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1. Introduction. In a series of papers, Sárközy [11–13] investigated the
set of differences of a set of positive density in the integers. He proved the
following theorem in [11], confirming a conjecture of Lovász:

Theorem 1. If B is a subset of positive density of the integers, then
there exist two distinct elements of B whose difference is a perfect square.

For a set H ⊆ N = {1, 2, . . .} and N ∈ N, we denote by D(H,N) the
maximal cardinality of a set B ⊆ {1, . . . , N} such that the difference set
B −B does not contain any element of H. Thus, if T is the set of non-zero
squares, the above theorem says that D(T,N) = o(N). Sárközy indeed gave
an explicit upper bound for D(T,N) by showing that

D(T,N)� N
(log logN)2/3

(logN)1/3
.

At about the same time, by using ergodic theory, Furstenberg [2] inde-
pendently proved that D(T,N) = o(N), but his result is not quantita-
tive. Recently, Green [3] and Lyall [8] provided greatly simplified proofs of
Sárközy’s theorem with weaker bounds. Even more recently, Green, Tao and
Ziegler [14] gave yet another simple and elementary proof of Sárközy’s the-
orem (though with weaker bounds). A sharper quantitative result was ob-
tained by Pintz, Steiger and Szemerédi [9], who proved that

D(T,N)� N(logN)−(1/12) log log log logN .

This bound was later improved by Balog, Pelikán, Pintz and Szemerédi [1]
with 1/12 being replaced by 1/4.

Various generalizations of Sárközy’s theorem have been investigated. For
example, Kamae and Mendès France [4] gave very general criteria for sets
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enjoying the same properties as the squares (known as intersective sets).
For l ∈ N with l ≥ 2, the aforementioned bound of Balog, Pelikán, Pintz
and Szemerédi was valid with squares replaced by lth powers. Sárközy [12]
also estimated D(H,N) with H = {p− 1 : p prime}. His theorem was later
improved by Ruzsa and Sanders [10]. For more results on intersective sets,
we refer the reader to the survey paper [6].

In [7], the first author and Spencer investigated a function field analog of
Sárközy’s theorem for shifted primes. Thanks to some improved exponential
sum estimates, they obtained a result that is stronger than Ruzsa–Sanders’
bound. In this paper, we consider a function field analogue of Theorem 1.
Let Fq[t] be the polynomial ring over the finite field Fq, and let GN be the
subset of Fq[t] containing all polynomials of degree strictly less than N . We
denote by D(N) the maximal cardinality of a set A ⊆ GN for which A−A
contains no squares of non-zero polynomials. Also, for A ⊆ GN , we denote
by |A| the cardinality of A. Define

U(A,N) =
∑

f∈Fq [t]
f 6=0

∣∣{(a, a′) ∈ A2 | a− a′ = f2}
∣∣,

which represents the number of distinct pairs (a, a′) in A2 whose difference
is a square. We first notice that if q is a power of 2, the map f 7→ f2 is
linear. This observation allows us to provide simple estimates for D(N) and
U(A,N) in this case. For a real number R, let dRe be the smallest integer
≥ R and bRc the largest integer ≤ R.

Proposition 2. Suppose that q is a power of 2.

(1) We have

D(N) ≤ qN/2.

(2) Let A ⊆ GN with |A| = δqN and δ > q−N/2. Then

U(A,N) ≥ δ2qd3N/2e − δqN .

Proof. For a, a′ ∈ GN , we have a − a′ = f2 ∈ GN . We first notice that
every square in GN is of the form x0 +x2t

2 + · · ·+x2kt
2k, where xi ∈ Fq and

k ≤ b(N − 1)/2c. Let M = bN/2c. For every x = (x1, x2, . . . , xM ) ∈ FMq , the
M -dimensional vector space over Fq, letAx be the set of all elements a = a0+
a1t+ · · ·+ aN−1t

N−1 in A such that (a1, a3, . . . , a2M−1) = (x1, x2, . . . , xM ).

(1) If

|A| > qN−M ≥ qN/2,
then by the pigeonhole principle there exists x such that Ax contains at
least two distinct elements. Then the difference of these two elements is a
non-zero square in Fq[t].
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(2) Suppose that A ⊆ GN with |A| = δqN and δ > q−N/2. From the
above estimate, we see that

U(A,N) ≥
∑
x∈FMq

|Ax|2 − |A| ≥
1

qM
|A|2 − |A| = δ2qd3N/2e − δqN .

This completes the proof of the proposition.

Thus, throughout the rest of this paper, we assume that q is odd. By
adapting part of the Pintz–Steiger–Szeméredi argument, we prove

Theorem 3. Suppose that q is not divisible by 2.

(1) There exists a constant C, depending only on q, such that

D(N) ≤ CqN (logN)7

N
.

(2) Let A ⊆ GN with |A| = δqN and δ > C(logN)7/N . There exists a
constant C ′, depending only on q, such that

U(A,N) ≥ δ2 exp

(
−C ′ 1

δ
(logN)7

)
q3N/2.

The paper is organized as follows. In Section 2, we will introduce basic
notation and Fourier analysis in Fq[t]. In Section 3, we will obtain some
exponential sum estimates that are necessary for our arguments. Then we
will prove Theorem 3 in Section 4. We remark here that since we will not
implement the full strength of the Pintz–Steiger–Szemerédi argument in this
paper, the above bound of D(N) is not as strong as its integer analogue.
However, our approach allows us to get a bound on U(A,N), which is not
possible using the method of Pintz–Steiger–Szemerédi. On the other hand,
various arguments used to get the correct order of magnitude of U(A,N),
which is q3N/2, give much weaker bounds for D(N) than the one in Theo-
rem 3. Thus, our bounds of D(N) and U(A,N) are something in between
the two extremes. Also, although we work only with squares, our approach
can be easily extended to cover lth powers when l < p, the characteristic
of Fq, with a bound of the same strength. The cases when l ≥ p are more dif-
ficult. The main obstruction is that our approach involves the use of Weyl’s
differencing (see Lemma 9), which produces factors of l! on certain exponen-
tial sums. Since these factors are zero when l ≥ p, the standard application
of the circle method is ineffective in providing non-trivial estimates. In our
future paper, we intend to apply the recent work of the second author and
Wooley on Vinogradov’s mean value theorem in function fields to overcome
the difficulty of small characteristics. We also plan to apply the approach
of Pintz–Steiger–Szemerédi to obtain a bound of comparable strength to its
integer analogue.
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2. Preliminaries. We begin this section by introducing Fourier analy-
sis for function fields. Let K = Fq(t) be the field of fractions of Fq[t], and let
K∞ = Fq((1/t)) be the completion of K at ∞. Each element ξ ∈ K∞ may
be written in the form ξ =

∑
i≤w ai(ξ)t

i for some w ∈ Z and ai(ξ) ∈ Fq
(i ≤ w). If aw(ξ) 6= 0, we say that ord ξ = w, and we write 〈ξ〉 for qord ξ.
We adopt the conventions that ord 0 = −∞ and 〈0〉 = 0. Also, we write
{ξ} =

∑
i<0 ai(ξ)t

i as the fractional part of ξ. It is often convenient to re-
fer to a−1(ξ) as the residue of ξ, denoted by res ξ. For a real number R,

we let R̂ denote qR. Thus, for x ∈ Fq[t], we have 〈x〉 < R̂ if and only if
ordx < R.

Let T = {ξ ∈ K∞ | ord ξ < 0}. Given any Haar measure dξ on K∞,
we normalize it in such a manner that

	
T 1 dξ = 1. We are now equipped

to define the exponential function on K∞. Suppose that the characteristic
of Fq is p. Let e(z) denote e2πiz and let tr : Fq → Fp denote the familiar
trace map. There is a non-trivial additive character eq : Fq → C× defined
for each a ∈ Fq by taking eq(a) = e(tr(a)/p). This character induces a map
e : K∞ → C× by defining, for each element ξ ∈ K∞, the value of e(ξ) to
be eq(res ξ). For ξ ∈ K∞, the exponential function satisfies the following
orthogonal relation [5, Lemma 7]:

(1)
∑
〈x〉<N̂

e(xξ) =

{
N̂ if ord{ξ} < −N ,

0 if ord{ξ} ≥ −N .

Let Φ : GN → C. The Fourier transform Φ̂ : T → C of Φ is defined
by

Φ̂(α) =
∑
〈x〉<N̂

Φ(x)e(xα).

If Φ, Ψ : GN → C, then the convolution Φ ∗ Ψ : GN → C of Φ and Ψ is
defined by

Φ ∗ Ψ(x) =
∑
〈y〉<N̂

Φ(y)Ψ(x− y).

Let γ ∈ T with ord γ = −N . By (1), we have

(2)
∑
〈x〉<N̂

Φ̂(xγ)Ψ̂(xγ) = N̂
∑
〈x〉<N̂

Φ(x)Ψ(x),

where Ψ(x) is the complex conjugate of Ψ(x). Then it follows that

(3)
∑
〈x〉<N̂

|Φ̂(xγ)|2 = N̂
∑
〈x〉<N̂

|Φ(x)|2.
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Also, for every α ∈ T, we have

(4) Φ̂ ∗ Ψ(α) = Φ̂(α)Ψ̂(α).

For a set A ⊆ GN , we denote by A(x) the characteristic function of x. If

|A| = δN̂ , by (3), we have

(5)
∑
〈x〉<N̂

|Â(xγ)|2 = N̂ |A| = δN̂2.

Finally, by (2), we have

(6)
∑
〈x〉<N̂

A ∗ (−A)(x)Φ(x) =
1

N̂

∑
〈x〉<N̂

|Â(xγ)|2 Φ̂(xγ).

Notation. For r ∈ R, let f(r) and g(r) be functions of r. If g(r) is
positive and there exists a constant C > 0 such that |f(r)| ≤ Cg(r) for
all r, we write f(r) � g(r) or f(r) = O(g(r)). Throughout this paper,
all implicit constants and constants denoted by C,C ′ or ci depend at most
on q.

3. Exponential sum estimates. For η > 0 and a, g ∈ Fq[t], define

Ma,g,η = {α ∈ T | 〈α− a/g〉 < η}.

Let R,M ∈ N with R < 2M/3. We recall that for all α ∈ T, by Dirich-
let’s theorem in Fq[t] ([5, Lemma 3]), there exist a, g ∈ Fq[t] with g monic,

〈a〉 < 〈g〉, (a, g) = 1, 〈α − a/g〉 < R̂〈g〉−1M̂−2 and 〈g〉 ≤ M̂ 2R̂−1. Let
Ma,g = M

a,g,R̂〈g〉−1M̂−2 . Then we define the major arcs M and the minor

arcs m as follows:

M =
⋃

〈g〉≤R̂, gmonic
〈a〉<〈g〉, (a,g)=1

Ma,g and m = T \M.

Also, we define

SM (α) =
∑
〈x〉<M̂

〈x〉e(x2α).

In this section, we will obtain some estimates of SM on the major and minor
arcs. Specific choices of M and R will be made in Section 4.

Lemma 4. For α ∈Ma,g ⊆M, we have

SM (α) =
1

〈g〉
∑
〈r〉<〈g〉

e(r2a/g)SM (α− a/g) +O(〈g〉2).
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Proof. Let β = α−a/g. For x ∈ Fq[t], we write x = yg+r with y, r ∈ Fq[t]
and 〈r〉 < 〈g〉. Since α ∈M, we have 〈g〉 ≤ R̂ < M̂ . Then

SM (α) =
∑
〈x〉<M̂

〈x〉e(x2a/g)e(x2β)

=
∑
〈r〉<〈g〉

∑
〈y〉<M̂〈g〉−1

〈yg + r〉e((yg + r)2a/g)e((yg + r)2β)

=
∑
〈r〉<〈g〉

e(r2a/g)〈r〉e(r2β)

+
∑
〈r〉<〈g〉

e(r2a/g)
( ∑

1≤〈y〉<M̂〈g〉−1

〈yg + r〉e((yg + r)2β)
)
.

Notice that for 〈y〉 ≥ 1, we have 〈yg + r〉 = 〈yg〉. Also, since R̂ < M̂ 2/3,

〈(yg + r)2β − (yg)2β〉 ≤ max{〈yg〉, 〈r2〉}〈β〉

< max{M̂q−1, R̂2q−2}R̂〈g〉−1M̂−2 ≤ q−2.

Thus, e((yg + r)2β) = e((yg)2β). It follows that∑
1≤〈y〉<M̂〈g〉−1

〈yg + r〉e((yg + r)2β)

=
∑

1≤〈y〉≤M̂〈g〉−1

〈yg〉e((yg)2β)

=
1

〈g〉
∑
〈r〉<〈g〉

∑
1≤〈y〉≤M̂〈g〉−1

〈yg+r〉e((yg+r)2β)

=
1

〈g〉
∑
〈r〉<〈g〉

∑
〈y〉≤M̂〈g〉−1

〈yg + r〉e((yg + r)2β) +O(〈g〉)

=
1

〈g〉
SM (β) +O(〈g〉).

Combining the above two equalities, we have

SM (α) = O(〈g〉2) +
∑
〈r〉<〈g〉

e(r2a/g)

(
1

〈g〉
SM (β) +O(〈g〉)

)
=

1

〈g〉
∑
〈r〉<〈g〉

e(r2a/g)SM (β) +O(〈g〉2).

This completes the proof of the lemma.
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Lemma 5 (Major arcs estimate). For α ∈Ma,g ⊆M, we have

SM (α)� M̂ 2〈g〉−1/2.
Proof. Since

∑
〈r〉<〈g〉 e(r

2a/g)� 〈g〉1/2 [5, Lemma 22] and SM (α−a/g)

� M̂ 2, by Lemma 4 we have

SM (α)� 〈g〉−1〈g〉1/2M̂ 2 + 〈g〉2 � M̂ 2〈g〉−1/2.

The last inequality follows since 〈g〉5/2 ≤ R̂ 5/2 < M̂ 2.

Lemma 6. For α ∈Ma,g ⊆ m, we have

SM (α) = SM (a/g).

Proof. Write α = a/g + β. Then

SM (α) = SM (a/g + β) =
∑
〈x〉<M̂

〈x〉e(x2a/g)e(x2β).

Notice that for α ∈ m, we have 〈g〉 > R̂. Then

〈x2β〉 < M̂ 2q−2R̂〈g〉−1M̂−2 < q−2.

Thus, e(x2β) = 1, and the lemma follows.

Lemma 7. For M̂ < 〈g〉, we have∑
〈x〉<M̂

e(x2a/g)� 〈g〉1/2(ord g)1/2.

Proof. We have∣∣∣ ∑
〈x〉<M̂

e(x2a/g)
∣∣∣2 =

∑
〈x〉<M̂

∑
〈y〉<M̂

e
(
(x+ y)(x− y)a/g

)
≤
∑
〈u〉<M̂

∣∣∣ ∑
〈v〉<M̂

e(uva/g)
∣∣∣.

Since (a, g) = 1 and M̂ < 〈g〉, by (1), it follows that∣∣∣ ∑
〈x〉<M̂

e(x2a/g)
∣∣∣2 � M̂ +

∑
1≤〈u〉<〈g〉

〈{ua/g}〉−1 = M̂ +
∑

1≤〈z〉<〈g〉

〈z/g〉−1

� 〈g〉+

ord g−1∑
W=0

Ŵ 〈g〉Ŵ−1 � 〈g〉 ord g.

This completes the proof of the lemma.

Lemma 8 (Minor arcs estimate). For α ∈Ma,g ⊆ m, we have

SM (α)� M̂ 2M1/2R̂−1/2.
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Proof. By Lemma 6, we have SM (α) = SM (a/g). There are two cases:

(1) If 〈g〉 > M̂ , by Abel’s inequality and Lemma 7, we have

SM (a/g) =
∑
〈x〉<M̂

〈x〉e(x2a/g) ≤ max
〈x〉<M̂

〈x〉max
J≤M

∣∣∣ ∑
〈x〉<Ĵ

e(x2a/g)
∣∣∣

� M̂〈g〉1/2(ord g)1/2.

Since 〈g〉 < M̂ 2R̂−1, it follows that

SM (a/g)� M̂ 2M1/2R̂−1/2.

(2) Suppose that 〈g〉 ≤ M̂ . For x ∈ Fq[t], we write x = yg + r with
y, r ∈ Fq[t] and 〈r〉 < 〈g〉. Thus,

SM (a/g) =
∑
〈r〉<〈g〉

∑
〈y〉<M̂〈g〉−1

〈yg + r〉e((yg + r)2a/g)

=
∑
〈r〉<〈g〉

e(r2a/g)
∑

〈y〉<M̂〈g〉−1

〈yg + r〉.

Since
∑
〈r〉<〈g〉 e(r

2a/g)� 〈g〉1/2 [5, Lemma 22] and 〈g〉 > R̂, it follows that

SM (a/g)� 〈g〉1/2M̂ 2〈g〉−1 � M̂ 2R̂−1/2.

Combining the above two cases gives the conclusion of the lemma.

Lemma 9. For N ∈ N and α ∈ T with −N ≤ ordα < −2M+2, we have∑
〈x〉<N̂

|SM (xα)|6 � N̂M̂ 10.

Proof. By [5, Proposition 13], for any ε > 0,
�

T

∣∣∣ ∑
〈y〉<M̂

e(y2α)
∣∣∣4 dα� M̂ 2+ε.

Then using the argument in [15, Theorem 3], we can derive from the above
bound that �

T

∣∣∣ ∑
〈y〉<M̂

e(y2α)
∣∣∣6 dα� M̂ 4.

By [5, Lemma 1], we have

�

T

∣∣∣ ∑
〈y〉<M̂

e(y2α)
∣∣∣6 dα

= #{(y1, y2, y3, z1, z2, z3) ∈ GM
6 | y21 + y22 + y23 = z21 + z22 + z23}.
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Thus, combining the above estimates with (1), we find that∑
〈x〉<N̂

|SM (xα)|6

=
∑
〈x〉<N̂

∑
〈y1〉,〈y2〉,〈y3〉,〈z1〉,〈z2〉,〈z3〉<M̂

〈y1〉〈y2〉〈y3〉〈z1〉〈z2〉〈z3〉

× e
(
(y21 + y22 + y23 − z21 − z22 − z23)xα

)
= N̂

∑
〈y1〉,〈y2〉,〈y3〉,〈z1〉,〈z2〉,〈z3〉<M̂

y21+y
2
2+y

2
3=z

2
1+z

2
2+z

2
3

〈y1〉〈y2〉〈y3〉〈z1〉〈z2〉〈z3〉

� N̂M̂ 6#{(y1, y2, y3, z1, z2, z3) ∈ GM
6 | y21 + y22 + y23 = z21 + z22 + z23}

� N̂M̂ 10.

This completes the proof of the lemma.

For f ∈ Fq[t], a ∈ Fq and α ∈ T, define

Rf,a(α) = {x ∈ Fq[t] | 〈x2α− f − at−1〉 ≤ q−2}.
The following lemma says that, in a sense, x2α is uniformly distributed in T.

Lemma 10. Let α ∈ T, a ∈ Fq and f ∈ Fq[t] with f 6= 0.

(1) For x ∈ Rf,a(α) and b ∈ Fq with a 6= b, there exist unique c ∈ Fq
and l ∈ N ∪ {0} such that x+ ctl ∈ Rf,b(α).

(2) For any b ∈ Fq, we have |Rf,b(α)| = |Rf,a(α)|.

Proof. (1) For x ∈ Rf,a(α), we have

x+ ctl ∈ Rf,b ⇔ 〈(x+ ctl)2α− f − bt−1〉 ≤ q−2

⇔
〈(

(x+ ctl)2 − x2
)
α− (b− a)t−1

〉
≤ q−2

⇔ 〈ctl(2x+ ctl)α− (b− a)t−1〉 ≤ q−2.

Since 〈x2α − f〉 ≤ q−1, 〈(x + ctl)2α − f〉 ≤ q−1 and f 6= 0, we see that
ordx > ord(ctl). Since a 6= b, comparing the orders shows that

(7) l + ordx+ ordα = −1 ⇔ l = − ordα− 1− ordx.

Thus, l is uniquely determined. Moreover, we see that the leading coefficient
of 2cxtlα is equal to b− a. Thus, c is uniquely determined.

(2) Consider ψa,b : Rf,a(α) → Rf,b(α) defined by ψa,b(x) = x + ctl,
where c, l are defined as in part (1). Suppose that x1, x2 ∈ Rf,a(α) with
x1 + c1t

l1 = x2 + c2t
l2 . Since 〈x21α〉 = 〈f〉 = 〈x22α〉, we have 〈x1〉 = 〈x2〉.

Then, by (7),

l1 = − ordα− 1− ordx1 = − ordα− 1− ordx2 = l2,
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from which it follows that x1 = x2. Thus, ψa,b is injective. Similarly, we
can prove that ψb,a : Rf,b(α) → Rf,a(α) is also injective. It follows that
|Rf,b(α)| = |Rf,a(α)|.

Lemma 11. For α ∈ T, we have

|SM (α)| ≤ 〈α〉−1.

Proof. We first notice that if 〈α〉 ≤ M̂−2, then

|SM (α)| ≤ M̂ 2 ≤ 〈α〉−1.

Thus, in the rest of the proof, we can assume that 〈α〉 > M̂−2. Let f ∈ Fq[t],
a ∈ Fq and x ∈ Rf,a(α). We have

e(x2α) = e(f + at−1) = eq(a).

Notice that f = 0 if and only if 〈x2α〉 < 1. Then it follows that 〈x〉 < 〈α〉−1/2.
If f 6= 0, then 〈x2α〉 = 〈f〉. Thus, 〈x〉 is independent of a. We have

|SM (α)| =
∣∣∣ ∑
〈x〉<M̂

〈x〉e(x2α)
∣∣∣

≤
∣∣∣ ∑
〈x2α〉<1

〈x〉e(x2α)
∣∣∣+
∣∣∣ ∑
1≤〈f〉≤M̂2q−2〈α〉−1

∑
a∈Fq

∑
x∈Rf,a(α)

〈x〉e(x2α)
∣∣∣

≤ 〈α〉−1/2
∑
〈x2α〉<1

1

+
∣∣∣ ∑
1≤〈f〉≤M̂2q−2〈α〉−1

(〈f〉〈α〉−1)1/2
∑
a∈Fq

eq(a)
∑

x∈Rf,a(α)

1
∣∣∣

= 〈α〉−1 +
∣∣∣ ∑
1≤〈f〉≤M̂2q−2〈α〉−1

〈f〉1/2〈α〉−1/2
∑
a∈Fq

eq(a)|Rf,a(α)|
∣∣∣.

By Lemma 10(2), the above inner sum is 0. This completes the proof of the
lemma.

4. Proof of Theorem 3. For N ∈ N and A ⊆ GN , we define

W (A,N) =
∑

f∈Fq [t]

〈f〉|{(a, a′) ∈ A2 | a− a′ = f2}|,

which counts the number of pairs (a, a′) in A2 whose difference is f2 with
weight 〈f〉. In this section, we will prove the following theorem.

Theorem 12. There exist constants C,C ′ > 0, depending only on q,
such that whenever A ⊆ GN with |A| = δN̂ and δ > C(logN)7/N , we have

W (A,N) ≥ δ2 exp

(
−C ′ 1

δ
(logN)7

)
N̂2.



On sets of polynomials 137

We notice that since W (A,N) > 0 and W (A,N) ≤ N̂1/2U(A,N), The-
orem 3 is a direct consequence of the above theorem.

Let γ ∈ T with ord γ = −N . For η > 0 and g ∈ Fq[t], let

Mg,η =
⋃
〈a〉<〈g〉
(a,g)=1

Ma,g,η,

where Ma,g,η is defined as in Section 3. We also define

F (g, η) =
1

|A|N̂

∑
〈x〉<N̂
xγ∈Mg,η

|Â(xγ)|2.

The following lemma is about the density increment.

Lemma 13. Let A ⊆ GN with |A| = δN̂ . Let η > 0 and g ∈ Fq[t].
Suppose that N ≥ N ′ = − logq η − 2 ord g > 0. Then we can find a set

A′ ⊆ GN ′ with |A′| = δ′N̂ ′ such that

(1) δ′ ≥ δ + F (g, η),
(2) W (A,N) ≥ 〈g〉2W (A′, N ′).

Proof. Let G = g2GN ′ . By (3) and (4), we have∑
〈x〉<N̂

|A ∩ (G+ x)|2 =
∑
〈x〉<N̂

|A ∗G(x)|2 =
1

N̂

∑
〈x〉<N̂

|Â ∗G(xγ)|2

=
1

N̂

∑
〈x〉<N̂

|Â(xγ)|2|Ĝ(xγ)|2.

For xγ ∈Ma,g,η and y ∈ GN ′ , we have

〈g2yxγ − gya〉 < 〈g2y〉η ≤ q−1.

It follows that

Ĝ(xγ) =
∑
〈y〉<N̂ ′

e(g2yxγ) = N̂ ′.

Thus, by the definition of F (g, η),

1

N̂

∑
〈x〉<N̂
xγ∈Mg,η

|Â(xγ)|2|Ĝ(xγ)|2 = δF (g, η)N̂N̂ ′
2
.

If x = 0, then also
1

N̂
|Â(0)|2|Ĝ(0)|2 = δ2N̂N̂ ′

2
.
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We notice that 0 6∈ Mg,η as N ′ > 0. Combining the above estimates yields∑
〈x〉<N̂

|A∩(G+x)|2 ≥ 1

N̂

∑
〈x〉<N̂

xγ∈{0}∪Mg,η

|Â(xγ)|2|Ĝ(xγ)|2 ≥ (δ2+δF (g, η))N̂N̂ ′
2
.

Moreover, ∑
〈x〉<N̂

|A ∩ (G+ x)| = |A| |G| = δN̂N̂ ′.

Thus, there exists x′ ∈ GN such that |A ∩ (G+ x′)| ≥ (δ + F (g, η))N̂ ′. Let
A′ = {y ∈ GN ′ : g2y + x′ ∈ A}, then the set A′ satisfies both conditions of
the lemma.

Proposition 14. There exist constants ci > 0 (0 ≤ i ≤ 3) such that the

following holds: Let N ≥ c0, and consider a set A ⊆ GN with |A| = δN̂ and

δ ≥ N−1. Suppose that W (A,N) ≤ c1δ
2N̂2. Then there exist N ′ and a set

A′ ⊆ GN with |A′| = δ′N̂ ′ such that

(1) N ′ ≥ N − c2 logN ,
(2) δ′ ≥ δ + c3δ

2(logN)−6,
(3) W (A′, N ′) ≤W (A,N).

Proof. Let Φ : Fq[t]→ C be defined by

Φ(x) =

{
〈f〉 if x = f2 ∈ GN ,

0 otherwise.
By (6), we have

W (A,N) =
∑
〈x〉<N̂

A ∗ (−A)(x)Φ(x) =
1

N̂

∑
〈x〉<N̂

|Â(xγ)|2 Φ̂(xγ).

Also, we notice that Φ̂(θ)=SM (θ), where M=b(N+1)/2c. Let R=bc4 logNc
and K = bc5 logNc, where c4, c5 are large constants. Since W (A,N) ≤
c1δ

2N̂2 and |Â(0)|2Φ̂(0)� δ2N̂3 for c1 sufficiently small, we have

(8)
∑
〈x〉<N̂
x 6=0

|Â(xγ)|2|SM (xγ)| � δ2N̂3.

Let Ma,g, M and m be defined as in Section 3. We now divide the
summation in (8) into various cases. Consider those x with xγ ∈ m. By
Lemma 8 and (5), for N and c4 sufficiently large, we have∑

〈x〉<N̂
xγ∈m

|Â(xγ)|2SM (xγ) ≤ max
xγ∈m

|SM (xγ)|
∑
〈x〉<N̂

|Â(xγ)|2(9)

� M̂ 2MR̂−1/2δN̂2 = o(δ2N̂3).
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Consider those x with Â(xγ) ≤ |A|K̂−1. By Hölder’s inequality, (5) and
Lemma 9, for N and c5 sufficiently large, we have

(10)
∑
〈x〉<N̂

Â(xγ)≤|A|K̂−1

|Â(xγ)|2SM (xγ)

≤ max
〈x〉<N̂

Â(xγ)≤|A|K̂−1

|Â(xγ)|1/3
( ∑
〈x〉<N̂

|Â(xγ)|2
)5/6( ∑

〈x〉<N̂

|SM (xγ)|6
)1/6

≤ (δN̂K̂−1)1/3(δN̂2)5/6(N̂M̂ 10)1/6 = o(δ2N̂3).

Thus, it remains to consider those x with x 6= 0, xγ ∈M and Â(xγ)> |A|K̂−1.
Let

M(a, g) = {x ∈ GN | xγ ∈Ma,g and Â(xγ) > |A|K̂−1}.

By (8)–(10),

δ2N̂3 �
∑

1≤〈g〉≤R̂, gmonic
〈a〉<〈g〉, (a,g)=1

∑
x∈M(a,g)

|Â(xγ)|2|SM (xγ)|(11)

≤
∑

1≤〈g〉≤R̂, gmonic
〈a〉<〈g〉, (a,g)=1

max
x∈M(a,g)

|Â(xγ)|2
∑

x∈M(a,g)

|SM (xγ)|.

For x ∈ M(a, g), since
∑
〈r〉<〈g〉 e(r

2a/g) � 〈g〉1/2 [5, Lemma 22], by Lem-
mas 4 and 11, we have

SM (xγ)� 〈g〉−1/2|SM (xγ − a/g)|+ 〈g〉2 ≤ 〈g〉−1/2〈xγ − a/g〉−1 + 〈g〉2.

Also, by (5), we have

|M(a, g)|(|A|K̂−1)2 ≤
∑

x∈M(a,g)

|Â(xγ)|2 ≤
∑
〈x〉<N̂

|Â(xγ)|2 = δN̂2.

Thus, for c5 sufficiently large, it follows that

(12) |M(a, g)| ≤ δ−1K̂2 ≤ K̂3.

Let T ∈ N with T̂ − 1 ≤ K̂3 < T̂ . Then for a fixed ξ ∈ K∞ and distinct
fi ∈ Fq[t] (1 ≤ i ≤ K̂3), we have

K̂3∑
i=1

1

〈fi − ξ〉
≤ O(1) +

T∑
W=0

Ŵ + 1

Ŵ
� T � K.
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Also, since ord γ = −N , we have 〈xγ − a/g〉−1 = N̂〈x− a/(gγ)〉−1. Hence∑
x∈M(a,g)

|SM (xγ)| �
∑

x∈M(a,g)

(〈g〉−1/2N̂〈x− a/(gγ)〉−1 + 〈g〉2)

� 〈g〉−1/2N̂K + 〈g〉2K̂3 � 〈g〉−1/2N̂K.

Substituting this into (11), we have

δ2N̂2 �
∑

1≤〈g〉≤R̂
(a,g)=1
g monic

max
x∈M(a,g)

|Â(xγ)|2〈g〉−1/2K.

For 1 ≤ r ≤ R and 1 ≤ k ≤ K, let

Lr,k =
{
a/g | 〈g〉 = r̂, g monic, 〈a〉 < 〈g〉,

(a, g) = 1 and |A| k̂−1 < max
x∈M(a,g)

|Â(xγ)| ≤ |A| k̂ − 1
−1}

.

Then it follows from the above inequality that

δ2N̂2 �
∑

1≤r≤R
1≤k≤K

|Lr,k| |A|2k̂−2r̂−1/2K,

which implies that

1�
∑

1≤r≤R
1≤k≤K

|Lr,k|k̂−2r̂−1/2K.

Thus, there exist some r and k such that

(13) |Lr,k| � k̂2r̂ 1/2K−2R−1.

We now aim to obtain an upper bound for |Lr,k|. For a fixed g ∈ Fq[t], by
the definition of F (g, η), we have

F (g, R̂〈g〉−1M̂−2) =
1

|A|N̂

∑
〈x〉<N̂

xγ∈M
g,R̂〈g〉−1M̂−2

|Â(xγ)|2 ≥ 1

|A|N̂

∑
〈a〉<〈g〉
(a,g)=1
a/g∈Lr,k

|A|2k̂−2.

Summing over all g ∈ Fq[t] with g monic and 〈g〉 = r̂, we have

r̂ max
〈g〉=r̂

F (g, R̂〈g〉−1M̂−2) ≥ 1

|A|N̂
|Lr,k| |A|2k̂−2,

which implies that

|Lr,k| ≤ δ−1k̂2r̂ max
〈g〉=r̂

F (g, R̂〈g〉−1M̂−2).
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Also, by the same argument as in (12),

|Lr,k| � δ−1k̂2.

Combining the above two inequalities, we have

|Lr,k| � δ−1k̂2r̂ 1/2 max
〈g〉=r̂

F (g, R̂〈g〉−1M̂−2)1/2.

This together with (13) shows that there exists g with 〈g〉 ≤ R̂ and

F (g, R̂〈g〉−1M̂−2) ≥ c10δ2K−4R−2,
for some constant c10 > 0. Then by Lemma 13, there exist N ′ ∈ N and a set

A′ ⊆ GN ′ with |A′| = δ′N̂ ′ such that

(1) N ′ = − logq(R̂〈g〉−1M̂−2)− 2 ord g ≥ N − 2R ≥ N − 2c4 logN ,

(2) δ′ ≥ δ + F (g, R̂〈g〉−1M̂−2) ≥ δ + c10c
2
4c

4
5δ

2(logN)−6,

(3) W (A′, N ′) ≤ 〈g〉2W (A′, N ′) ≤W (A,N).

This completes the proof of the proposition.
Proof of Theorem 12. Suppose that we have a set A ⊆ GN with |A|= δN̂ ,

δ ≥ 2N−1 and W (A,N) < δ2 exp
(
−c6 1δ (logN)7

)
N̂2, where c6 is a large con-

stant. By applying Proposition 14 repeatedly, we can construct a sequence
of triples (Ni, Ai, δi)i≥0 such that Ni ∈ N and Ai ⊆ GNi with |Ai| = δiN̂i

which satisfy

(1) (N0, A0, δ0) = (N,A, δ),
(2) Ni+1 ≥ Ni − c2 logNi,
(3) δi+1 ≥ δi + c3δ

2
i (logNi)

−6,
(4) W (Ai+1, Ni+1) ≤W (Ai, Ni).

Claim 1. For N sufficiently large, we can construct a sequence of triples
(Ni, Ai, δi)

Z
i=0 satisfying (1)–(4) with Z = bc7(logN)6/δc and c7 a large

constant.

Proof. Notice that when we make use of Proposition 14 to construct
(Ni+1, Ai+1, δi+1) from (Ni, Ai, δi), we needNi ≥ c0, δi ≥N−1i andW (Ai, Ni)

≤ c1δ2i N̂i
2
. Since the sequence (Ni)i≥0 is decreasing and the sequence (δi)i≥0

is increasing, it suffices to show that for N sufficiently large, for any sequence
of triples (Ni, Ai, δi)

Z
i=0 satisfying (1)–(4), we have NZ ≥ c0, δ ≥ N−1Z and

W (Ai, Ni) ≤ c1δ2i N̂i
2

(0 ≤ i ≤ Z). Notice that

NZ ≥ N − c2Z logN ≥ N − c2c7
(logN)7

δ
.

Thus, if δ > c8(logN)7/N for some sufficiently large constant c8 (in terms
of c2 and c7), then NZ ≥ N/2 ≥ c0. Since δ ≥ 2N−1, we have δ ≥ N−1Z .
Also, there exists a large constant c9 (in terms of c1, c2, c7) such that for c6
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sufficiently large (in terms of c9),

W (A,N) < δ2 exp

(
−c6

1

δ
(logN)7

)
N̂2 ≤ δ2q−c9(logN)7/δN̂2 ≤ δ2c1N̂Z

2
.

Since (Ni)i≥0 is decreasing and (δi)i≥0 is increasing, it follows that

W (Ai, Ni) ≤W (A,N) ≤ c1δ2N̂Z
2
≤ c1δ2i N̂i

2
(0 ≤ i ≤ Z).

This completes the proof of the claim.

Claim 2. We have δZ > 1.

Proof. Suppose that δi ≤ 1 for all 0 ≤ i ≤ Z. Let N be sufficiently large
such that c3(logNi)

−6 ≤ 1 (0 ≤ i ≤ Z). Then for 0 ≤ i < Z, we have

1

δi
− 1

δi+1
≥ 1

δi
− 1

δi + c3δ2i (logNi)−6
=

c3(logNi)
−6

1 + c3δi(logNi)−6

≥ c3(logNi)
−6

1 + c3(logNi)−6
≥ 1

2
c3(logN)−6.

Summing over all i with 0 ≤ i < Z, for c7 sufficiently large (in terms of c3),
we have

1

δ
− 1

δZ
≥ Z

2
c3(logN)−6 >

1

δ
,

a contradiction. This completes the proof of the claim.

Since it is not possible that δZ > 1, we conclude that if δ > c8(logN)7/N ,

then W (A,N) ≥ δ2 exp
(
−c6 1δ (logN)7

)
N̂2. By taking C = c8 and C ′ = c6,

the theorem follows.
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