On the group of circular units of any compositum of quadratic fields

by
Zdeněk Polický (Brno)

Introduction. The aim of this paper is to describe the group of circular units C of a compositum k of quadratic fields in the last case that has not been covered yet, namely when the ramification index e of 2 equals 4 . It is easy to see that e always divides 4 . If $e=1$ or $e=2$ we already know a basis of C and an explicit formula for the index of C in the full group of units E (see [2, Theorem 1] and [4, Proposition 1.4]). The main ingredient of these results was the observation that the action of the augmentation ideal of $\mathbb{Z}[G]$, where $G=\operatorname{Gal}(k / \mathbb{Q})$, on the quotient C / W, where W is the group of all roots of unity in k, gives squares in C / W. In other words, for any $\varepsilon \in C$ and any $\sigma \in G$ there is $\rho \in W$ and $\eta \in C$ such that $\varepsilon^{1-\sigma}=\rho \eta^{2}$. Unfortunately, this key property of the group of circular units of a compositum of quadratic field is not satisfied in the case $e=4$ (see Example 8 below for $k=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{-3})$). Therefore if $e=4$ we cannot use the same approach for k. Nevertheless, using the three maximal subfields of k whose ramification index at 2 is 2 , we are able to describe an explicit maximal independent system of units in C. Let \tilde{C} be the group generated by W and by this system. Then we can compute the index $[E: \tilde{C}]$ and give a reasonable upper bound for the index $[C: \tilde{C}]$ (see Theorem 7 and Proposition 5).

1. Definitions and basic results. Let k be a compositum of quadratic fields and let K be the genus field of k in the narrow sense. We assume that both -1 and 2 are squares in K. We put

$$
J=\{-1,-2,2\} \cup\{p \in \mathbb{Z} ; p \equiv 1(\bmod 4),|p| \text { is a prime ramifying in } k\} .
$$

[^0]For any $p \in J$, let

$$
n_{\{p\}}= \begin{cases}|p| & \text { if } p \notin\{-1,-2,2\} \\ 4 & \text { if } p=-1 \\ 8 & \text { if } p= \pm 2\end{cases}
$$

For any $S \subseteq J$ let n_{S} be the smallest common multiple of $n_{\{p\}}$ for all $p \in S$ (by convention $n_{\emptyset}=1$), and

$$
\zeta_{S}=e^{2 \pi i / n_{S}}, \quad \mathbb{Q}^{S}=\mathbb{Q}\left(\zeta_{S}\right), \quad K_{S}=\mathbb{Q}(\sqrt{p} ; p \in S), \quad k_{S}=k \cap K_{S} .
$$

It is easy to see that $K_{J}=K, k_{J}=k$, and n_{J} is the conductor of k.
We call a subset $S \subseteq J$ admissible if S contains at most one of the numbers $-1,2$, and -2 . For any admissible set $S \subseteq J$ we define

$$
\varepsilon_{S}= \begin{cases}1 & \text { if } S=\emptyset \\ i & \text { if } S=\{-1\} \\ \frac{1}{\sqrt{p}} \mathrm{~N}_{\mathbb{Q}^{S} / K_{S}}\left(1-\zeta_{S}\right) & \text { if } S=\{p\}, p \neq-1, \\ \mathrm{~N}_{\mathbb{Q}^{S} / K_{S}}\left(1-\zeta_{S}\right) & \text { if } \# S>1\end{cases}
$$

and $\eta_{S}=\mathrm{N}_{K_{S} / k_{S}}\left(\varepsilon_{S}\right)$.
Let χ_{2} and χ_{-2} be the unique even and odd Dirichlet character of conductor 8 , respectively. For each $p \in J-\{2,-2\}$ let χ_{p} be the unique Dirichlet character of conductor $n_{\{p\}}$, so χ_{p} is odd if and only if $p<0$.

Let X be the group of all even Dirichlet characters corresponding to k. Each $\chi \in X$ can be written in the form $\chi=\prod_{p \in S_{\chi}} \chi_{p}$ for a unique admissible set $S_{\chi} \subseteq J$. Then the conductor of χ is equal to $n_{S_{\chi}}$.

It is easy to see that, for any admissible set $S \subseteq J$, a character $\chi \in X$ belongs to the set of Dirichlet characters corresponding to the field k_{S} if and only if $S_{\chi} \subseteq S$.

Let C be the group of circular units of k defined in [3]. This means that C is generated by W and by all conjugates of η_{S}, where $S \subseteq J$ (see the proof of Proposition 4 below). This group contains the Sinnott group of circular units C^{\prime} of k but it can be slightly bigger. Lemma 3 in [2] implies that the Sinnott group is generated by

$$
W \cup\left\{\eta_{S} ; S \subseteq J, \# S>1\right\} \cup\left\{\eta_{p}^{2} ; p \in J, p>0, \sqrt{p} \in k\right\}
$$

and consequently $\left[C: C^{\prime}\right]=2^{a}$, where

$$
0 \leq a \leq \#\{p \in J ; p>0, \sqrt{p} \in k\} .
$$

Similarly, for any $S \subseteq J$ let C_{S} be the group of circular units of k_{S} defined in [3]. If S is admissible then the ramification index of 2 in k_{S} is not equal to 4 and so we know the following basis of C_{S} :

Lemma 1. If $S \subseteq J$ is admissible then a basis of C_{S} is formed by the set of all $\eta_{S_{\chi}}$ where $\chi \in X$ is non-trivial and satisfies $S_{\chi} \subseteq S$.

Proof. If $-1 \notin S$ see [2, Lemma 5], otherwise see [4, Proposition 1.4].
Let W be the group of all roots of unity in k. Let \tilde{C} be the subgroup of the multiplicative group k^{\times}generated by W and by all conjugates of η_{S} for all admissible sets $S \subseteq J$. Let $G=\operatorname{Gal}(k / \mathbb{Q})$ be the Galois group of k.

Lemma 2. For any $\varepsilon \in \tilde{C}$ and any $\sigma \in G$ there are $\rho \in W$ and $\eta \in \tilde{C}$ such that $\varepsilon^{1-\sigma}=\rho \eta^{2}$.

Proof. Consider a conjugate of η_{S} for an admissible set $S \subseteq J$. If $-1 \notin S$ use [2, Lemma 2], otherwise use [4, Lemma 1.2].

Lemma 3. The set $W \cup\left\{\eta_{S_{\chi}} ; \chi \in X, \chi \neq 1\right\}$ generates the group \tilde{C}.
Proof. Lemma 2 gives that \tilde{C} is as a group generated by W and by η_{S} for all admissible sets $S \subseteq J$. For any admissible set $S \subseteq J$ we can show that if $S \neq S_{\chi}$ for all $\chi \in X$ then η_{S} can be written as a multiplicative \mathbb{Z}-linear combination of η_{L} for $L \subsetneq S$ (modulo roots of unity). If $-1 \notin S$ use [2, Lemma 5], otherwise use [4, p. 1077].

2. The index of \tilde{C} in C

Proposition 4. The group C of circular units of k is generated by \tilde{C} and by all conjugates of $\mathrm{N}_{\mathbb{Q}^{S} / k_{S}}\left(1-\zeta_{S}\right)$, where $S \subseteq J$ is not admissible, $S \neq\{-1,2,-2\}$, and the ramification index of k_{S} at 2 is 4 .

Proof. Let E be the full group of units of k. By definition (see [3]), C is the intersection of E and a group D, where D is generated by -1 , by \sqrt{p} for all $p \in J$ such that $p>0$ and $\sqrt{p} \in k$, and by all conjugates of $\mathrm{N}_{\mathbb{Q}^{S} / k_{S}}\left(1-\zeta_{S}\right)$ for all non-empty $S \subseteq J$.

For a non-empty $S \subseteq J$, it is well-known that $\mathrm{N}_{\mathbb{Q}^{S} / k_{S}}\left(1-\zeta_{S}\right)$ is a unit if and only if n_{S} is not a prime power. Moreover, if $p \in J$ and $p<0$ then all units of $k_{\{p\}}$ are roots of unity. Therefore \tilde{C} is the intersection of E and a group \tilde{D}, where \tilde{D} is generated by -1 , by \sqrt{p} for all $p \in J$ such that $p>0$ and $\sqrt{p} \in k$, and by all conjugates of $\mathrm{N}_{\mathbb{Q}^{S} / k_{S}}\left(1-\zeta_{S}\right)$ for all admissible non-empty $S \subseteq J$.

If S is not admissible and the ramification index of k_{S} at 2 is not 4 then $k_{S}=k_{S^{\prime}}$ for a suitable admissible $S^{\prime} \subseteq S$. Hence D is generated by \tilde{D} and by $\mathrm{N}_{\mathbb{Q}^{S} / k_{S}}\left(1-\zeta_{S}\right)$ for all non-admissible $S \subseteq J$ such that the ramification index of k_{S} at 2 is 4 . This norm is a unit unless $S=\{-1,2,-2\}$ and $\sqrt{-1}, \sqrt{2} \in k$, in which case $k_{S}=\mathbb{Q}(\sqrt{-1}, \sqrt{2})$ is the eighth cyclotomic field. But the group of all units of the latter is generated by ζ_{8} and by

$$
\eta=\zeta_{8}^{-1} \cdot \frac{1-\zeta_{8}^{3}}{1-\zeta_{8}}=1+\zeta_{8}+\zeta_{8}^{-1}=1+\sqrt{2}
$$

We have

$$
\eta_{\{2\}}=\frac{1}{\sqrt{2}} \mathrm{~N}_{\mathbb{Q}\left(\zeta_{8}\right) / \mathbb{Q}(\sqrt{2})}\left(1-\zeta_{8}\right)=\sqrt{2}-1=\eta^{-1}
$$

and the proposition follows.
Proposition 5. The group \tilde{C} is of finite index in C and $[C: \tilde{C}] \leq 2^{n}$, where n is the number of all $S \subseteq J$ such that $\{-1,2,-2\} \subsetneq S$ and the ramification index of k_{S} at 2 is 4 . Moreover, the Galois action of G on C / \tilde{C} is trivial.

Proof. Let $T=J-\{-1,2,-2\}$. For any $x \in\{-1,2,-2\}$ let ρ_{x} be the generator of $\operatorname{Gal}\left(K / K_{T \cup\{x\}}\right)$. For any $L \subseteq T$ we put $S=L \cup\{-1,2,-2\}$ and $\varepsilon=\mathrm{N}_{\mathbb{Q}^{S} / k_{S}}\left(1-\zeta_{S}\right)$. Then

$$
\varepsilon^{2}=\varepsilon^{1+\rho_{-1}} \cdot \varepsilon^{1+\rho_{-2}} \cdot\left(\varepsilon^{1+\rho_{2}}\right)^{-\rho_{-1}} .
$$

For any $x \in\{-1,2,-2\}$ we have

$$
\varepsilon^{1+\rho_{x}}=\mathrm{N}_{\mathbb{Q}^{S} / k_{T \cup\{x\}}}\left(1-\zeta_{S}\right)=\eta_{T \cup\{x\}}
$$

because $\mathrm{N}_{\mathbb{Q}^{S} / \mathbb{Q}^{T \cup\{x\}}}\left(1-\zeta_{S}\right)=1-\zeta_{T \cup\{x\}}$. We have obtained $\varepsilon^{2} \in \tilde{C}$ and for any $\sigma \in G$ Lemma 2 gives $\varepsilon^{2(1-\sigma)} \in W \cdot \tilde{C}^{2}$, which implies $\varepsilon^{1-\sigma} \in \tilde{C}$. The proposition follows by means of Proposition 4.

3. A basis of \tilde{C} and the index of \tilde{C} in E

Theorem 6. The set $\left\{\eta_{S_{\chi}} ; \chi \in X, \chi \neq 1\right\}$ is a \mathbb{Z}-basis of \tilde{C}, i.e. elements of this set are multiplicatively independent and together with W generate \tilde{C}.

Proof. Proposition 5 gives that \tilde{C} and C have the same \mathbb{Z}-rank. As the index $[E: C]$ is finite, \tilde{C} and E have the same \mathbb{Z}-rank, and the \mathbb{Z}-rank of E is equal to the number of elements of the given set. The theorem follows from Lemma 3.

Having a \mathbb{Z}-basis allows us to compute the index:
Theorem 7. We have

$$
[E: \tilde{C}]=\left(\prod_{\chi \in X, \chi \neq 1} \frac{2 \cdot\left[k: k_{S_{\chi}}\right]}{\left[k: k^{+}\right]}\right) \cdot|X|^{-|X| / 2} \cdot Q h^{+},
$$

where k^{+}is the maximal real subfield of $k,|X|$ means the number of characters in $X, Q=\left[E: W \cdot\left(E \cap k^{+}\right)\right]$is the Hasse unit index of k, and h^{+} is the class number of k^{+}.

Proof. This can be proved in the same way as Theorem 1 in [2].

The following example shows that the estimate of the index $[C: \tilde{C}]$ can be precise. It seems to be an interesting question whether this holds true in general.

Example 8. Let $k=\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{-3})$. Then k is the 24 th cyclotomic field. Sinnott's formula for the index of the group of circular units of a cyclotomic field (see [5, Theorem]) shows that the Sinnott's group of circular units of k equals E and so we also have $C=E$. Then [1, Theorem 6.1] gives the following \mathbb{Z}-basis of $C: \alpha=1-\zeta, \beta=1-\zeta^{19}, \gamma=\left(1-\zeta^{9}\right) /\left(1-\zeta^{3}\right)$. As β is a conjugate of α, we see that we obtain $\alpha \cdot \beta^{-1}$ by an action of the augmentation ideal on α. As both α and β belong to a basis we see that $\alpha \cdot \beta^{-1}$ is not a square modulo roots of unity in E. Theorem 6 states that $\eta_{\{2\}}, \eta_{\{-1,-3\}}$ and $\eta_{\{-2,-3\}}$ form a \mathbb{Z}-basis of \tilde{C}. We have

$$
\begin{aligned}
\eta_{\{2\}} & =(1+\sqrt{2})^{-1}=\zeta^{3} \cdot \gamma \\
\eta_{\{-1,-3\}} & =1-\zeta^{2}=\zeta \cdot \alpha \cdot \beta^{-1} \cdot \gamma \\
\eta_{\{-2,-3\}} & =\alpha \cdot \beta
\end{aligned}
$$

The determinant of the transition matrix gives the index $[C: \tilde{C}]=2$ for k, which equals the upper bound given by Proposition 5 .

This research was supported by the Grant Agency of the Czech Republic by the project $201 / 07 / 0191$.

References

[1] R. Kučera, On bases of the Stickelberger ideal and of the group of circular units of a cyclotomic field, J. Number Theory 40 (1992), 284-316.
[2] -, On the Stickelberger ideal and circular units of a compositum of quadratic fields, ibid. 56 (1996), 139-166.
[3] -, A note on Sinnott's definition of circular units of an abelian field, ibid. 63 (1997), 403-407.
[4] Z. Polický, On the index of circular units in the full group of units of a compositum of quadratic fields, ibid. 128 (2008), 1074-1090.
[5] W. Sinnott, On the Stickelberger ideal and circular units of a cyclotomic field, Ann. of Math. 108 (1978), 107-134.

Department of Mathematics and Statistics
Faculty of Science
Masaryk University
Kotlářská 2
61137 Brno, Czech Republic
E-mail: alize@seznam.cz

[^0]: 2000 Mathematics Subject Classification: Primary 11R29; Secondary 11R27.
 Key words and phrases: compositum of quadratic fields, circular units, the index of circular units, class number.

