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On the group of circular units

of any compositum of quadratic fields
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Zdeněk Polický (Brno)

Introduction. The aim of this paper is to describe the group of circular
units C of a compositum k of quadratic fields in the last case that has not
been covered yet, namely when the ramification index e of 2 equals 4. It is
easy to see that e always divides 4. If e = 1 or e = 2 we already know a
basis of C and an explicit formula for the index of C in the full group of
units E (see [2, Theorem 1] and [4, Proposition 1.4]). The main ingredient
of these results was the observation that the action of the augmentation
ideal of Z[G], where G = Gal(k/Q), on the quotient C/W , where W is
the group of all roots of unity in k, gives squares in C/W . In other words,
for any ε ∈ C and any σ ∈ G there is ρ ∈ W and η ∈ C such that
ε1−σ = ρη2. Unfortunately, this key property of the group of circular units
of a compositum of quadratic field is not satisfied in the case e = 4 (see
Example 8 below for k = Q(

√
−1,
√

2,
√
−3)). Therefore if e = 4 we cannot

use the same approach for k. Nevertheless, using the three maximal subfields
of k whose ramification index at 2 is 2, we are able to describe an explicit
maximal independent system of units in C. Let C̃ be the group generated
by W and by this system. Then we can compute the index [E : C̃] and
give a reasonable upper bound for the index [C : C̃] (see Theorem 7 and
Proposition 5).

1. Definitions and basic results. Let k be a compositum of quadratic
fields and let K be the genus field of k in the narrow sense. We assume that
both −1 and 2 are squares in K. We put

J = {−1,−2, 2} ∪ {p ∈ Z; p ≡ 1 (mod 4), |p| is a prime ramifying in k}.
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For any p ∈ J , let

n{p} =


|p| if p /∈ {−1,−2, 2},
4 if p = −1,
8 if p = ±2.

For any S ⊆ J let nS be the smallest common multiple of n{p} for all p ∈ S
(by convention n∅ = 1), and

ζS = e2πi/nS , QS = Q(ζS), KS = Q(
√
p; p ∈ S), kS = k ∩KS .

It is easy to see that KJ = K, kJ = k, and nJ is the conductor of k.
We call a subset S ⊆ J admissible if S contains at most one of the

numbers −1, 2, and −2. For any admissible set S ⊆ J we define

εS =


1 if S = ∅,
i if S = {−1},
1√
p NQS/KS (1− ζS) if S = {p}, p 6= −1,

NQS/KS (1− ζS) if #S > 1,

and ηS = NKS/kS (εS).
Let χ2 and χ−2 be the unique even and odd Dirichlet character of con-

ductor 8, respectively. For each p ∈ J−{2,−2} let χp be the unique Dirichlet
character of conductor n{p}, so χp is odd if and only if p < 0.

Let X be the group of all even Dirichlet characters corresponding to k.
Each χ ∈ X can be written in the form χ =

∏
p∈Sχ χp for a unique admissible

set Sχ ⊆ J . Then the conductor of χ is equal to nSχ .
It is easy to see that, for any admissible set S ⊆ J , a character χ ∈ X

belongs to the set of Dirichlet characters corresponding to the field kS if and
only if Sχ ⊆ S.

Let C be the group of circular units of k defined in [3]. This means that
C is generated by W and by all conjugates of ηS , where S ⊆ J (see the proof
of Proposition 4 below). This group contains the Sinnott group of circular
units C ′ of k but it can be slightly bigger. Lemma 3 in [2] implies that the
Sinnott group is generated by

W ∪ {ηS ; S ⊆ J, #S > 1} ∪ {η2
p; p ∈ J, p > 0,

√
p ∈ k}

and consequently [C : C
′
] = 2a, where

0 ≤ a ≤ # {p ∈ J ; p > 0,
√
p ∈ k}.

Similarly, for any S ⊆ J let CS be the group of circular units of kS defined
in [3]. If S is admissible then the ramification index of 2 in kS is not equal
to 4 and so we know the following basis of CS :

Lemma 1. If S ⊆ J is admissible then a basis of CS is formed by the
set of all ηSχ where χ ∈ X is non-trivial and satisfies Sχ ⊆ S.



Group of circular units 113

Proof. If −1 /∈ S see [2, Lemma 5], otherwise see [4, Proposition 1.4].

Let W be the group of all roots of unity in k. Let C̃ be the subgroup of
the multiplicative group k× generated by W and by all conjugates of ηS for
all admissible sets S ⊆ J . Let G = Gal(k/Q) be the Galois group of k.

Lemma 2. For any ε ∈ C̃ and any σ ∈ G there are ρ ∈ W and η ∈ C̃
such that ε1−σ = ρη2.

Proof. Consider a conjugate of ηS for an admissible set S ⊆ J . If −1 /∈ S
use [2, Lemma 2], otherwise use [4, Lemma 1.2].

Lemma 3. The set W ∪ {ηSχ ; χ ∈ X, χ 6= 1} generates the group C̃.

Proof. Lemma 2 gives that C̃ is as a group generated by W and by ηS
for all admissible sets S ⊆ J . For any admissible set S ⊆ J we can show
that if S 6= Sχ for all χ ∈ X then ηS can be written as a multiplicative
Z-linear combination of ηL for L ( S (modulo roots of unity). If −1 /∈ S
use [2, Lemma 5], otherwise use [4, p. 1077].

2. The index of C̃ in C

Proposition 4. The group C of circular units of k is generated by C̃
and by all conjugates of NQS/kS (1 − ζS), where S ⊆ J is not admissible,
S 6= {−1, 2,−2}, and the ramification index of kS at 2 is 4.

Proof. Let E be the full group of units of k. By definition (see [3]), C
is the intersection of E and a group D, where D is generated by −1, by√
p for all p ∈ J such that p > 0 and

√
p ∈ k, and by all conjugates of

NQS/kS (1− ζS) for all non-empty S ⊆ J .
For a non-empty S ⊆ J , it is well-known that NQS/kS (1 − ζS) is a unit

if and only if nS is not a prime power. Moreover, if p ∈ J and p < 0 then
all units of k{p} are roots of unity. Therefore C̃ is the intersection of E and
a group D̃, where D̃ is generated by −1, by

√
p for all p ∈ J such that

p > 0 and
√
p ∈ k, and by all conjugates of NQS/kS (1− ζS) for all admissible

non-empty S ⊆ J .
If S is not admissible and the ramification index of kS at 2 is not 4 then

kS = kS′ for a suitable admissible S′ ⊆ S. Hence D is generated by D̃ and by
NQS/kS (1−ζS) for all non-admissible S ⊆ J such that the ramification index
of kS at 2 is 4. This norm is a unit unless S = {−1, 2,−2} and

√
−1,
√

2 ∈ k,
in which case kS = Q(

√
−1,
√

2) is the eighth cyclotomic field. But the group
of all units of the latter is generated by ζ8 and by

η = ζ−1
8 · 1− ζ3

8

1− ζ8
= 1 + ζ8 + ζ−1

8 = 1 +
√

2.
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We have

η{2} =
1√
2

NQ(ζ8)/Q(
√

2)(1− ζ8) =
√

2− 1 = η−1,

and the proposition follows.

Proposition 5. The group C̃ is of finite index in C and [C : C̃] ≤ 2n,
where n is the number of all S ⊆ J such that {−1, 2,−2} ( S and the
ramification index of kS at 2 is 4. Moreover , the Galois action of G on
C/C̃ is trivial.

Proof. Let T = J − {−1, 2,−2}. For any x ∈ {−1, 2,−2} let ρx be the
generator of Gal(K/KT∪{x}). For any L ⊆ T we put S = L ∪ {−1, 2,−2}
and ε = NQS/kS (1− ζS). Then

ε2 = ε1+ρ−1 · ε1+ρ−2 · (ε1+ρ2)−ρ−1 .

For any x ∈ {−1, 2,−2} we have

ε1+ρx = NQS/kT∪{x}(1− ζS) = ηT∪{x}

because NQS/QT∪{x}(1− ζS) = 1− ζT∪{x}. We have obtained ε2 ∈ C̃ and for
any σ ∈ G Lemma 2 gives ε2(1−σ) ∈ W · C̃2, which implies ε1−σ ∈ C̃. The
proposition follows by means of Proposition 4.

3. A basis of C̃ and the index of C̃ in E

Theorem 6. The set {ηSχ ; χ ∈ X, χ 6= 1} is a Z-basis of C̃, i.e. ele-
ments of this set are multiplicatively independent and together with W gen-
erate C̃.

Proof. Proposition 5 gives that C̃ and C have the same Z-rank. As the
index [E : C] is finite, C̃ and E have the same Z-rank, and the Z-rank of
E is equal to the number of elements of the given set. The theorem follows
from Lemma 3.

Having a Z-basis allows us to compute the index:

Theorem 7. We have

[E : C̃] =
( ∏
χ∈X,χ 6=1

2 · [k : kSχ ]
[k : k+]

)
· |X|−|X|/2 ·Qh+,

where k+ is the maximal real subfield of k, |X| means the number of char-
acters in X, Q = [E : W · (E ∩ k+)] is the Hasse unit index of k, and h+

is the class number of k+.

Proof. This can be proved in the same way as Theorem 1 in [2].
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The following example shows that the estimate of the index [C : C̃] can
be precise. It seems to be an interesting question whether this holds true in
general.

Example 8. Let k = Q(
√
−1,
√

2,
√
−3). Then k is the 24th cyclotomic

field. Sinnott’s formula for the index of the group of circular units of a
cyclotomic field (see [5, Theorem]) shows that the Sinnott’s group of circular
units of k equals E and so we also have C = E. Then [1, Theorem 6.1] gives
the following Z-basis of C: α = 1 − ζ, β = 1 − ζ19, γ = (1− ζ9)/(1− ζ3).
As β is a conjugate of α, we see that we obtain α · β−1 by an action of the
augmentation ideal on α. As both α and β belong to a basis we see that
α · β−1 is not a square modulo roots of unity in E. Theorem 6 states that
η{2}, η{−1,−3} and η{−2,−3} form a Z-basis of C̃. We have

η{2} = (1 +
√

2)−1 = ζ3 · γ,
η{−1,−3} = 1− ζ2 = ζ · α · β−1 · γ,
η{−2,−3} = α · β.

The determinant of the transition matrix gives the index [C : C̃] = 2 for k,
which equals the upper bound given by Proposition 5.
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611 37 Brno, Czech Republic
E-mail: alize@seznam.cz

Received on 4.10.2008
and in revised form on 13.12.2008 (5817)


