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1. Introduction. A linear recurrence is a sequence { fy, }n>0 such that
for some k > 1 we have

otk =Tr1fugk—1+ -+ TRfn

for all n > 0, where rq, ..., r are given complex numbers with r; # 0. When
r1,...,TE are integers and fy, ..., fr_1 are also integers, f, is an integer for
all n > 0. It is known that if we write
t

(1.1) F(X)=X"—mXF ! — o —m = (X = i)™,

i=1
where a1, . .., ap are distinct complex numbers, and o1, . . ., 0y are positive in-
tegers whose sum is k, then there exist polynomials ¢;(X),. .., g:(X) whose
coefficients are in Q(ay, ..., a;) such that ¢;(X) is of degree at most o; — 1
for ¢ =1,...,t, and such that furthermore the formula

(1.2) In= Zgz(n)a?
=1

holds for all n > 0. We may certainly assume that g;(X) is not the zero
polynomial for any i = 1,...,t. A sequence { fy}n>0 for which a;/c; is not
a root of unity for any 1 <4 < j <t is called nondegenerate. From now on,
all sequences {fp}n>0 that will appear are nondegenerate. Arithmetic and
Diophantine properties of nondegenerate linear recurrences {fy}n>0 have
been intensively studied. In particular, there is a rich literature on Diophan-
tine equations involving terms of nondegenerate linear recurrences, and we
shall sample a few such results below.

For instance, the equation f, = 0 has been studied by several mathe-
maticians. A famous theorem due to Skolem, Mahler and Lech [25] 14 9]

2010 Mathematics Subject Classification: 11B37, 11D57, 11D75, 11J25.
Key words and phrases: binary recurrences, Diophantine equations, Diophantine inequal-
ities.

DOI: 10.4064/aal161-2-4 [183] © Instytut Matematyczny PAN, 2013



184 F. Luca and V. Ziegler

asserts that the above equation has only finitely many solutions n. The num-
ber of such solutions is called the zero-multiplicity of the sequence { fy, }rn>0-
More generally, equations of the type Af, = Bfy, and Af,+Bf, +Cfi =0
with fixed nonzero coefficients A, B, C' were investigated by Laurent [§] and
Schlickewei and Schmidt [2I]. Furthermore, given two nondegenerate linear
recurrences {fptn>0 and {gn}n>0, equations of the type Af, = Bg,, were
studied by several authors, such as Schlickewei and Schmidt in [22].

Effective results were established for the equations f,, = 0, or Af,, = Bgm
in case both {f,}n>0 and {gn}n>0 have dominant roots, which means that
each has a root of multiplicity 1 whose absolute value is strictly larger than
the absolute values of all other roots. See, for example, Mignotte [16, [17],
Lewis and Turk [10] or Shorey [23] and many others for effective results on
Diophantine equations with linear recurrences of low order.

For a full account on linear equations in terms of recurrence sequences
we refer the reader to the book of Everest et al. [6].

Not only linear equations in terms of nondegenerate linear recurrences
were studied, but also multiplicative equations in terms of such recurrences
were considered (see, for example, [20]). Recently, Bérczes and Ziegler [I]
looked at geometric progressions on Lucas sequences; that is, they studied
the equation unumu,;2 = 1, where {uy, }n>0 is a Lucas sequence, which is a
linear recurrence of order two with ug = 0 and u; = 1.

In the present paper, we generalize the results of Bérczes and Ziegler [I]
by considering general binary recurrences as well as more general multiplica-
tive relations between terms of such sequences.

For the rest of the paper, we are concerned with binary recurrences,
namely sequences {uy, },>0 which satisfy the recurrence

(1.3) Upt2 = T1Un+1 + 72Uy

for all n > 0, where r1,r2 # 0, and ug,u; are fixed integers not both zero.
We assume that 77 + 475 # 0, and therefore in formula (T.1)) we have t = 2.
Thus, formula (1.2) becomes

(1.4) Up, = ca +dp", where (c,d)= (Ul — Bug aug — u1>7

a—fp " a-p

and where « and 3 are the roots of the characteristic polynomial
F(z)=X?—rX —r.

We shall assume that |a| > 8] > 0 and ed # 0.

In order to formulate our main theorem, we need to define some pa-

rameters associated to our sequence {up}n>0. Let K := Q(«), and put
D = [K: Q] € {1,2}. Let p denote a prime and P be the set of all prime
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numbers. Further, put
S:={peP:p|ra(ri+4re)(uf — riusug — roud)}.
Observe that S # () because 72(r? + 4r3) # +£1 and
ut — riugug — roud = (u1 — aug)(uy — Bug) = —cd(a — B)?

is a nonzero integer. Further, S is finite. The set S has the following inter-
pretation. For a prime number p and a nonzero rational number x let v,(x)
be the exponent of p in the prime factorization of x. Put |z|, = pvr(@) if
z # 0 and |0|, = 0 for the standard p-adic valuation on Q. Extend |z|,
multiplicatively in some way to all algebraic numbers . Then |z|, = 1 for
all x € {«, 8, ¢c,d} provided that p ¢ S. In case K = Q, the set S can also
be thought of as containing all the primes dividing either the numerator or
the denominator of one of «, 3, c,d. Note that the denominator of ¢ and d
divides |a — 8] = /7% + 4ry. In the case when K is quadratic, S can be
thought of as containing the rational primes p sitting above prime ideals p
of Okx which appear with nonzero (positive or negative) exponents in the
factorization of one of the four principal ideals in K generated by «, 3, ¢
or d, respectively.

Note that the ideal (a — ) contains all prime ideals with negative ex-
ponent in the prime ideal factorization of (¢) and (d). Further, note that
INk/g(a — B8)| = |r] 4 4r2|. For each p € S, we put

0p i= Up(r2) + vp(rf + 4r2) + vp(uf — rrurug — raug).

The quantity o, has the following meaning. It is an upper bound for the
p-adic valuation of the product of «, # and the denominators and numerators
of ¢ and d respectively, provided K = Q. In the case when K is a quadratic
number field, o, is an upper bound for the sum of the p-exponents of the
prime ideal factorizations of the principal ideals generated by «, 8 and the
denominators and numerators of ¢ and d respectively, where p is a prime
of K below some p € S.
Moreover, let

P:=max{p:pe S} and O :=max{o,:pe S}

For an algebraic number v with minimal polynomial
d
F(X) = a0 [J(X =) e Z[xX],
i=1
where as usual we write vV, ..., (@ for all the conjugates of v, let

t
1 )
h(v) == a(log ap+ Y logmax{y?|, 1})
=1
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be its regular Weil height. We define
By = max{Qh(a/ﬁ)ﬂ‘log|a|‘,2‘log|ﬁ||,7ﬂ10gp}7
By := max{2h(c/d), h(c/d) + h(a/B), log |d|

Our main result is the following.

log|cH, ,W,]ng}.

THEOREM 1.1. Let {up}n>0 be the nondegenerate binary sequence satis-
fying the recurrence (1.3|) and whose general term is given by . Assume
further that o/ and c/d are multiplicatively independent and |a| > |B| > 0.
Moreover, let r = gcd(r%,rg). Then the Diophantine equation

(1.5) Upy + Uk =1
i nonnegative integer unknowns
ni,...,np, ni#mn; forl<i<j<L, and max |z;| <K,
1<i<L
where K is a given parameter, has only finitely many solutions (ni,...,nr).
Moreover, all solutions can be determined effectively. Let us put
(1.6) X = max{ni,...,np}.
In the case of |a| = ||, we have

2KLlog2+B2—|—4KL\S]OlogP>2
1.7 X <max< C, ,
( ) - { ( KL(Bl—{—BQ)
PIO
— 10,20 +1
1.4log P’ 07,20+ }’

where

2
BKL(By + By) +4.94-10° By B, 4 MO ELRIB B D) | 2

(1.8) C= <
In the case of |a| > |B|, we have the bound

(2K L +1)log2 + 4K L|S|O logP>2 plo

log |a| — 3 log

19 X <maxfc(

KL(B; + By) "1.4log P’
log 2 + log |d
105,20 + 1, 18 + log| /C\}
log || —log | 3]

with

(1.10) C = (KL3(Bl + By) + 209|S|B1 Ba(P* + P)/(log P)3>2.

log |a| — % logr

Let us note that always |a|? > |r|. In the case of |a| > | 3| this is obvious
since |a|? > |aB| = |ra| > |r|. Therefore, we are left with the case |a| = |3|.
In this case a and 8 are complex conjugates since otherwise we would have
a/B = =£1, which is excluded. Hence, 7o < 0 and r} < 4|r|. Assuming
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|a2| = |r| yields |a|? = |ra| = ged(r2,79), i.e., ro| 2. Therefore, ro = —r3,
ro = —1r}/2, or r9 = —r?/3. In all three cases, a/f is a root of unity, which
contradicts our assumptions.

We demonstrate the strength of our method by solving the following
Diophantine equation.

THEOREM 1.2. Let uy, = 2™ + 3 for all n > 0. Then the Diophantine
equation

2 3, -4 —5 _
(1.11) Uy Uny, Uny Uy Uy > = 1

has exactly two solutions, namely
(nla n2,ns,ng, TL5) = (1’ 27 57 17 2)7 (25 17 57 27 1)

In the next section, we prove several results on arithmetic properties of
binary recurrences as well as their growth rate. In Section [3| we use these
results to prove Theorem and in Section [ we prove Theorem The
last section is devoted to comments and open problems.

2. Auxillary results on binary recurrences. Since the proof of The-
orem [I.1] depends on various arithmetic properties of binary recurrences,
we collect some lemmas concerning this topic. We start with the following
lemma (cf. [24, Lemma A.10]).

LEMMA 2.1. Letr = ged(r?,72) and put o/ = o?/r and 3’ = 5%/r. Then
o' and ' are algebraic integers and the principal ideals (/) and (B') are

coprime in the ring of integers of K.

In order to keep track of the p-adic valuation of u, for p € S, and in
view of Lemma we introduce the following new sequence {wy, }n>0. As
in Lemma let r = ged(r?, r2), o/ = a?/r, B/ = B%/r. Then we write

Uy, = wyr™?),
where
w ca/™? 4 dpm/? if n is even,
" Leaa/0/2 4 dpp'"=1/2 if n is odd.
With this notation, we start by computing the p-adic valuation of the binary

recurrence {wy }n>0-

LEMMA 2.2. Let p € S. Then either

2
(2.1)  vp(wy) < 768(]1)4_?4 log A; log As(logn + loglog p + 0.4)? + 20p,
ogp
or
plo 10
(22) ngmax{]mogp,e ,20p+1},



188 F. Luca and V. Ziegler

where
log Ay := max{2h(«a/f),logp},
log Ay := max{h(c/d) + h(a/S),logp}.

In order to prove Lemma [2.2] one may use Yu’s theorem on linear forms
in p-adic logarithms [26] obtaining a result of the form

I/P(u'fl) S K(p7 a, Bv ¢, d) log n,

(2.3)

where the constant K := K(p, «, 3, ¢, d) is rather large. To obtain a smaller
constant K but at a cost of working with a factor of (logn)? instead of
logn, we use the following result due to Bugeaud and Laurent [4]. In what
follows, for a nonzero algebraic number - in an algebraic number field K and
a prime ideal p of K, we write 14, (y) for the exponent of p in the factorization
in prime ideals of the fractional principal ideal generated by v in K.

THEOREM 2.3 (Bugeaud and Laurent [4]). Let aq and as be two mul-
tiplicatively independent algebraic numbers such that vy(o;) = 0. Let D,
denote the quotient [Q(aq, a2) : Q] and the residue class degree f of the ex-
tension Qp(au, a2)/Qp. Further, let Ay, As be real numbers > 1 with log A; >
max{h(«a;), (logp)/Dy} fori=1,2. Put

b1 ba

2.4 v = .
(24) D, log Az + D,log Ay
Then
(2.5) (ab b2+1)<24p(pf_1)D§B21 Aqlog A
. Vsl o K ——— og og A2,
PR (p — 1)(log p)* !
with
101
(2.6) B = ma,x{logb'+loglogp+0.4,10, ODng}.
p

In [13], Lemma was proved, but without computing the constants
explicitly. To our knowledge, the constants in [I3] have not been computed
yet.

Proof of Lemma[2.4 Let p be a prime lying above p € S. First, we note
that, by Lemma we may assume that either pto/, or pt/’.

In the case of p|d/, but p 1 3/, we immediately see that if n is even we
have v, (dB™/?) < vy(ca’™?) if n > 20,; hence, vy(wy) = vp(dB™?) < o,
In the case of n odd we have v, (dBA" " 1/2) < vy(caa/™D/2) provided
n > 20, + 1 and again vp(wy,) < 0p. The case when pfa and p| 3 is similar.

Let us now consider the case pfa’ and p 1 8. If neither v, (c) = v, (d) nor
vp(ca) = vp(dp), we have vp(wy) < 20p. Therefore, we are left with either
vp(c) = vp(d) and n even, or vp(ca) = v,(dB) and n odd. In the first case
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c(a\"?
i(5)

and apply Theorem to it. Obviously, D, < 2 and b’ < n. Assuming that

pl0
n > max 7,610 ,
1.481ogp

we consider the expression

we get
max{log b’ + loglogp + 0.4,10,10logp} < logn + loglogp + 0.4.
Hence, by Theorem we have

with A; and Ay given by ([2.3]), and therefore

P’ +p 2
(log )" log A1 log Az(logn + loglog p + 0.4)° + 20y,

which proves the lemma in this case.

The proof for the case vp(ca) = 14(dB) and n odd is similar and is
therefore omitted. Note that

h(d//8') = h(a?/5%) = 2h(a/B)

vp(wy) < 768

and
max{h(c/d), h(ac/Bd)} < h(c/d) + h(a/B). m
For nonnegative integers m and n, let D,, ,, denote the greatest common
divisor of w,, and w, which is free of primes p € S. The following lemma

already appears in several papers of the first author (see e.g. [11} 12| [13]) in
some similar form. However, for completeness we include a proof.

LEMMA 2.4. Let m # n with max{m,n} > 3 and assume |a| > |5]|. We
then have

Dy < 4exp<(4log la] + 2max{|log |||, |log \d\‘})\/max{m,n}>.
Proof. First, we observe that u, = wy, = uy, = w, = 0 (mod Dy, ),
hence

U, = ca™ +dB™ =0 (mod Dy, ),
up = ca" +df" =0 (mod Dy, p).
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Since by definition D,, , and ¢/ are coprime, we get

@) (g)m = % (mod D)

o)

Next, we claim the following:

_d (mod Dy, ).
c

CLAIM 2.5. Let m,n be nonnegative integers not both zero and suppose
that X > max{3, m,n} is an integer. Then there exist integers (u,v) # (0,0)
such that max{|ul,|v|} < VX and 0 < mu+nv < 2vX.

Let (u,v) be the pair of integers satisfying the above claim. Raising
congruence (2.7) to the uth power and congruence ([2.8]) to the vth power
and multiplying the resulting expressions, we obtain

o mu—+nuv d u+v
(,8) — (=1)vtv <c> =0 (mod Dy,p).
The expression on the left is not zero. Indeed, if it were, we would get
(o) B)2wmtvn) — (d/¢)2(+) " and since /B and ¢/d are multiplicatively
independent, we would get v 4+ v = 0 and mu + nv = 0; so (m —n)u = 0.
Since m # n, we get v = 0 and then v = 0, which is impossible since
(u,v) # (0,0). Put
c1:=(a—p)c and dj:=(a— pF)d.

The above relation implies that a™utmvcit? — (—1)utvgmutnvgitt jg 5
nonzero algebraic integer which is a multiple of D,, ,,. Thus,

amu+nvczf+v _ (_1)u+v5mu+nvd1lz+v

- Dm,n’Y
for some algebraic integer . Taking norms in K, we get
| Nigjg(a™ ety £ gmetndit)| = DY INgjo(7)| = Dy -

Since either D = 1, or D = 2 in which case the conjugates of a, 3, ¢, d are
B, a,d, c, respectively, we easily see that

(2.9) Dy < 2exp ((2log |a] + 2 max{log [c1],1og |d1]}) VX ).
Since
max{log|ci|,log|d;|} = log |ao — 5| + max{log |c|,log |d|},
and |a — | < 2|al, we get the desired conclusion. =
It remains to prove the claim.

Proof of Claim . Let @ and ? be integers with 0 < @, 0 < L\/)?J Then
@m +on belongs to [0,2X3/2]. Since there are (|vVX | +1)? > X pairs (i, 7),
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by Dirichlet’s box principle there exist two such pairs (uy,01) # (u2,02)
with )

2X3 2
[(@am +D1n) — (dizm + Ban)| < = = 2VX.

Putting (u,v) = (21 — tg, 01 — U2), we get the desired conclusion. =

Although the next lemma has already been proved by Kiss [7], and im-
proved by Phong [18], we reprove it and state bounds suitable for our pur-
poses.

LEMMA 2.6. Assume |a| = |B|. Then
[un| > lef |af"n ¢
with
¢ = 1.34 - 10" max{2h(B/a), 7} max{2h(d/c), 7}
provided n > 10°. If || > |8, then

]

] 2 af”

provided
log 2 + log|d/c|
log v/ 5]

The following theorem due to Matveev [15] is useful.

THEOREM 2.7 (Matveev [15]). Denote by o, ..., a, algebraic numbers,
neither 0 nor 1, by log ay, . . .,log o, some fixzed determination of their loga-
rithms, by D the degree over Q of the number field K := Q(aq, ..., ay), and
by b1, ..., by rational integers. Furthermore, let Kk = 1 if K is real and k = 2
otherwise. Choose

A; > max{Dh(«;),|loga;|} (1 <i<mn)

and
B := max{1, max{|bj|4; /A, : 1 < j <n}}.
Assume that b, # 0 and log ay, . ..,loga, are linearly independent over Z.
Then
log |bylogayg + - - - + by log ay,| > —C(n)CoWoD?*2
with

\Q:Al"‘Ana

C(n) = C(n, ) = %e”@n 1+ 26)(n + 2)(d(n + 1)) <;en> ,

Co = log(e*""*™n>5D?log(eD)), Wy = log(1.5eBD log(eD)).
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Proof of Lemma[2.6 First, let us assume that |a| > |3|. In this case, we

have
dl (181\™\ _ e
n] > I ra\”( MBIV S el
ol Ual 2

log2 + log |d/c]|
log |a/B|

Therefore, we are left with the case |a] = |3|. Recall that if |a = |5,
then a and § are complex conjugates. Hence, so are ¢ and d, which implies
lc| = |d|. Therefore, we have

|un| > [ef a1 4 (d/c)6"],

where 0 = /a is of modulus 1 and not a root of unity. Let us write

provided

A :=log(d/c) + nlog + kim.
We use Matveev’s Theorem [2.7] and choose the parameters
Ay == max{2h(B/a), 7}, A2 :=max{2h(d/c),7}, Asz:=m.
Therefore B < n + 1 < 2n, and we obtain
log |A] > —1.14 - 10" (log n + 2.32) max{2h(B/a), 7} max{2h(d/c), T}.
Let us assume for the moment that |A| < 1/3. Then
AR[_ 5l4]

11+ (¢/d)o"| = 1 £ et > 1—1+\A\—7 e

Hence,

|1 + (d/C)Qn’ > 7171.34-1012 max{2h(8/a),m} max{2h(d/c),7r}.

Note that logn + 2.32 < 1.168logn and 5/6 > n~! if n > 106,
In the case |A| > 1/3, we have

1+ (¢/d)0"| =1+ et >1—e V3 >027>n7"
provided n > 10°. =

3. The general case. This section is devoted to the proof of Theo-
rem We will make the following assumptions. If |a| = |3|, then
10

X = max{nb s 7nL} > max{mogp

,106,2O+1}.

If |a| > |B], then

P10 log 2 + log |d/c|
X = — 51 ¥ 2 1 '
max{ni,...,n} >max{1.4logP’ 0%20 + " log o] —log !5|}
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Considering equation (1.5)) in terms of w,, we obtain
n

L
(3.1) wptocwpkr® =1 with 2= Z:cl |ni/2].
=1

In a first step, we want to estimate 7. Since r = ged(r?,73) is composed
of primes from S, we obtain, by Lemma and (3.1)),

pll < ﬁ I1 apr (i)

i=1pes
plr
P24+ P
< exp (KL]S] <768(1—;3)331B2(10gn + loglogp + 0.4)% +20 log P)) .
og

. |zil . || ||
Since wy,," divides r ngng,i;éj wp, we have

K
K .
Wy, < rl2l | | ged(wy,, wn, )X < rl2l | | (Dm,nj I Ipl/p(w 1))
1<j<L 1<5<L peES
1#] 1#]

for any i = 1,..., L. Combining this with the upper bound for r/?l and with
Lemmas and we get

(32)  wy, < 45l exp(2KL(B; + By)VX)
P2+ P
x exp| K'L|S||1536 ;BlBg(logX—i— loglog P+ 0.4)?
(log P)?
+ 40 log P))

Let us consider the case |a] = |3| first. Comparing the bound ([3.2))
with Lemma [2.6] we get an upper bound for X. In particular, note that
Wy, > unr*”/ 2 which yields

log |c| + X (log |a| — 1 logr) — log X (1.34 - 102BBy) < 2K Llog 2

P2+ P
m(log){)2 +40lOgP>,

+2KL(B; + B))VX + KL|S| <6144B132
since we are assuming that X > %, and that yields
log X > loglog P + 0.4.

Let us assume X is large, in particular X > 10'6, and let us additionally
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assume that
2K Llog2+ By +4KL|S|Olog P
VX >
KL(B + Bz)

- 2K Llog2 + |log |c|| + 4K L|S|Olog P
KL(Bl +Bg) '

Then we have

X (log|a| — 2logr) —log X - (1.34 - 10'° B, B,)
P2+ P

KL(By + Bo)VX + 6144K L|S| By By————
< 3KL(B; + Ba)VX + 6 S| By 2o PP

(log X)2.

Since the function
(1.34-10'2B; Bs) log X + 6144KL|S|BlBQ(P27+P(1og X)?

log P)3
X =
VX

is decreasing for X > 106, we obtain

X(log la] — %log 7")

I

P4+ P
< \/X(?,KL(B1 + By) + 4.94- 10°B, By + 0.084K L| S| B, By - )

(log P)?
that is,

X <3KL(31 + By) +4.94-10°B1 B + 0.084KL513132({;2;§3)2
< .

log |a| — 3 logr

In the case when |a| > | 3|, we assume that X > 108. By the second half
of Lemma [2.6] we get

X (log |a| — 2 logr) —log2 < 2K Llog2 + 2K L(B; + B2)VX
P2+ P

KL 144 B1By———
" ’S’<6 <”<1ogP>3

(log X)* 4+ 40 log P>>

If we also assume that
2KL+1)log2+4KL|S|Olog P
Vx> ,
KL(B1 + Bg)

then

X(log || — %logr)
2

P24 P
< BKL(B1 + Ba)VX + 6144K L| S| By By

(log P)? (log X)%.
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Since the function

X — (105;)2

is decreasing for X > 10®, we obtain

3(Bi1 4 By) + 209|S| By By(P? + P)/(log P)3>2
log |a — § logr '

X < <K L
This finishes the proof of Theorem .

4. An example. This section is devoted to the resolution of the Dio-
phantine equation . First, let us note that the sequence {up}n>o is
strictly increasing and therefore u,; = uy; if and only if n; = n;. By cancel-
ing eventually equal terms u,, and u,; we arrive at a Diophantine equation

of the form

1,22, L3 _ , T4, ,T5
Uy U 2 Uy = Uy U s

with 0 < z; < i for i = 1,2,3,4,5. Moreover, since a cancellation can only
occur if n; = n;, the occurrence of an exponent x; = 0 implies that there
exists an index j € {1,2,3,4,5} with j # ¢ such that n; = n;. The only
possibilities that z; = x; = 0 are when ny = ng = ny4 or ny = n3 = ns.

2

Hence, we obtain the two equations u; = ug and u, = u;‘; respectively. But

neither equation has a solution, as is shown in the next lemma.

LEMMA 4.1. The equations u? = ug and Uy = uf/ have no solution.

Proof. The above equations imply that u, or u, is a square. Since u,, = 3

(mod 4) for all n > 2, it follows that either x < 1 or y < 1, and a quick
computation finishes the job.

Therefore we shall consider the following problem:

Find all solutions to

T1,,22,,L3 _— »,T4,,T5
(4.1) Uyt U2 U™ = Ups U2

such that 0 < x; <1 fori=1,2,3,4,5 and x; = 0 implies that there exists
an j € {1,2,3,4,5} with j # i, n; = nj and xj # 0.
For this purpose, we define the two sets

N123:{ni:i:1,2,3, Ii>0}, N45:{ni:i:4,5, .’L‘Z>0}

By canceling equal factors in , we may assume that Nisz N Nys = 0.
First, we observe that « =2, 6 =1, ¢ =1 and d = 3, and u,, > 2™ for all
n > 0. Since S = {2,3} and ged(6,u,) = 1, unless n = 0, we may assume
that Dy, = ged(un, Um).
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Let us consider the quantity D, ,, = gcd(un, um) a little more closely.
Due to inequality (2.9) we immediately obtain

g0d (U, ) < 27U 4 3uFY < 92VX L 32VX < 32V (7 ((2log2-2log3)VX)

< 1.027- 32X
provided X = max{n,m} > 20.

Let n; € N2z and write max{n; € Ni23} = X123. Then we have

H ged (Un,, Un, ).

nj€N45

Un,
The bound for the greatest common divisor now is
Uy, < 1.28 - 318VX12s,

hence,
Xi93log2 < log(1.28) + 18log 34/ X123.

This inequality yields X235 < 814. Now, we assume n; € Ny and write
max{n; € Ny5} = Xy5; hence,

H ng(unm Un; )j’

n;E€N123

Un,

and therefore
Up, < 1.18 . 312VXas,

This yields the upper bound X5 < 362.

Let us write Gy5(n) = max{ged(uj,u,) : 0 < j < 814, j # n}. Next,
we compute for all 0 < n < 362 the value G45(n), and use the inequality
Up, < Gys(n;)8 for n; € Nys to decide which n are possible solutions. By a
quick computer search we deduce
Nus C {1,2,3,4,5,6,7,8,9,10,11,13, 14, 17,19, 20, 21, 22, 23, 27, 29,

31,33, 34,36,42,43,44,49,51,63,68,80}.
Now let us write G123(n) = max{ged(u;j,u,) : 1 < j <80, j # n}. We note
that u,, < Gi23(n;)? for n; € Nio3 and find by a computer search that
Nias C {1,2,3,4,5,6,8,9,10, 11,13, 14, 17, 19, 20, 21, 22, 23,
29,33, 37, 38,41, 44, 49, 53, 58, 60}.

J
I w,

n;€Ni23

Next, we observe that

Un,

for n; € Ny and all admissible triples (n1,n2,n3). By a computer search,
we further exclude several possibilities for the set N5 and we are left with

Nys C {1,2,3,4,5,8,9,10}.
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Similarly we have

I+,
nj€N45
for n; € Nia23 and all admissible pairs (n4,ns). That is, N2z C {1,2,5}.
Since u; = 5,us = 7 and us = 35, and since uz = 11, ug = 19, ug = 37 -7,
ug = 5-103, uig = 13- 79 have other prime divisors than 5 and 7, we deduce
that also Ng5 C {1,2,5}. Now, it is easy to conclude that the only solutions
to (L.11)) are (ny,n2,n3,n4,mn5) = (1,2,5,1,2) and (2,1,5,2,1).

REMARK 4.2. We want to emphasize that the computer searches de-
scribed above took altogether less than one minute on a common PC.

Un,

5. Comments. Our result is very general modulo the condition that
a/f and ¢/d are multiplicatively independent. However, the case when they
are multiplicatively dependent is quite easy. Suppose first that K = Q. Since
o/ and ¢/d are multiplicatively dependent, it follows that there exists some
rational number p = a/b with coprime integers a and b and coprime integers
u > 0 and v such that a/f = ep” and ¢/d = np* for some e,n € {£1}.
But then it is easy to see that u, = v,(a"" ¥ £ b“"*?) where v, is some
rational number whose prime factors are in S and which depends on n.
But, for the rational case, Birkhoff and Vandiver [3] showed that the Lucas
sequences of general terms (a™—b")/(a—0b) and a™ +b" with a and b integers
have primitive divisors for n > 6. Moreover, Carmichael [5] showed that a
primitive divisor p of the nth term of a Lucas sequence with rational roots
satisfies p = 1 (mod n). Combining these two results implies, in view of
equation (L.5)), that X < max{6 + |v|, P — 1+ |v|}.

The case when K is quadratic is similar. In this case, since a/ and ¢/d
are multiplicatively dependent, it follows that there exist p € K, coprime
integers u > 0 and v, and roots of unity € and 7 in K such that a/8 = ep*
and ¢/d = np". Let o be the only nontrivial Galois automorphism of K.
Note that o(a) = 8 and o(c) = d. Since € and 7 are roots of unity, we get
eo(e) = no(n) = 1. Hence,

1= (a/B)(B/a) = (ea(e))(po(p))",
and therefore (po(p))* = 1. Similarly,

1= (¢/d)(d/c) = (no(n))(pa(p))",
hence (po(p))” = 1. Since u and v are coprime, we get po(p) = 1, and
by Hilbert’s Theorem 90 we deduce that p = /0, where o(y) = 6. We
may certainly assume that v is an algebraic integer. We easily deduce that
Uy = UpLynty, where vy, is a rational number whose numerator and de-
nominator consist only of primes from S, and L,, is the nth term of one of
the three Lucas sequences of general form (4" — 0™)/(y — d), or 4™ + §",
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or (ny™ +m6™), where 7 is a primitive root of unity of order 3, with the last
case occurring only when K = Q(v/—3). The existence of primitive divisors
now yields a similar result as in the rational case. Schinzel [19] showed that,
for an effectively computable constant ng, sequences of the form a™ —b™ have
primitive divisors for n > ng. However, using the most general version of
the Primitive Divisor Theorem due to Bilu, Hanrot and Voutier [2], as well
as the fact that for a general Lucas sequence a primitive divisor p of its nth
term satisfies p = 1 (mod n), we deduce that X < max{30+|v|, P+1+|v|}.
We give no further details.
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