group of circular units of a cyclotomic field, J. Number Theory 40 (1992), 284–316.
- [2] —, On the Stickelberger ideal and circular units of a compositum of quadratic fields, ibid. 56 (1996), 139–166.
- [3] —, A note on Sinnott's definition of circular units of an abelian field, ibid. 63 (1997), 403–407.
- Z. Polický, On the index of circular units in the full group of units of a compositum of quadratic fields, ibid. 128 (2008), 1074–1090.
- W. Sinnott, On the Stickelberger ideal and circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107–134.

Department of Mathematics and Statistics Faculty of Science Masaryk University Kotlářská 2 611 37 Brno, Czech Republic E-mail: alize@seznam.cz

> Received on 4.10.2008 and in revised form on 13.12.2008