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1. Introduction. A linear recurrence is a sequence {fn}n≥0 such that
for some k ≥ 1 we have

fn+k = r1fn+k−1 + · · ·+ rkfn

for all n ≥ 0, where r1, . . . , rk are given complex numbers with rk 6= 0. When
r1, . . . , rk are integers and f0, . . . , fk−1 are also integers, fn is an integer for
all n ≥ 0. It is known that if we write

(1.1) F (X) = Xk − r1Xk−1 − · · · − rk =
t∏
i=1

(X − αi)σi ,

where α1, . . . , αt are distinct complex numbers, and σ1, . . . , σt are positive in-
tegers whose sum is k, then there exist polynomials g1(X), . . . , gt(X) whose
coefficients are in Q(α1, . . . , αt) such that gi(X) is of degree at most σi − 1
for i = 1, . . . , t, and such that furthermore the formula

(1.2) fn =

t∑
i=1

gi(n)αni

holds for all n ≥ 0. We may certainly assume that gi(X) is not the zero
polynomial for any i = 1, . . . , t. A sequence {fn}n≥0 for which αi/αj is not
a root of unity for any 1 ≤ i < j ≤ t is called nondegenerate. From now on,
all sequences {fn}n≥0 that will appear are nondegenerate. Arithmetic and
Diophantine properties of nondegenerate linear recurrences {fn}n≥0 have
been intensively studied. In particular, there is a rich literature on Diophan-
tine equations involving terms of nondegenerate linear recurrences, and we
shall sample a few such results below.

For instance, the equation fn = 0 has been studied by several mathe-
maticians. A famous theorem due to Skolem, Mahler and Lech [25, 14, 9]
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asserts that the above equation has only finitely many solutions n. The num-
ber of such solutions is called the zero-multiplicity of the sequence {fn}n≥0.
More generally, equations of the type Afn = Bfm and Afn+Bfm+Cfk = 0
with fixed nonzero coefficients A,B,C were investigated by Laurent [8] and
Schlickewei and Schmidt [21]. Furthermore, given two nondegenerate linear
recurrences {fn}n≥0 and {gn}n≥0, equations of the type Afn = Bgm were
studied by several authors, such as Schlickewei and Schmidt in [22].

Effective results were established for the equations fn = 0, or Afn = Bgm
in case both {fn}n≥0 and {gn}n≥0 have dominant roots, which means that
each has a root of multiplicity 1 whose absolute value is strictly larger than
the absolute values of all other roots. See, for example, Mignotte [16, 17],
Lewis and Turk [10] or Shorey [23] and many others for effective results on
Diophantine equations with linear recurrences of low order.

For a full account on linear equations in terms of recurrence sequences
we refer the reader to the book of Everest et al. [6].

Not only linear equations in terms of nondegenerate linear recurrences
were studied, but also multiplicative equations in terms of such recurrences
were considered (see, for example, [20]). Recently, Bérczes and Ziegler [1]
looked at geometric progressions on Lucas sequences; that is, they studied
the equation unumu

−2
k = 1, where {un}n≥0 is a Lucas sequence, which is a

linear recurrence of order two with u0 = 0 and u1 = 1.

In the present paper, we generalize the results of Bérczes and Ziegler [1]
by considering general binary recurrences as well as more general multiplica-
tive relations between terms of such sequences.

For the rest of the paper, we are concerned with binary recurrences,
namely sequences {un}n≥0 which satisfy the recurrence

(1.3) un+2 = r1un+1 + r2un

for all n ≥ 0, where r1, r2 6= 0, and u0, u1 are fixed integers not both zero.
We assume that r21 + 4r2 6= 0, and therefore in formula (1.1) we have t = 2.
Thus, formula (1.2) becomes

(1.4) un = cαn + dβn, where (c, d) =

(
u1 − βu0
α− β

,
αu0 − u1
α− β

)
,

and where α and β are the roots of the characteristic polynomial

F (x) = X2 − r1X − r2.

We shall assume that |α| ≥ |β| > 0 and cd 6= 0.

In order to formulate our main theorem, we need to define some pa-
rameters associated to our sequence {un}n≥0. Let K := Q(α), and put
D := [K : Q] ∈ {1, 2}. Let p denote a prime and P be the set of all prime
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numbers. Further, put

S := {p ∈ P : p | r2(r21 + 4r2)(u
2
1 − r1u1u0 − r2u20)}.

Observe that S 6= ∅ because r2(r
2
1 + 4r2) 6= ±1 and

u21 − r1u1u0 − r2u20 = (u1 − αu0)(u1 − βu0) = −cd(α− β)2

is a nonzero integer. Further, S is finite. The set S has the following inter-
pretation. For a prime number p and a nonzero rational number x let νp(x)

be the exponent of p in the prime factorization of x. Put |x|p = p−νp(x) if
x 6= 0 and |0|p = 0 for the standard p-adic valuation on Q. Extend |x|p
multiplicatively in some way to all algebraic numbers x. Then |x|p = 1 for
all x ∈ {α, β, c, d} provided that p 6∈ S. In case K = Q, the set S can also
be thought of as containing all the primes dividing either the numerator or
the denominator of one of α, β, c, d. Note that the denominator of c and d
divides |α − β| =

√
r21 + 4r2. In the case when K is quadratic, S can be

thought of as containing the rational primes p sitting above prime ideals p
of OK which appear with nonzero (positive or negative) exponents in the
factorization of one of the four principal ideals in K generated by α, β, c
or d, respectively.

Note that the ideal (α − β) contains all prime ideals with negative ex-
ponent in the prime ideal factorization of (c) and (d). Further, note that
|NK/Q(α− β)| = |r21 + 4r2|. For each p ∈ S, we put

op := νp(r2) + νp(r
2
1 + 4r2) + νp(u

2
1 − r1u1u0 − r2u20).

The quantity op has the following meaning. It is an upper bound for the
p-adic valuation of the product of α, β and the denominators and numerators
of c and d respectively, provided K = Q. In the case when K is a quadratic
number field, op is an upper bound for the sum of the p-exponents of the
prime ideal factorizations of the principal ideals generated by α, β and the
denominators and numerators of c and d respectively, where p is a prime
of K below some p ∈ S.

Moreover, let

P := max{p : p ∈ S} and O := max{op : p ∈ S}.

For an algebraic number γ with minimal polynomial

f(X) := a0

d∏
i=1

(X − γ(i)) ∈ Z[X],

where as usual we write γ(1), . . . , γ(d) for all the conjugates of γ, let

h(γ) :=
1

d

(
log a0 +

t∑
i=1

log max{|γ(i)|, 1}
)
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be its regular Weil height. We define

B1 := max
{

2h(α/β), 2
∣∣log |α|

∣∣, 2∣∣log |β|
∣∣, π, logP

}
,

B2 := max
{

2h(c/d), h(c/d) + h(α/β),
∣∣log |c|

∣∣, ∣∣log |d|
∣∣, π, logP

}
.

Our main result is the following.

Theorem 1.1. Let {un}n≥0 be the nondegenerate binary sequence satis-
fying the recurrence (1.3) and whose general term is given by (1.4). Assume
further that α/β and c/d are multiplicatively independent and |α| ≥ |β| > 0.
Moreover, let r = gcd(r21, r2). Then the Diophantine equation

(1.5) ux1n1
· · ·uxLnL

= 1

in nonnegative integer unknowns

n1, . . . , nL, ni 6= nj for 1 ≤ i < j ≤ L, and max
1≤i≤L

|xi| ≤ K,

where K is a given parameter, has only finitely many solutions (n1, . . . , nL).
Moreover, all solutions can be determined effectively. Let us put

(1.6) X := max{n1, . . . , nL}.
In the case of |α| = |β|, we have

(1.7) X ≤ max

{
C,

(
2KL log 2 +B2 + 4KL|S|O logP

KL(B1 +B2)

)2

,

P 10

1.4 logP
, 1016, 2O + 1

}
,

where

(1.8) C =

(3KL(B1 +B2) + 4.94 · 105B1B2 + 0.084KL|S|B1B2(P 2+P )
(logP )3

log |α| − 1
2 log r

)2

.

In the case of |α| > |β|, we have the bound

(1.9) X ≤ max

{
C,

(
(2KL+ 1) log 2 + 4KL|S|O logP

KL(B1 +B2)

)2

,
P 10

1.4 logP
,

108, 2O + 1,
log 2 + log |d/c|
log |α| − log |β|

}
with

(1.10) C =

(
KL

3(B1 +B2) + 209|S|B1B2(P
2 + P )/(logP )3

log |α| − 1
2 log r

)2

.

Let us note that always |α|2 > |r|. In the case of |α| > |β| this is obvious
since |α|2 > |αβ| = |r2| ≥ |r|. Therefore, we are left with the case |α| = |β|.
In this case α and β are complex conjugates since otherwise we would have
α/β = ±1, which is excluded. Hence, r2 < 0 and r21 < 4|r2|. Assuming



Multiplicative relations on binary recurrences 187

|α2| = |r| yields |α|2 = |r2| = gcd(r21, r2), i.e., r2 | r21. Therefore, r2 = −r21,
r2 = −r21/2, or r2 = −r21/3. In all three cases, α/β is a root of unity, which
contradicts our assumptions.

We demonstrate the strength of our method by solving the following
Diophantine equation.

Theorem 1.2. Let un = 2n + 3 for all n ≥ 0. Then the Diophantine
equation

(1.11) un1u
2
n2
u3n3

u−4n4
u−5n5

= 1

has exactly two solutions, namely

(n1, n2, n3, n4, n5) = (1, 2, 5, 1, 2), (2, 1, 5, 2, 1).

In the next section, we prove several results on arithmetic properties of
binary recurrences as well as their growth rate. In Section 3, we use these
results to prove Theorem 1.1, and in Section 4 we prove Theorem 1.2. The
last section is devoted to comments and open problems.

2. Auxillary results on binary recurrences. Since the proof of The-
orem 1.1 depends on various arithmetic properties of binary recurrences,
we collect some lemmas concerning this topic. We start with the following
lemma (cf. [24, Lemma A.10]).

Lemma 2.1. Let r = gcd(r21, r2) and put α′ = α2/r and β′ = β2/r. Then
α′ and β′ are algebraic integers and the principal ideals (α′) and (β′) are
coprime in the ring of integers of K.

In order to keep track of the p-adic valuation of un for p ∈ S, and in
view of Lemma 2.1, we introduce the following new sequence {wn}n≥0. As
in Lemma 2.1, let r = gcd(r21, r2), α

′ = α2/r, β′ = β2/r. Then we write

un = wnr
bn/2c,

where

wn =

{
cα′n/2 + dβ′n/2 if n is even,

cαα′(n−1)/2 + dββ′(n−1)/2 if n is odd.

With this notation, we start by computing the p-adic valuation of the binary
recurrence {wn}n≥0.

Lemma 2.2. Let p ∈ S. Then either

(2.1) νp(wn) ≤ 768
p2 + p

(log p)4
logA1 logA2(log n+ log log p+ 0.4)2 + 2op,

or

(2.2) n ≤ max

{
p10

1.4 log p
, e10, 2op + 1

}
,



188 F. Luca and V. Ziegler

where

logA1 := max{2h(α/β), log p},
logA2 := max{h(c/d) + h(α/β), log p}.

(2.3)

In order to prove Lemma 2.2, one may use Yu’s theorem on linear forms
in p-adic logarithms [26] obtaining a result of the form

νp(un) ≤ K(p, α, β, c, d) log n,

where the constant K := K(p, α, β, c, d) is rather large. To obtain a smaller
constant K but at a cost of working with a factor of (log n)2 instead of
log n, we use the following result due to Bugeaud and Laurent [4]. In what
follows, for a nonzero algebraic number γ in an algebraic number field K and
a prime ideal p of K, we write νp(γ) for the exponent of p in the factorization
in prime ideals of the fractional principal ideal generated by γ in K.

Theorem 2.3 (Bugeaud and Laurent [4]). Let α1 and α2 be two mul-
tiplicatively independent algebraic numbers such that νp(αi) = 0. Let Dp

denote the quotient [Q(α1, α2) : Q] and the residue class degree f of the ex-
tension Qp(α1, α2)/Qp. Further, let A1, A2 be real numbers > 1 with logAi ≥
max{h(αi), (log p)/Dp} for i = 1, 2. Put

(2.4) b′ :=
b1

Dp logA2
+

b2
Dp logA1

.

Then

(2.5) νp(α
b1
1 α

b2
2 + 1) ≤

24p(pf − 1)D4
p

(p− 1)(log p)4
B2 logA1 logA2,

with

(2.6) B := max

{
log b′ + log log p+ 0.4, 10,

10 log p

Dp

}
.

In [13], Lemma 2.2 was proved, but without computing the constants
explicitly. To our knowledge, the constants in [13] have not been computed
yet.

Proof of Lemma 2.2. Let p be a prime lying above p ∈ S. First, we note
that, by Lemma 2.1, we may assume that either p -α′, or p -β′.

In the case of p |α′, but p - β′, we immediately see that if n is even we
have νp(dβ

′n/2) < νp(cα
′n/2) if n > 2op; hence, νp(wn) = νp(dβ

′n/2) ≤ op.
In the case of n odd we have νp(dββ

′(n−1)/2) < νp(cαα
′(n−1)/2) provided

n > 2op + 1 and again νp(wn) ≤ op. The case when p -α and p |β is similar.

Let us now consider the case p -α′ and p - β′. If neither νp(c) = νp(d) nor
νp(cα) = νp(dβ), we have νp(wn) ≤ 2op. Therefore, we are left with either
νp(c) = νp(d) and n even, or νp(cα) = νp(dβ) and n odd. In the first case
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we consider the expression

c

d

(
α′

β′

)n/2
+ 1,

and apply Theorem 2.3 to it. Obviously, Dp ≤ 2 and b′ ≤ n. Assuming that

n ≥ max

{
p10

1.48 log p
, e10

}
,

we get

max{log b′ + log log p+ 0.4, 10, 10 log p} ≤ log n+ log log p+ 0.4.

Hence, by Theorem 2.3, we have

νp

(
c

d

(
α′

β′

)n/2
+ 1

)
≤ 384

p2 + p

(log p)4
logA1 logA2(log n+ log log p+ 0.4)2,

with A1 and A2 given by (2.3), and therefore

νp(wn) ≤ 768
p2 + p

(log p)4
logA1 logA2(log n+ log log p+ 0.4)2 + 2op,

which proves the lemma in this case.

The proof for the case νp(cα) = νp(dβ) and n odd is similar and is
therefore omitted. Note that

h(α′/β′) = h(α2/β2) = 2h(α/β)

and

max{h(c/d), h(αc/βd)} ≤ h(c/d) + h(α/β).

For nonnegative integers m and n, let Dm,n denote the greatest common
divisor of wm and wn which is free of primes p ∈ S. The following lemma
already appears in several papers of the first author (see e.g. [11, 12, 13]) in
some similar form. However, for completeness we include a proof.

Lemma 2.4. Let m 6= n with max{m,n} ≥ 3 and assume |α| ≥ |β|. We
then have

Dm,n < 4 exp
((

4 log |α|+ 2 max
{∣∣log |c|

∣∣, ∣∣log |d|
∣∣})√max{m,n}

)
.

Proof. First, we observe that um ≡ wm ≡ un ≡ wn ≡ 0 (mod Dm,n),
hence

um = cαm + dβm ≡ 0 (mod Dm,n),

un = cαn + dβn ≡ 0 (mod Dm,n).
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Since by definition Dm,n and cβ are coprime, we get(
α

β

)m
≡ − d

c
(mod Dn,m),(2.7) (

α

β

)n
≡ − d

c
(mod Dn,m).(2.8)

Next, we claim the following:

Claim 2.5. Let m,n be nonnegative integers not both zero and suppose
that X ≥ max{3,m, n} is an integer. Then there exist integers (u, v) 6= (0, 0)
such that max{|u|, |v|} ≤

√
X and 0 ≤ mu+ nv ≤ 2

√
X.

Let (u, v) be the pair of integers satisfying the above claim. Raising
congruence (2.7) to the uth power and congruence (2.8) to the vth power
and multiplying the resulting expressions, we obtain(

α

β

)mu+nv
− (−1)u+v

(
d

c

)u+v
≡ 0 (mod Dm,n).

The expression on the left is not zero. Indeed, if it were, we would get
(α/β)2(um+vn) = (d/c)2(u+v), and since α/β and c/d are multiplicatively
independent, we would get u + v = 0 and mu + nv = 0; so (m − n)u = 0.
Since m 6= n, we get u = 0 and then v = 0, which is impossible since
(u, v) 6= (0, 0). Put

c1 := (α− β)c and d1 := (α− β)d.

The above relation implies that αmu+nvcu+v1 − (−1)u+vβmu+nvdu+v1 is a
nonzero algebraic integer which is a multiple of Dm,n. Thus,

αmu+nvcu+v1 − (−1)u+vβmu+nvdu+v1 = Dm,nγ

for some algebraic integer γ. Taking norms in K, we get

|NK/Q(αmu+nvcu+v1 ± βmu+nvdu+v1 )| = DD
m,n|NK/Q(γ)| ≥ DD

m,n.

Since either D = 1, or D = 2 in which case the conjugates of α, β, c, d are
β, α, d, c, respectively, we easily see that

(2.9) Dm,n ≤ 2 exp
(
(2 log |α|+ 2 max{log |c1|, log |d1|})

√
X
)
.

Since

max{log |c1|, log |d1|} = log |α− β|+ max{log |c|, log |d|},
and |α− β| ≤ 2|α|, we get the desired conclusion.

It remains to prove the claim.

Proof of Claim 2.5. Let ũ and ṽ be integers with 0 ≤ ũ, ṽ ≤ b
√
Xc. Then

ũm+ ṽn belongs to [0, 2X3/2]. Since there are (b
√
Xc+1)2 > X pairs (ũ, ṽ),
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by Dirichlet’s box principle there exist two such pairs (ũ1, ṽ1) 6= (ũ2, ṽ2)
with

|(ũ1m+ ṽ1n)− (ũ2m+ ṽ2n)| ≤ 2X3/2

X
= 2
√
X.

Putting (u, v) = (ũ1 − ũ2, ṽ1 − ṽ2), we get the desired conclusion.

Although the next lemma has already been proved by Kiss [7], and im-
proved by Phong [18], we reprove it and state bounds suitable for our pur-
poses.

Lemma 2.6. Assume |α| = |β|. Then

|un| ≥ |c| |α|nn−c̃

with

c̃ = 1.34 · 1012 max{2h(β/α), π}max{2h(d/c), π}
provided n ≥ 106. If |α| > |β|, then

|un| ≥
|c|
2
|α|n

provided

n >
log 2 + log |d/c|

log |α/β|
.

The following theorem due to Matveev [15] is useful.

Theorem 2.7 (Matveev [15]). Denote by α1, . . . , αn algebraic numbers,
neither 0 nor 1, by logα1, . . . , logαn some fixed determination of their loga-
rithms, by D the degree over Q of the number field K := Q(α1, . . . , αn), and
by b1, . . . , bn rational integers. Furthermore, let κ = 1 if K is real and κ = 2
otherwise. Choose

Ai ≥ max{Dh(αi), |logαi|} (1 ≤ i ≤ n)

and

B := max{1,max{|bj |Aj/An : 1 ≤ j ≤ n}}.
Assume that bn 6= 0 and logα1, . . . , logαn are linearly independent over Z.
Then

log |b1 logα1 + · · ·+ bn logαn| ≥ −C(n)C0W0D
2Ω

with

Ω = A1 · · ·An,

C(n) = C(n, κ) =
16

n!κ
en(2n+ 1 + 2κ)(n+ 2)(4(n+ 1))n+1

(
1

2
en

)κ
,

C0 = log(e4.4n+7n5.5D2 log(eD)), W0 = log(1.5eBD log(eD)).



192 F. Luca and V. Ziegler

Proof of Lemma 2.6. First, let us assume that |α| > |β|. In this case, we
have

|un| ≥ |c| |α|n
(

1− |d|
|c|

(
|β|
|α|

)n)
>
|c|
2
|α|n

provided

n >
log 2 + log |d/c|

log |α/β|
.

Therefore, we are left with the case |α| = |β|. Recall that if |α| = |β|,
then α and β are complex conjugates. Hence, so are c and d, which implies
|c| = |d|. Therefore, we have

|un| ≥ |c| |α|n|1 + (d/c)θn|,

where θ = β/α is of modulus 1 and not a root of unity. Let us write

Λ := log(d/c) + n log θ + kiπ.

We use Matveev’s Theorem 2.7 and choose the parameters

A1 := max{2h(β/α), π}, A2 := max{2h(d/c), π}, A3 := π.

Therefore B ≤ n+ 1 ≤ 2n, and we obtain

log |Λ| > −1.14 · 1012(log n+ 2.32) max{2h(β/α), π}max{2h(d/c), π}.

Let us assume for the moment that |Λ| < 1/3. Then

|1 + (c/d)θn| = |1± eΛ| >
∣∣∣∣1− 1 + |Λ| − |Λ|

2

2

∣∣∣∣ > 5|Λ|
6
.

Hence,

|1 + (d/c)θn| > n−1.34·10
12 max{2h(β/α),π}max{2h(d/c),π}.

Note that log n+ 2.32 < 1.168 log n and 5/6 > n−1 if n ≥ 106.

In the case |Λ| ≥ 1/3, we have

|1 + (c/d)θn| = |1± eΛ| > 1− e−1/3 > 0.27 > n−1

provided n ≥ 106.

3. The general case. This section is devoted to the proof of Theo-
rem 1.1. We will make the following assumptions. If |α| = |β|, then

X := max{n1, . . . , nL} > max

{
P 10

1.4 logP
, 106, 2O + 1

}
.

If |α| > |β|, then

X := max{n1, . . . , nL} > max

{
P 10

1.4 logP
, 106, 2O + 1,

log 2 + log |d/c|
log |α| − log |β|

}
.



Multiplicative relations on binary recurrences 193

Considering equation (1.5) in terms of wn we obtain

(3.1) wx1n1
· · ·wxLnL

rz = 1 with z =

L∑
i=1

xibni/2c.

In a first step, we want to estimate rz. Since r = gcd(r21, r2) is composed
of primes from S, we obtain, by Lemma 2.2 and (3.1),

r|z| ≤
L∏
i=1

∏
p∈S
p | r

4pνp(w
|xi|
ni

)

≤ exp

(
KL|S|

(
768

P 2 +P

(logP )3
B1B2(log n+ log log p+ 0.4)2 +2O logP

))
.

Since w
|xi|
ni divides r|z|

∏
1≤j≤L, i 6=j w

|xj |
nj we have

wni ≤ r|z|
∏

1≤j≤L
i 6=j

gcd(wni , wnj )
K ≤ r|z|

∏
1≤j≤L
i 6=j

(
Dni,nj

∏
p∈S

pνp(wni )
)K

for any i = 1, . . . , L. Combining this with the upper bound for r|z| and with
Lemmas 2.2 and 2.4, we get

(3.2) wni ≤ 4KL exp(2KL(B1 +B2)
√
X)

× exp

(
KL|S|

(
1536

(
P 2+P

(logP )3
B1B2(logX+ log logP + 0.4)2

)
+ 4O logP

))
.

Let us consider the case |α| = |β| first. Comparing the bound (3.2)
with Lemma 2.6, we get an upper bound for X. In particular, note that
wn ≥ unr−n/2, which yields

log |c|+X
(
log |α| − 1

2 log r
)
− logX(1.34 · 1012B1B2) < 2KL log 2

+ 2KL(B1 +B2)
√
X +KL|S|

(
6144B1B2

P 2 +P

(logP )3
(logX)2 + 4O logP

)
,

since we are assuming that X > P 10

1.4 logP , and that yields

logX > log logP + 0.4.

Let us assume X is large, in particular X > 1016, and let us additionally
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assume that
√
X >

2KL log 2 +B2 + 4KL|S|O logP

KL(B1 +B2)

>
2KL log 2 +

∣∣log |c|
∣∣+ 4KL|S|O logP

KL(B1 +B2)
.

Then we have

X
(
log |α| − 1

2 log r
)
− logX · (1.34 · 1012B1B2)

< 3KL(B1 +B2)
√
X + 6144KL|S|B1B2

P 2 + P

(logP )3
(logX)2.

Since the function

X 7→
(1.34 · 1012B1B2) logX + 6144KL|S|B1B2

P 2+P
(logP )3

(logX)2

√
X

is decreasing for X > 1016, we obtain

X
(
log |α| − 1

2 log r
)

<
√
X

(
3KL(B1 +B2) + 4.94 · 105B1B2 + 0.084KL|S|B1B2

P 2 + P

(logP )3

)
;

that is,

X <

(3KL(B1 +B2) + 4.94 · 105B1B2 + 0.084KL|S|B1B2
P 2+P
(logP )3

log |α| − 1
2 log r

)2

.

In the case when |α| > |β|, we assume that X > 108. By the second half
of Lemma 2.6 we get

X
(
log |α| − 1

2 log r
)
− log 2 < 2KL log 2 + 2KL(B1 +B2)

√
X

+KL|S|
(

6144

(
B1B2

P 2 + P

(logP )3
(logX)2 + 4O logP

))
.

If we also assume that

√
X >

(2KL+ 1) log 2 + 4KL|S|O logP

KL(B1 +B2)
,

then

X
(
log |α| − 1

2 log r
)

< 3KL(B1 +B2)
√
X + 6144KL|S|B1B2

P 2 + P

(logP )3
(logX)2.
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Since the function

X 7→ (logX)2√
X

is decreasing for X > 108, we obtain

X <

(
KL

3(B1 +B2) + 209|S|B1B2(P
2 + P )/(logP )3

log |α| − 1
2 log r

)2

.

This finishes the proof of Theorem 1.1.

4. An example. This section is devoted to the resolution of the Dio-
phantine equation (1.11). First, let us note that the sequence {un}n≥0 is
strictly increasing and therefore uni = unj if and only if ni = nj . By cancel-
ing eventually equal terms uni and unj we arrive at a Diophantine equation
of the form

ux1n1
ux2n2

ux3n3
= ux4n4

ux5n5
,

with 0 ≤ xi ≤ i for i = 1, 2, 3, 4, 5. Moreover, since a cancellation can only
occur if ni = nj , the occurrence of an exponent xi = 0 implies that there
exists an index j ∈ {1, 2, 3, 4, 5} with j 6= i such that ni = nj . The only
possibilities that xi = xj = 0 are when n1 = n3 = n4 or n2 = n3 = n5.
Hence, we obtain the two equations u2x = u5y and ux = u4y respectively. But
neither equation has a solution, as is shown in the next lemma.

Lemma 4.1. The equations u2x = u5y and ux = u4y have no solution.

Proof. The above equations imply that ux or uy is a square. Since un ≡ 3
(mod 4) for all n ≥ 2, it follows that either x ≤ 1 or y ≤ 1, and a quick
computation finishes the job.

Therefore we shall consider the following problem:

Find all solutions to

(4.1) ux1n1
ux2n2

ux3n3
= ux4n4

ux5n5

such that 0 ≤ xi ≤ i for i = 1, 2, 3, 4, 5 and xi = 0 implies that there exists
an j ∈ {1, 2, 3, 4, 5} with j 6= i, ni = nj and xj 6= 0.

For this purpose, we define the two sets

N123 = {ni : i = 1, 2, 3, xi > 0}, N45 = {ni : i = 4, 5, xi > 0}.

By canceling equal factors in (4.1), we may assume that N123 ∩ N45 = ∅.
First, we observe that α = 2, β = 1, c = 1 and d = 3, and un > 2n for all
n ≥ 0. Since S = {2, 3} and gcd(6, un) = 1, unless n = 0, we may assume
that Dn,m = gcd(un, um).
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Let us consider the quantity Dn,m = gcd(un, um) a little more closely.
Due to inequality (2.9) we immediately obtain

gcd(un, um) ≤ 2mu+nv + 3u+v< 22
√
X + 32

√
X ≤ 32

√
X
(
1+ e(2 log 2−2 log 3)

√
X
)

< 1.027 · 32
√
X

provided X = max{n,m} ≥ 20.
Let ni ∈ N123 and write max{ni ∈ N123} = X123. Then we have

uni

∣∣ ∏
nj∈N45

gcd(uni , unj )
j .

The bound for the greatest common divisor now is

uni ≤ 1.28 · 318
√
X123 ;

hence,
X123 log 2 < log(1.28) + 18 log 3

√
X123.

This inequality yields X123 ≤ 814. Now, we assume ni ∈ N45 and write
max{ni ∈ N45} = X45; hence,

uni

∣∣ ∏
nj∈N123

gcd(uni , unj )
j ,

and therefore
uni ≤ 1.18 · 312

√
X45 .

This yields the upper bound X45 ≤ 362.
Let us write G45(n) = max{gcd(uj , un) : 0 ≤ j ≤ 814, j 6= n}. Next,

we compute for all 0 ≤ n ≤ 362 the value G45(n), and use the inequality
uni ≤ G45(ni)

6 for ni ∈ N45 to decide which n are possible solutions. By a
quick computer search we deduce

N45 ⊆ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 19, 20, 21, 22, 23, 27, 29,

31, 33, 34, 36, 42, 43, 44, 49, 51, 63, 68, 80}.
Now let us write G123(n) = max{gcd(uj , un) : 1 ≤ j ≤ 80, j 6= n}. We note
that uni ≤ G123(ni)

9 for ni ∈ N123 and find by a computer search that

N123 ⊆ {1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 20, 21, 22, 23,

29, 33, 37, 38, 41, 44, 49, 53, 58, 60}.
Next, we observe that

uni

∣∣ ∏
nj∈N123

ujnj

for ni ∈ N45 and all admissible triples (n1, n2, n3). By a computer search,
we further exclude several possibilities for the set N45 and we are left with

N45 ⊆ {1, 2, 3, 4, 5, 8, 9, 10}.
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Similarly we have

uni

∣∣ ∏
nj∈N45

ujnj

for ni ∈ N123 and all admissible pairs (n4, n5). That is, N123 ⊆ {1, 2, 5}.
Since u1 = 5, u2 = 7 and u5 = 35, and since u3 = 11, u4 = 19, u8 = 37 · 7,
u9 = 5 ·103, u10 = 13 ·79 have other prime divisors than 5 and 7, we deduce
that also N45 ⊆ {1, 2, 5}. Now, it is easy to conclude that the only solutions
to (1.11) are (n1, n2, n3, n4, n5) = (1, 2, 5, 1, 2) and (2, 1, 5, 2, 1).

Remark 4.2. We want to emphasize that the computer searches de-
scribed above took altogether less than one minute on a common PC.

5. Comments. Our result is very general modulo the condition that
α/β and c/d are multiplicatively independent. However, the case when they
are multiplicatively dependent is quite easy. Suppose first that K = Q. Since
α/β and c/d are multiplicatively dependent, it follows that there exists some
rational number ρ = a/b with coprime integers a and b and coprime integers
u > 0 and v such that α/β = ερu and c/d = ηρv for some ε, η ∈ {±1}.
But then it is easy to see that un = vn(aun+v ± bun+v), where vn is some
rational number whose prime factors are in S and which depends on n.
But, for the rational case, Birkhoff and Vandiver [3] showed that the Lucas
sequences of general terms (an−bn)/(a−b) and an+bn with a and b integers
have primitive divisors for n > 6. Moreover, Carmichael [5] showed that a
primitive divisor p of the nth term of a Lucas sequence with rational roots
satisfies p ≡ 1 (mod n). Combining these two results implies, in view of
equation (1.5), that X ≤ max{6 + |v|, P − 1 + |v|}.

The case when K is quadratic is similar. In this case, since α/β and c/d
are multiplicatively dependent, it follows that there exist ρ ∈ K, coprime
integers u > 0 and v, and roots of unity ε and η in K such that α/β = ερu

and c/d = ηρv. Let σ be the only nontrivial Galois automorphism of K.
Note that σ(α) = β and σ(c) = d. Since ε and η are roots of unity, we get
εσ(ε) = ησ(η) = 1. Hence,

1 = (α/β)(β/α) = (εσ(ε))(ρσ(ρ))u,

and therefore (ρσ(ρ))u = 1. Similarly,

1 = (c/d)(d/c) = (ησ(η))(ρσ(ρ))v,

hence (ρσ(ρ))v = 1. Since u and v are coprime, we get ρσ(ρ) = 1, and
by Hilbert’s Theorem 90 we deduce that ρ = γ/δ, where σ(γ) = δ. We
may certainly assume that γ is an algebraic integer. We easily deduce that
un = vnLun+v, where vn is a rational number whose numerator and de-
nominator consist only of primes from S, and Ln is the nth term of one of
the three Lucas sequences of general form (γn − δn)/(γ − δ), or γn + δn,
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or (ηγn + ηδn), where η is a primitive root of unity of order 3, with the last
case occurring only when K = Q(

√
−3). The existence of primitive divisors

now yields a similar result as in the rational case. Schinzel [19] showed that,
for an effectively computable constant n0, sequences of the form an−bn have
primitive divisors for n > n0. However, using the most general version of
the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier [2], as well
as the fact that for a general Lucas sequence a primitive divisor p of its nth
term satisfies p ≡ ±1 (mod n), we deduce that X ≤ max{30+|v|, P+1+|v|}.
We give no further details.
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