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Optimal L2 discrepancy bounds for
higher order digital sequences over the finite field F2

by

Josef Dick (Sydney) and Friedrich Pillichshammer (Linz)

1. Introduction and statement of the main results. We study equi-
distribution properties of point sets in the s-dimensional unit-cube [0, 1)s

measured by their L2 discrepancy (see [2, 15, 18, 26, 31]). For a finite set
PN,s = {x0, . . . ,xN−1} of points in the s-dimensional unit-cube [0, 1)s the
local discrepancy function is defined as

∆(t1, . . . , ts) =
AN ([0, t),PN,s)

N
− t1 · · · ts,

where t = (t1, . . . , ts) ∈ [0, 1]s and AN ([0, t),PN,s) denotes the number of
indices n with xn ∈ [0, t1)× · · · × [0, ts) =: [0, t). The discrepancy function
measures the difference of the portion of points in an axis parallel box con-
taining the origin and the volume of this box. Hence it is a measure of the
irregularity of distribution of a point set in [0, 1)s.

The L2 discrepancy of PN,s is defined as

L2,N (PN,s) =
( �

[0,1]s

|∆(t)|2 dt
)1/2

.(1)

For an infinite sequence Ss = (x0,x1, . . .) in [0, 1)s the L2 discrepancy
L2,N (Ss) is the L2 discrepancy of the first N elements of Ss.

It is well known that a sequence is uniformly distributed modulo one if
and only if its L2 discrepancy tends to zero for growing N . Furthermore, the
L2 discrepancy can also be linked to the integration error of a quasi-Monte
Carlo rule; see e.g. [15, 32, 46] for the error in the worst case setting and [52]
for the average case setting.

A lower bound on the L2 discrepancy of finite point sets has been shown
by Roth [39]: for any s ∈ N (the set of positive integers) there exists a
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number cs > 0, depending only on s, such that for every point set PN,s in
[0, 1)s consisting of N ≥ 2 points we have

(2) L2,N (PN,s) ≥ cs
(logN)(s−1)/2

N
.

This lower bound is best possible in the order of magnitude in N , as shown
first by Davenport [10] for s = 2 and then by Roth [40, 41] for arbitrary
dimensions s ∈ N. Other constructions of point sets with optimal L2 dis-
crepancy were found by Chen [4, 5], Dobrovol’skĭı [17], Frolov [23] and
Skriganov [42, 43]. Davenport used point sets consisting of the 2N ele-
ments ({±nα}, n/N) for 1 ≤ n ≤ N , where N ∈ N and α has a contin-
ued fraction expansion with bounded partial quotients. Further examples of
two-dimensional point sets with best possible order of L2 discrepancy can be
found in [19, 20, 21, 25, 27, 37]. On the other hand, Roth’s [41] proof for di-
mensions s ≥ 2 is a pure existence result obtained by averaging arguments as
are the constructions in [4, 5, 17, 23, 42, 43]. Explicit constructions of point
sets achieving the best possible order of convergence have been a longstand-
ing open problem. Finally, a solution was given by Chen and Skriganov [7]
who, for every integer N ≥ 2 and every dimension s ∈ N, gave for the first
time explicit constructions of finite point sets consisting of N points in [0, 1)s

whose L2 discrepancy achieves an order of convergence of (logN)(s−1)/2/N .
Their construction uses a finite field Fp of order p with p ≥ 2s2. We also
refer to [8] where the arguments from [7] are considerably simplified, and
to the overview in [15, Chapter 16]. The result in [7] was extended to the
Lp discrepancy for 1 ≤ p < ∞ by Skriganov [44]. See also [45] where a
construction over F2 was studied.

On the other hand, it was shown by Proinov [36] that for an infinite
sequence Ss of points in [0, 1)s there is a constant c′s > 0 such that

L2,N (Ss) ≥ c′s
(logN)s/2

N

for infinitely many values of N . This lower bound is known to be best pos-
sible in dimension s = 1. One-dimensional infinite sequences whose L2 dis-
crepancy satisfies a bound of order

√
logN/N for every N ≥ 2 were given

in, e.g., [3, 24, 27, 36, 38]. These constructions are mainly based on the
symmetrization of sequences (also called reflection principle). On the other
hand, although it was widely believed that Proinov’s lower bound is also
best possible for arbitrary dimensions s, so far there was no proof for this
assertion.

1.1. The main results. In this paper we prove two main results:
We provide for the first time explicit constructions of infinite sequences
in [0, 1)s for which the first N ≥ 2 points achieve an L2 discrepancy of order
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(logN)s/2/N for arbitrary s ∈ N. This result is best possible by the lower
bound of Proinov [36].

Furthermore, for any integer N ≥ 2 and any dimension s ∈ N, we give an
explicit construction of a finite point set of N elements in the s-dimensional
unit cube with the optimal rate of convergence for the L2 discrepancy in
the sense of the lower bound of Roth. Our construction is different from
that of Chen and Skriganov [7]. In contrast to [7] where the construction
uses a finite field Fp with p ≥ 2s2, our method is, independently of the
dimension s, based on the finite field F2 of order two. Furthermore, our
result does not use the Davenport reflection principle [10] and also does not
use the ‘self-averaging’ property from [7]. Instead it is based on higher order
digital nets and sequences from [11, 12].

In our proofs we do not keep track of constants which depend only on the
dimension s since they are significantly larger than the constants obtained
in [14]. Therefore, in the following, we write A(N, s)�s B(N, s) if there is
a constant cs > 0 which depends only on s (and not on N or m through
N = 2m) such that A(N, s) ≤ csB(N, s).

Theorem 1.1. For any s ∈ N one can explicitly construct an infinite
sequence Ss of points in [0, 1)s such that for all N ≥ 2 we have

L2,N (Ss)�s
(logN)(s−1)/2

N

√
S(N)�s

(logN)s/2

N
,

where S(N) is the sum-of-digits function of N in base 2 representation, i.e.,
if N = 2m1 + · · ·+ 2mr with m1 > · · · > mr ≥ 0, then S(N) = r. Obviously,
we have S(N) ≤ 1 + (logN)/(log 2) for all N ∈ N.

Remark 1.2. It follows from [28, Corollary 3] that for any ε > 0 we
have

lim
M→∞

1

M

∣∣∣∣{0 ≤ N < M : (1− ε) logM

2 log 2
< S(N) < (1 + ε)

logM

2 log 2

}∣∣∣∣ = 1.

Hence the density of N ∈ N for which S(N) is at least of order logN is
equal to one. More precise results on the distribution of the sum-of-digits
function can be obtained, e.g., from [1, 30].

The above construction can also be used to obtain the following result
for finite point sets, which was first shown in [7] by a different construction.

Corollary 1.3. For any s ∈ N and any integer N ≥ 2 one can ex-
plicitly construct a point set PN,s consisting of N elements in [0, 1)s such
that

L2,N (PN,s)�s
(logN)(s−1)/2

N
.
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A comparison of the approach in this paper with the method used in [7]
can be found in [16].

1.2. Explicit constructions of sequences and point sets. We now
present explicit constructions of sequences and point sets satisfying Theo-
rem 1.1 and Corollary 1.3. For p ∈ N let Q(2p) :=

{
0, 1

2p ,
2
2p , . . . ,

2p−1
2p

}
.

The construction of sequences Ss = (x0,x1, . . .) in [0, 1)s satisfying The-
orem 1.1 was introduced in [11, 12] and is based on linear algebra over the
finite field F2 of order 2 (we identify F2 with the set {0, 1} equipped with
the arithmetic operations modulo 2).

First we need to recall the definition of digital nets according to Nieder-
reiter [33, 34]: For m, p ∈ N with p ≥ m let C1, . . . , Cs ∈ Fp×m2 be p × m
matrices over F2. For n ∈ {0, . . . , 2m − 1} with binary expansion n =
n0 + n12 + · · · + nm−12

m−1 we define the binary digit vector ~n as ~n =
(n0, n1, . . . , nm−1)

> ∈ Fm2 (the symbol > means the transpose of a vector or
a matrix). Then compute

Cj~n =: (xj,n,1, xj,n,2, . . . , xj,n,p)
> for j = 1, . . . , s,

where the matrix vector product is evaluated over F2, and put

xj,n = xj,n,12
−1 + xj,n,22

−2 + · · ·+ xj,n,p2
−p ∈ Q(2p).

The nth point xn of the net P2m,s is given by xn = (x1,n, . . . , xs,n). A net
P2m,s constructed this way is called a digital net (over F2) with generat-
ing matrices C1, . . . , Cs. Note that a digital net consists of 2m elements
in Q(2p)s.

We also recall the definition of digital sequences according to Niederreiter
[33, 34], which are infinite versions of digital nets. Let C1, . . . , Cs ∈ FN×N

2

be N × N matrices over F2. For Cj = (cj,k,`)k,`∈N we assume that for each
` ∈ N there exists a K(`) ∈ N such that cj,k,` = 0 for all k > K(`). For
n ∈ N0, where N0 = N ∪ {0}, with binary expansion n = n0 + n12 +
· · · + nm−12

m−1 ∈ N0, we define the infinite dyadic digit vector of n by
~n = (n0, n1, . . . , nm−1, 0, 0, . . .)

> ∈ FN
2 . Then compute

Cj~n =: (xj,n,1, xj,n,2, . . .)
> for j = 1, . . . , s,

where the matrix vector product is evaluated over F2, and put

xj,n = xj,n,12
−1 + xj,n,22

−2 + · · · ∈ [0, 1).

The nth point xn of the sequence Ss is given by xn = (x1,n, . . . , xs,n).
A sequence Ss constructed this way is called a digital sequence (over F2)
with generating matrices C1, . . . , Cs. Note that since cj,k,` = 0 for all k large
enough, the numbers xj,n are always dyadic rationals. (We call x ∈ [0, 1) a
dyadic rational if it can be written as a finite base 2 expansion.)

Explicit constructions of suitable generating matrices C1, . . . , Cs over
F2 were obtained by Sobol’ [47], Niederreiter [33, 34], Niederreiter–Xing [35]
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and others (see [15, Chapter 8] for an overview). For completeness, we briefly
describe a special case of Tezuka’s construction [49], which is a generaliza-
tion of Sobol’s construction [47] and Niederreiter’s construction [33] of the
generating matrices.

We explain how to construct the entries cj,k,` ∈ F2 of the generator ma-
trices Cj = (cj,k,`)k,`≥1 for j = 1, . . . , s. To this end choose the polynomials
p1 = x and pj ∈ F2[x] for j = 2, . . . , s to be the (j − 1)th primitive poly-
nomial in a list of primitive polynomials over F2 that is sorted in increasing
order according to their degree ej = deg(pj), that is, e2 ≤ e3 ≤ · · · ≤ es
(the ordering of polynomials with the same degree is irrelevant). We also
put e1 = deg(x) = 1. (We point out that Niederreiter [33] uses irreducible
polynomials instead of primitive polynomials.)

Let j ∈ {1, . . . , s} and k ∈ N. Take i−1 and z to be respectively the main
term and remainder when we divide k−1 by ej , so that k−1 = (i−1)ej +z,
with 0 ≤ z < ej . Now consider the Laurent series expansion

xej−z−1

pj(x)i
=

∞∑
`=1

a`(i, j, z)x
−` ∈ F2((x

−1)).

For ` ∈ N we set

(3) cj,k,` = a`(i, j, z).

Every digital sequence with generating matrices Cj = (cj,k,`)k,`≥1 for j =
1, . . . , s found in this way is a special instance of a Sobol’ sequence, which, in
turn, is a special instance of so-called generalized Niederreiter sequences (see
[49, eq. (3)]). Note that in the construction above we always have cj,k,` = 0
for all k > `.

Observe that generalized Niederreiter sequences (as are Sobol’s and Nie-
derreiter’s sequences) are digital (t, s)-sequences with

(4) t =
s∑
j=1

(ej − 1).

See [49, Lemma 4] for details.
To obtain a sequence which satisfies Theorem 1.1 we need the following

definition.

Definition 1.4. For α ∈ N the digit interlacing composition (with in-
terlacing factor α) is defined by

Dα : [0, 1)α → [0, 1), (x1, . . . , xα) 7→
∞∑
a=1

α∑
r=1

ξr,a2
−r−(a−1)α,

where xr ∈ [0, 1) has dyadic expansion of the form xr = ξr,12
−1+ξr,22

−2+· · ·
for 1 ≤ r ≤ α. We also define this function for vectors by setting



70 J. Dick and F. Pillichshammer

Ds
α : [0, 1)αs → [0, 1)s,

(x1, . . . , xαs) 7→ (Dα(x1, . . . , xα), . . . ,Dα(x(s−1)α+1, . . . , xαs)),

for point sets PN,αs = {x0,x1, . . . ,xN−1} ⊆ [0, 1)αs by setting

Ds
α(PN,αs) = {Ds

α(x0),D
s
α(x1), . . . ,D

s
α(xN−1)} ⊆ [0, 1)s

and for sequences Sαs = (x0,x1, . . .) with xn ∈ [0, 1)αs by setting

Ds
α(Sαs) = (Ds

α(x0),D
s
α(x1), . . .).

We comment here that the interlacing can also be applied to the gen-
erating matrices C1, . . . , Cαs directly as described in [12, Section 4.4]: Let
C1, . . . , Cαs be generating matrices of a digital net or sequence and let ~cj,k
denote the kth row of Cj . We define matrices E1, . . . , Es, where the kth row
of Ej is given by ~ej,k, in the following way. For all 1 ≤ j ≤ s, u ≥ 0 and
1 ≤ v ≤ α let

~ej,uα+v = ~c(j−1)α+v,u+1.

If C1, . . . , Cαs are the generating matrices of a digital net PN,αs or digital
sequence Sαs respectively, then the matrices E1, . . . , Es defined above are
the generating matrices of Ds

α(PN,αs) or Ds
α(Sαs) respectively. Thus one can

also obtain generating matrices E1, . . . , Es ∈ FN×N
2 which generate a digital

sequence satisfying Theorem 1.1.

Above we assumed that cj,k,` = 0 for all k > K(`). Let Ej = (ej,k,`)k,`∈N.
Then the interlacing construction yields ej,k,` = 0 for all k > αK(`), where
α is the interlacing factor.

We shall show that the sequence Ds
5(S5s), where S5s is a digital sequence

in dimension 5s constructed for example according to Sobol’ as presented
above, satisfies the bounds in Theorem 1.1.

To construct finite point sets for any integer N ≥ 2 we proceed in
the following way. Let m ∈ N be such that 2m−1 < N ≤ 2m and let
x0,x1, . . . ,x2m−1 ∈ [0, 1]3s−1 be the first 2m points from the sequence in
dimension 3s− 1 as introduced above with p1 = x and p2 = 1 +x. Let xn =
(x1,n, . . . , x3s−1,n) and define the point yn = (n2−m, x1,n, . . . , x3s−1,n) ∈
[0, 1)3s. Let now

P2m,s = {D3(y0),D3(y1), . . . ,D3(y2m)}.

To obtain a point set consisting of N points we use a propagation rule
introduced in [7] (see also [15, p. 512]): The subset

P̃N,s := P2m,s ∩
([

0,
N

2m

)
× [0, 1)s−1

)
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contains exactly N points. Then we define the point set

(5) PN,s :=

{(
2m

N
x1, x2, . . . , xs

)
: (x1, x2, . . . , xs) ∈ P̃N,s

}
.

We will show that PN,s satisfies the bound in Corollary 1.3. We remark that
Chen and Skriganov [7] applied the same propagation rule but to a different
point set.

1.3. The general construction principle. Our approach is based on
higher order digital nets and sequences constructed explicitly in [11, 12]. We
state here simplified versions of their definitions that are sufficient for our
purpose.

The distribution quality of digital nets and sequences depends on the
choice of the respective generating matrices. In the following definitions we
put some restrictions on C1, . . . , Cs with the aim to quantify the quality of
equidistribution of the digital net or sequence.

Definition 1.5. Let m, p, α ∈ N with p ≥ αm and let t be an integer
such that 0 ≤ t ≤ αm. Let C1, . . . , Cs ∈ Fp×m2 with Cj = (~cj,1, . . . ,~cj,p)

>,
i.e., ~cj,i ∈ Fm2 is the ith row vector of the matrix Cj . If for all 1 ≤ ij,νj <
· · · < ij,1 ≤ p with

s∑
j=1

min(νj ,α)∑
l=1

ij,l ≤ αm− t

the vectors

~c1,i1,ν1 , . . . ,~c1,i1,1 , . . . ,~cs,is,νs , . . . ,~cs,is,1

are linearly independent over F2, then the digital net with generating ma-
trices C1, . . . , Cs is called an order α digital (t,m, s)-net over F2.

Next we consider digital sequences for which the initial segments are
order α digital (t,m, s)-nets over F2:

Definition 1.6. Let α ∈ N and let t ≥ 0 be an integer. Let C1, . . . , Cs
∈ FN×N

2 and let Cj,αm×m denote the left upper αm × m submatrix
of Cj . If for all m > t/α the matrices C1,αm×m, . . . , Cs,αm×m generate
an order α digital (t,m, s)-net over F2, then the digital sequence with
generating matrices C1, . . . , Cs is called an order α digital (t, s)-sequence
over F2.

From Definition 1.5 it is clear that if P2m,s is an order α digital (t,m, s)-
net, then for any t ≤ t′ ≤ αm, P2m,s is also an order α digital (t′,m, s)-net.
An analogous result also applies to higher order digital sequences.
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From [11, Theorems 4.11 and 4.12] (where we set α = d) we obtain the
following result:

Proposition 1.7. If Sαs is an order 1 digital (t′, αs)-sequence over F2,
then Ds

α(Sαs) is an order α digital (t, s)-sequence over F2 with

t = αt′ + s

(
α

2

)
.

For the construction based on Sobol’s and Niederreiter’s sequence intro-
duced above we have (4) and therefore we obtain explicit constructions of
order α digital (t, s)-sequences with

t = α
s∑
j=1

(ej − 1) + s

(
α

2

)
.

Note that in the construction introduced above we have cj,k,` = 0 for all
k > `. Using the interlacing construction we obtain generating matrices
E1, . . . , Es with Ej = (ej,k,`)k,`∈N and ej,k,` = 0 for all k > α`. Let Ej,N×m
denote the first m columns of Ej . Then we see that the kth row of Ej,N×m
is the zero-vector for all k > αm. This implies that the first 2m points of
the digital sequence with generating matrices E1, . . . , Es are the same as the
points of the digital net with generating matrices E1,αm×m, . . . , Es,αm×m. In
particular this implies that all coordinates of all points are dyadic rationals.
(For more general constructions of digital (t, s)-sequences a similar result
holds, however we do not use this fact here.)

Note that a digital net can be an order α digital (t,m, s)-net over F2

and at the same time an order α′ digital (t′,m, s)-net over F2 for α′ 6= α.
This means that the quality parameter t may depend on α. If necessary
we write t(α) instead of t for the quality parameter of an order α digital
(t(α),m, s)-net. The same holds for digital sequences. In particular, [12,
Theorem 4.10] implies that an order α digital (t,m, s)-net is an order α′

digital (t′,m, s)-net for all 1 ≤ α′ ≤ α with

(6) t′ = dtα′/αe ≤ t.
The same result applies to order α digital (t, s)-sequences which are also
order 1 ≤ α′ ≤ α digital (t′, s)-sequences with t′ as above. In other words,
t(α′) = dt(α)α′/αe for all 1 ≤ α′ ≤ α. More information can be found in
[15, Chapter 15].

We will show that every order α digital (t, s)-sequence over F2 with α ≥ 5
satisfies the requirements of Theorem 1.1.

1.4. Geometric properties of (higher order) digital nets. We give
a geometric interpretation of the digital nets introduced above. For α = 1
they go back to Niederreiter [33, 34]. The condition in Definition 1.5 says
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that so-called dyadic elementary boxes of the form
s∏
j=1

[
aj

2dj
,
aj + 1

2dj

)
,

with integers dj ≥ 0, d1 + · · · + ds = m − t, and integers 0 ≤ aj < 2dj ,
contain bt points of the net, which is the fair portion of points of the net
with respect to the volume of the box. Thus smaller values of the so-called
quality parameter t imply stronger equidistribution properties of a net. For
more information see [34, Theorem 4.28] or [15, Theorem 4.52].

The more general definition for α > 1 goes back to Dick [11, 12]. Rather
than considering boxes containing the right portion of points as for the
case α = 1, here one considers unions of such boxes. To give geometric
interpretation, we define for ν ∈ N0, a1 > · · · > aν ≥ −ν+1 and κ1, . . . , κν ∈
{0, 1} the union of intervals

Jα(a1, . . . , aν , κ1, . . . , κν)

=
{
x ∈ [0, 1) : x =

∞∑
d=1

ξd2
−d with ξai = κi for i = 1, . . . , ν

}
,

where we set J = [0, 1) for ν = 0, where ai ∈ {−ν + 1,−ν + 2, . . . , 0}
does not yield any restriction and where we always use the finite expan-
sion of x for dyadic rationals. For instance we have J2(0,−1, 0, 0) = [0, 1),
J2(1, 0, 0, 0) = [0, 1/2) and J2(3, 1, 1, 1) = [5/8, 6/8)∪ [7/8, 1). Let 1J(x) de-
note the indicator function of a set J (that is, 1 for x ∈ J and 0 otherwise).
Then an order α digital (t,m, s)-net satisfies

2m−1∑
n=0

1J(xn) = Volume(J)

for all J of the form
s∏
j=1

Jα(a1,j , . . . , aνj ,j , κ1,j , . . . , κνj ,j)

for all κr,j ∈ {0, 1}, all 1 ≤ r ≤ νj and 1 ≤ j ≤ s, and all aj,1 > aj,2 > · · · >
aj,νj > −νj + 1 with

s∑
j=1

min{νj ,α}∑
r=1

max{aj,r, 0} ≤ αm− t.

Thus higher order digital nets contain the correct proportion of points not
only for elementary dyadic intervals, but also for certain unions of disjoint
dyadic intervals. Thus higher order digital nets have an additional structure
which classical digital nets do not necessarily have.
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2. Walsh series representation of the squared L2 discrepancy.
As an important tool in our analysis we use a Walsh series representation of
the L2 discrepancy. This representation will be deduced within this chapter.

2.1. Walsh functions. We introduce Walsh functions in base 2 (see
[9, 22, 50]), which will be the main tool in our analysis of the L2 discrepancy.
We recall that N0 = N ∪ {0}.

For k ∈ N0 the kth Walsh function walk : [0, 1) → {−1, 1} is defined in
the following way: let k have base 2 representation

k = κa−12
a−1 + · · ·+ κ12 + κ0,

with κi ∈ {0, 1}, and let x ∈ [0, 1) have base 2 representation

x =
ξ1
2

+
ξ2
22

+ · · ·

with ξi ∈ {0, 1} (unique in the sense that infinitely many of the ξi must be
zero); then

walk(x) := (−1)ξ1κ0+···+ξaκa−1 .

For dimension s ≥ 2, vectors k = (k1, . . . , ks) ∈ Ns0 and x = (x1, . . . , xs)
∈ [0, 1)s we write

walk(x) :=

s∏
j=1

walkj (xj).

A summary of properties of Walsh functions can be found in [15, Ap-
pendix A]. See also [6] for Walsh functions in the context of discrepancy
theory, [29] for Walsh functions in the related context of numerical inte-
gration in [29], or [48] in the related context of pseudo random number
generation.

We report on a relation between Walsh functions and digital nets over F2

which will be useful for our analysis. Before we do so we need to introduce
some further notation. By ⊕ we denote the digit-wise addition modulo 2,
i.e., for real numbers x, y ≥ 0 with dyadic expansion x =

∑∞
i=w ξi/2

i and
y =

∑∞
i=w ηi/2

i with w ∈ Z and ξi 6= 1 for infinitely many i and ηj 6= 1 for
infinitely many j, we put

x⊕ y :=

∞∑
i=w

ζi
2i
, where ζi := ξi + ηi (mod 2).

For vectors x,y ∈ [0, 1)s we set x ⊕ y = (x1 ⊕ y1, . . . , xs ⊕ ys). Note that
e.g. for x = 2−1 + 2−3 + 2−5 + · · · and y = 2−2 + 2−4 + 2−6 + · · · we have
x ⊕ y = 2−1 + 2−2 + 2−3 + · · · = 1 (see [22, Section 2]). Thus x ⊕ y is a
dyadic rational which is not defined via its finite expansion. However, in
this paper, we only use ⊕ in conjunction with dyadic rationals x and y for
which we assume that x and y are given by their finite expansion. Therefore,
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in this paper, x ⊕ y will always be a dyadic rational defined via its finite
expansion.

It can be shown (see [15, Lemma 4.72]) that any digital net P2m,s is a
subgroup of ([0, 1)s,⊕). Since for any xh,xj ∈ P2m,s and any k ∈ Ns0 we
have

walk(xh ⊕ xj) = walk(xh) walk(xj)

it follows that walk is a character of the group (P2m,s,⊕). Hence, for any

digital net P2m,s with generating matrices C1, . . . , Cs ∈ Fp×m2 and any k =
(k1, . . . , ks) ∈ Ns0 it follows that

(7)
2m−1∑
h=0

walk(xh) =

{
2m if C>1

~k1 + · · ·+ C>s
~ks = ~0,

0 otherwise,

where for kj ∈ N0 with dyadic expansion kj = κj,0 +κj,12 + · · ·+κj,a−12
a−1

we set ~kj = (κj,0, κj,1, . . . , κj,p−1)
> with κj,a = κj,a+1 = · · · = κj,p−1 = 0

for a < p. For a proof of this fact we refer to [13, Lemma 4.75] (there only
p = m was considered, but only minor modifications are required to obtain
a proof of (7)). We will call this relation the character property of digital
nets.

2.2. The Walsh series expansion of the L2 discrepancy. The
squared L2 discrepancy of a point set PN,s = {x0, . . . ,xN−1} can be viewed
as a function of {x0, . . . ,xN−1}, i.e. a function of Ns variables:

L22,N (PN,s) = L22,N ({x0, . . . ,xN−1}).

To obtain its Walsh series expansion, we use the following well known for-
mula of Warnock [51] (see also [15, Proposition 2.15]).

Proposition 2.1. Let PN,s = {x0, . . . ,xN−1} be a point set in [0, 1)s.
Then

L22,N (PN,s) =
1

3s
− 2

N

N−1∑
n=0

s∏
j=1

1− x2n,j
2

+
�

[0,1]s

(
AN ([0, t),PN,s)

N

)2

dt,

where xn,j is the jth component of the point xn.

We need the Walsh series expansion of the indicator function 1[0,t)(x),
first given by Fine [22] and nowadays well known. To state this expansion
we need a weight function µ defined for non-negative integers. Put µ(0) = 0
and for k ∈ N with base 2 representation k = κ0+κ12+· · ·+κa−22a−2+2a−1

with κi ∈ {0, 1} put µ(k) := a.
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Then for x ∈ [0, 1] the Walsh series expansion of 1[0,t)(x) is given as

1[0,t)(x)

' 1− x+

∞∑
k=1

1

2µ(k)+1

( ∞∑
r=1

1

2r
walk⊕2r+µ(k)−1(x)− walk⊕2µ(k)−1(x)

)
walk(t).

Using Parseval’s identity we therefore obtain

1�

0

1[0,t)(x)1[0,t)(y) dt

= (1−x)(1−y) +

∞∑
k=1

1

22µ(k)+2

(
walk⊕2µ(k)−1(x)−

∞∑
r=1

1

2r
walk⊕2r+µ(k)−1(x)

)

×
(

walk⊕2µ(k)−1(y)−
∞∑
r=1

1

2r
walk⊕2r+µ(k)−1(y)

)
.

Using the fact that AN ([0, t),PN,s) =
∑N−1

n=0

∏s
j=1 1[0,tj)(xn,j) we find

that

�

[0,1]s

(
AN ([0, t),PN,s)

N

)2

dt =
1

N2

N−1∑
n,m=0

s∏
j=1

1�

0

1[0,tj)(xn,j)1[0,tj)(xm,j) dtj .

Combining the last two equations we obtain

(8)
�

[0,1]s

(
AN ([0, t),PN,s)

N

)2

dt

=
1

N2

N−1∑
n,m=0

s∏
j=1

[
(1− xn,j)(1− xm,j)

+
∞∑
k=1

1

22µ(k)+2

(
walk⊕2µ(k)−1(xn,j)−

∞∑
r=1

1

2r
walk⊕2r+µ(k)−1(xn,j)

)

×
(

walk⊕2µ(k)−1(xm,j)−
∞∑
r=1

1

2r
walk⊕2r+µ(k)−1(xm,j)

)]
.

The Walsh series representation of (1 − xn,j)(1 − xm,j) can easily be
found. For example it was shown in [15, Lemma A.22] that

(9) x− 1

2
= −

∞∑
a=1

1

2a+1
wal2a−1(x).

Using (8) together with the last equality we obtain the Walsh series repre-
sentation of

	
[0,1]s(AN ([0, t),PN,s)/N)2 dt.
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Using (9) again and Proposition 2.1 we can now obtain the Walsh series
expansion of the squared L2 discrepancy:

(10) L22,N (PN,s) =
1

3s
− 2

N

N−1∑
n=0

s∏
j=1

(
1

3
+

∞∑
a=1

1

2a+2
wal2a−1(xn,j)

−
∑

1≤a<a′

1

2a+a′+2
wal2a−1⊕2a′−1(xn,j)

)

+
1

N2

N−1∑
n,m=0

s∏
j=1

[(
1

2
+

∞∑
a=1

1

2a+1
wal2a−1(xn,j)

)

×
(

1

2
+
∞∑
a=1

1

2a+1
wal2a−1(xm,j)

)

+

∞∑
k=1

1

22µ(k)+2

(
walk⊕2µ(k)−1(xn,j)−

∞∑
r=1

1

2r
walk⊕2r+µ(k)−1(xn,j)

)

×
(

walk⊕2µ(k)−1(xm,j)−
∞∑
r=1

1

2r
walk⊕2r+µ(k)−1(xm,j)

)]
.

The following lemma can now be obtained upon comparing coefficients.

Lemma 2.2. For any PN,s = {x0, . . . ,xN−1} in [0, 1)s we obtain

L22,N (PN,s) =
1

3s
− 2

N

N−1∑
n=0

∑
k∈Ns0

r(k,0) walk(xn)

+
1

N2

N−1∑
n,m=0

∑
k,l∈Ns0

r(k, l) walk(xn) wall(xm),

where k = (k1, . . . , ks), l = (l1, . . . , ls), r(k, l) =
∏s
j=1 r(kj , lj). Further-

more, r(k, l) = r(l, k) and for non-negative integers 0 ≤ l ≤ k with k =
2a1−1 + · · ·+ 2av−1 with a1 > · · · > av > 0 and l = 2b1−1 + · · ·+ 2bw−1 with
b1 > · · · > bv > 0 we have

r(k, l) =



1/3 if k = l = 0,

1/2a1+2 if v = 1 and l = 0,

−1/2a1+a2+2 if v = 2 and l = 0,

−1/2a1+a2+2 if v = w + 2 > 2 and a3 = b1, . . . , av = bv−2,

1/(3 · 4a1) if k = l > 0,

1/2a1+b1+2 if v = w, a1 6= b1 and a2 = b2, . . . , av = bv,

0 otherwise.
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Proof. As already mentioned, the result follows from (10) upon compar-
ing coefficients. For instance we have

1

3
+

∞∑
a=1

1

2a+2
wal2a−1(xn,j)−

∑
1≤a<a′

1

2a+a′+2
wal2a−1⊕2a′−1(xn,j)

=

∞∑
k=0

r(k, 0) walk(xn,j)

with

r(k, 0) =


1/3 if k = 0,

1/2a+2 if k = 2a−1,

−1/2a+a
′+2 if k = 2a−1 ⊕ 2a

′−1,

0 in all other cases.

Now it suffices to check all cases.

We can simplify the above formula further. But first we recall what we
mean by a digitally shifted digital net:

Definition 2.3. Let P2m,s = {x0, . . . ,x2m−1} be a digital net over F2

and let σ ∈ [0, 1)s. Then we call the point set P2m,s(σ) = {x0 ⊕ σ,
. . . ,x2m−1 ⊕ σ} a digitally shifted digital net over F2.

In this paper we will only consider digital shifts which are dyadic ratio-
nals. Since the points of a digital net are also dyadic rationals, the operation
⊕ is well defined.

Lemma 2.4.

• The squared L2 discrepancy of a point set PN,s = {x0, . . . ,xN−1} in
[0, 1)s can be written as

L22,N (PN,s) =
∑

k,l∈Ns0\{0}

r(k, l)
1

N

N−1∑
n=0

walk(xn)
1

N

N−1∑
m=0

wall(xm),

where the coefficients r(k, l) are given as in Lemma 2.2.
• If P2m,s is a digital net over F2 with generating matrices C1, . . . , Cs ∈
Fp×m2 then

L22,2m(P2m,s) =
∑

k,l∈D∗
r(k, l),

where D∗ = D \ {0} and D is the so-called dual net given by

D = {(k1, . . . , ks) ∈ Ns0 : C>1
~k1 + · · ·+ C>s

~ks = ~0},
where for k ∈ Ns0 with base 2 expansion k = κ0 + κ12 + κ22

2 + · · · we

put ~k = (κ0, . . . , κp−1)
>.
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• If P2m,s(σ) is a digital net over F2 digitally shifted by the digital shift
σ then

L22,2m(P2m,s(σ)) =
∑

k,l∈D∗
r(k, l) walk(σ) wall(σ),

where D∗ denotes the dual net excluding 0.

Proof. From r(0,0) = 3−s and from the symmetry relation r(k, l) =
r(l,k) we obtain

L22,N (PN,s) =
1

3s
− 2

N

N−1∑
n=0

∑
k∈Ns0

r(k,0) walk(xn)

+
1

N2

N−1∑
n,m=0

∑
k,l∈Ns0

r(k, l) walk(xn) wall(xm)

= r(0,0)− 2r(0,0) + r(0,0)− 1

N2

N−1∑
n,m=0

∑
k∈Ns

r(k,0) walk(xn)

− 1

N2

N−1∑
n,m=0

∑
l∈Ns

r(0, l) wall(xm)

+
1

N2

N−1∑
n,m=0

∑
k,l∈Ns0

(k,l)6=(0,0)

r(k, l) walk(xn) wall(xm)

=
1

N2

N−1∑
n,m=0

∑
k,l∈Ns0\{0}

r(k, l) walk(xn) wall(xm)

=
∑

k,l∈Ns0\{0}

r(k, l)
1

N

N−1∑
n=0

walk(xn)
1

N

N−1∑
m=0

wall(xm),

which proves the first part. The second part follows immediately from the
first part and the character property (7) of digital nets. The third part
follows in the same manner as the second part using the additional equality
walk(x⊕ σ) = walk(x) walk(σ).

3. The proof of Theorem 1.1. We give the proof of our main result.
Throughout this proof we assume that α ≥ 3 unless stated otherwise. We
consider the construction of digital sequences Sαs based on (3) in dimension
αs and apply the digit interlacing function Ds

α(Sαs) of order α. The sequence
Ss := Ds

α(Sαs) := (x0,x1, . . .) in [0, 1)s is an order α digital (t, s)-sequence
with t = α

∑s
j=1(ej−1)+s

(
α
2

)
. Using (6), Ds

α(Sαs) is also an order α′ digital
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(t′, s)-sequence with t′ = dtα′/αe ≤ t for all 1 ≤ α′ ≤ α. Thus it is also an
order α′ digital (t, s)-sequence for all 1 ≤ α′ ≤ α; see Subsection 1.3 for
more details. Note that we have t ≥ s

(
α
2

)
≥
(
3
2

)
= 3.

Let C1, . . . , Cs denote the generating matrices of the digital sequence Ss.
Let Cj,N×m denote the first m columns of Cj . As explained in Subsection 1.3,
only the first αm rows of Cj,N×m can be non-zero and hence Cj is of the
form

Cj =

(
Cj,αm×m Dj,αm×N

0N×m Fj,N×N

)
∈ FN×N

2 ,

where 0N×m denotes the N ×m zero matrix. Note that the entries of each
column of the matrix Fj,N×N become eventually zero.

We use the first part of Lemma 2.4 to obtain

L22,N (Ss) =
∑

k,l∈Ns0\{0}

r(k, l)
1

N

N−1∑
n=0

walk(xn)
1

N

N−1∑
m=0

wall(xm).(11)

Let N = 2m1 + · · · + 2mr with m1 > · · · > mr ≥ 0 (hence r = S(N)). We
consider the point sets

Pi := {x2m1+···+2mi−1 , . . . ,x−1+2m1+···+2mi},
for i = 1, . . . , r, where for i = 1 we define 2m1 + · · · + 2mi−1 = 0. Any
n ∈ {2m1 + · · ·+ 2mi−1 , . . . ,−1 + 2m1 + · · ·+ 2mi} can be written in the form

n = 2m1 + · · ·+ 2mi−1 + a = 2mi−1`+ a

with a ∈ {0, 1, . . . , 2mi − 1} and ` = 1 + 2mi−mi−1 + · · ·+ 2m1−mi−1 if i > 1
and ` = 0 for i = 1. Hence the dyadic digit vector of n is given by

~n = (a0, a1, . . . , ami−1, l0, l1, l2, . . .)
> =:

(
~a
~̀

)
,

where a0, . . . , ami−1 are the dyadic digits of a and l0, l1, l2, . . . are the dyadic
digits of `. With this notation we have

Cj~n =


Cj,αmi×mi~a

0

0
...

+

(
Dj,αm×N

Fj,N×N

)
~̀.

For the point set Pi under consideration, the vector

(12) ~σi,j :=

(
Dj,αm×N

Fj,N×N

)
~̀

is constant and its components become eventually zero (i.e., only a fi-
nite number of components are non-zero). Furthermore, Cj,αmi×mi~a for
a = 0, 1, . . . , 2mi − 1 and j = 1, . . . , s generate an order α digital (t,mi, s)-
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net over F2 (which is also an order α′ digital (t,mi, s)-net over F2 for
1 ≤ α′ ≤ α).

This means that the point set Pi is a digitally shifted order α digital
(t,mi, s)-net over F2 and the generating matrices

(13) C1,αmi×mi , . . . , Cs,αmi×mi

of this digital net are the left upper αmi×mi submatrices of the generating
matrices C1, . . . , Cs of the digital sequence. We denote the digital shift,
which is given by (12), by σi. Note that all the coordinates of the digital
shift are dyadic rationals since the components of ~σi,j become eventually
zero.

Let Di denote the dual net corresponding to the digital net with gener-
ating matrices (13), i.e.,

Di = {k = (k1, . . . , ks) ∈ Ns0 : C>1,αmi×mi
~k1 + · · ·+ C>s,αmi×mi

~ks = ~0},

where for k ∈ N0 with base 2 expansion k = κ0 + κ12 + κ22
2 + · · · we set

~k = (κ0, κ1, . . . , καmi−1)
>. Set D∗i = Di \ {0}.

We now obtain a bound on the L2 discrepancy using the dual nets Di.
For a vector k = (k1, . . . , ks) ∈ Ns0 we put µ(k) =

∑s
j=0 µ(kj), where, as

already mentioned earlier, the function µ : N0 → N0 is defined by µ(0) = 0
and for k = κ0 + κ12 + · · ·+ κa−22

a−2 + 2a−1 with κj ∈ {0, 1} by µ(k) = a.

Lemma 3.1. Let N = 2m1 + · · ·+ 2mr where m1 > · · · > mr ≥ 0. Using
the notation above, let

Ji,i′ = {(k, l) ∈ D∗i ×D∗i′ : r(k, l) 6= 0},(14)

Ji,i′(z) = {(k, l) ∈ Ji,i′ : µ(k) + µ(l) = z}.(15)

Then

(16) L22,N (Ss)�s

r∑
i,i′=1

2mi

N

2mi′

N

∞∑
z=mi+mi′−2t+2

|Ji,i′(z)|
2z

.

Proof. By the character property (7) we have

1

2mi

−1+2m1+···+2mi∑
n=2m1+···+2mi−1

walk(xn) =

{
walk(σi) if k ∈ Di,
0 if k /∈ Di,

where again for i = 1 we set 2m1 + · · ·+ 2mi−1 = 0, and hence

1

N

N−1∑
n=0

walk(xn) =

r∑
i=1

2mi

N

1

2mi

−1+2m1+···+2mi∑
n=2m1+···+2mi−1

walk(xn)

=

r∑
i=1
k∈Di

2mi

N
walk(σi).
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Inserting this into (11) and interchanging the order of summation we obtain

L22,N (Ss) =

r∑
i,i′=1

2mi

N

2mi′

N

∑
(k,l)∈D∗i×D∗i′

r(k, l) walk(σi) wall(σi′)(17)

≤
r∑

i,i′=1

2mi

N

2mi′

N

∑
(k,l)∈Ji,i′

|r(k, l)|,

since |walk(x)| = 1 for any x.

According to the definition of r(k, l) in Lemma 2.2 for (k, l) ∈ Ji,i′ we
have

|r(k, l)| ≤ 1

3s2µ(k)+µ(l)
.

Thus from (17) we obtain

(18) L22,N (Ss)�s

r∑
i,i′=1

2mi

N

2mi′

N

∑
(k,l)∈Ji,i′

1

2µ(k)+µ(l)
.

Now we reorder the sum over all (k, l) ∈ Ji,i′ according to the value of
µ(k) + µ(l).

Assume that k = (k1, . . . , ks) ∈ D∗i . Let kj = κj,0 + κj,12 + · · · +
κj,aj−22

aj−2 + 2aj−1 with aj = µ(kj) for j = 1, . . . , s. Let further ~cj,u denote
the uth row vector of the matrix Cj,αmi×mi . Then

C>1,αmi×mi
~k1 + · · ·+ C>s,αmi×mi

~ks = ~0

is equivalent to

s∑
j=1

( aj−2∑
u=0

~c >j,u+1κj,u + ~c >j,aj−1

)
= ~0.

Hence it follows from the linear independence property for the row vectors
of generating matrices of digital nets in Definition 1.5 that

µ(k) = a1 + · · ·+ as > mi − t.

In the same way l ∈ D∗i′ implies that µ(l) > mi′ − t. Hence (k, l) ∈ D∗i ×D∗i′
implies µ(k) + µ(l) ≥ mi +mi′ − 2t+ 2.

Thus for the innermost sum in (18) we have∑
(k,l)∈Ji,i′

1

2µ(k)+µ(l)
=

∞∑
z=mi+mi′−2t+2

|Ji,i′(z)|
2z

.

By substituting this result into (18) the result follows.
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To obtain a bound on the right-hand side of (16), we first obtain a
bound on the number of elements in the set Ji,i′(z). We do this in the next
six lemmas.

Lemma 3.2. Using the notation above, we have

(19) |Ji,i′(z)| =
z−mi′+t−1∑
z1=mi−t+1

|{(k, l) ∈ Ji,i′ : µ(k) = z1 and µ(l) = z−z1}|.

Proof. We have

|Ji,i′(z)| =
z∑

z1=0

|{(k, l) ∈ Ji,i′ : µ(k) = z1 and µ(l) = z − z1}|.

Now (k, l) ∈ Ji,i′ implies k ∈ D∗i and l ∈ D∗i′ . We already showed in the
proof of Lemma 3.1 that k ∈ D∗i implies that µ(k) > mi − t, and l ∈ D∗i′
implies that µ(l) > mi′ − t. Thus we only need to consider the case where
z1 > mi − t, and z − z1 > mi′ − t, and hence the result follows.

Lemma 3.3. Using the notation above, we have

|Ji,i′(z)| ≤
z−mi′+t−1∑
z1=mi−t+1

min
{
|{k ∈ D∗i : µ(k) = z1}| max

k∈D∗i
µ(k)=z1

|R(1)
i,i′(k, z − z1)|,

|{l ∈ D∗i′ : µ(k) = z − z1}| max
l∈D∗

i′
µ(l)=z−z1

|R(2)
i,i′(l, z1)|

}
,

where

R
(1)
i,i′(k, z − z1) = {l ∈ D∗i′ : (k, l) ∈ Ji,i′(z) and µ(l) = z − z1},

R
(2)
i,i′(l, z1) = {k ∈ D∗i : (k, l) ∈ Ji,i′(z) and µ(k) = z1}.

Proof. Each summand in (19) can be estimated on the one hand by

|{(k, l) ∈ Ji,i′ : µ(k) = z1 and µ(l) = z − z1}|

≤ |{k ∈ D∗i : µ(k) = z1}| max
k∈D∗i
µ(k)=z1

|R(1)
i,i′(k, z − z1)|,

and on the other hand by

|{(k, l) ∈ Ji,i′ : µ(k) = z1 and µ(l) = z − z1}|

≤ |{l ∈ D∗i′ : µ(k) = z − z1}| max
l∈D∗

i′
µ(l)=z−z1

|R(2)
i,i′(l, z1)|.

Hence the result follows.
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To prove the next results we introduce some notation. Let kj , lj ∈ N0. In
the following we simultaneously use two different notations for the binary
expansion of kj and lj . First let

kj = 2aj,1−1 + · · ·+ 2
aj,ṽj−1

with aj,1 > · · · > aj,ṽj > 0 and

lj = 2bj,1−1 + · · ·+ 2
bj,w̃j−1

with bj,1 > · · · > bj,w̃j > 0. Thus ṽj denotes the number of non-zero digits
of kj , and w̃j denotes the number of non-zero digits of lj . For kj = 0 we use
the convention that ṽj = 0 and aj,1 = 0. Further we set aj,ṽj+i = bj,w̃j+i = 0
for i > 0.

We also use the notation

kj = kj,0 + kj,12 + · · ·+ kj,aj,1−12
aj,1−1

with binary digits kj,i ∈ {0, 1}. Thus

kj,i =

{
1 if i = aj,v for some 1 ≤ v ≤ ṽj ,
0 otherwise.

Analogously we write

lj = lj,0 + lj,12 + · · ·+ lj,bj,1−12
bj,1−1

with binary digits lj,i ∈ {0, 1}. Thus

lj,i =

{
1 if i = bj,w for some 1 ≤ w ≤ w̃j ,
0 otherwise.

We now study the factors appearing in the bound in Lemma 3.3 sepa-
rately in two steps.

Lemma 3.4. For z1 ≥ mi − t+ 1 we have

|{k ∈ D∗i : µ(k) = z1}| �s

(
z1 + s− 1

s− 1

)
2z1−mi+t−1,

and for z − z1 ≥ mi′ − t+ 1 we have

|{l ∈ D∗i′ : µ(l) = z − z1}| �s

(
z − z1 + s− 1

s− 1

)
2z−z1−mi′+t−1.

Proof. It suffices to show the first estimate, the second estimate is a di-
rect consequence of the first bound. The number of k = (k1, . . . , ks) ∈ D∗i
with µ(k) = z1 has been studied in [14]. Assume first that kj > 0 for 1≤ j ≤ s.
The case where one or more of the kj ’s are zero follows by the same argu-
ments. Let Σ(v1, . . . , vs) denote the number of such k = (k1, . . . , ks) ∈ D∗i
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with µ(kj) = aj,1 = vj . Then k ∈ D∗i implies that

~c >1,1k1,0 + · · ·+ ~c >1,v1−1k1,v1−2 + ~c >1,v1(20)

+ ~c >2,1k2,0 + · · ·+ ~c >2,v2−1k2,v2−2 + ~c >2,v2
...

+ ~c >s,1ks,0 + · · ·+ ~c >s,vs−1ks,vs−2 + ~c >s,vs = ~0,

where ~cj,u ∈ Fmi2 denotes the uth row vector of the matrix Cj,αmi×mi . Since
by the (order 1) digital (t,mi, s)-net property the vectors

~c1,1, . . . ,~c1,v1 , . . . ,~cs,1, . . . ,~cs,vs

are linearly independent as long as v1 + · · ·+ vs ≤ mi − t, we must have

v1 + · · ·+ vs ≥ mi − t+ 1.(21)

Let now A denote the mi× ((v1−1)+ · · ·+(vs−1)) matrix with column
vectors ~c >1,1, . . . ,~c

>
1,v1−1, . . . ,~c

>
s,1, . . . ,~c

>
s,vs−1, i.e.,

A := (~c >1,1, . . . ,~c
>
1,v1−1, . . . ,~c

>
s,1, . . . ,~c

>
s,vs−1).

Further let
~f := ~c >1,v1 + · · ·+ ~c >s,vs

and
~k := (k1,0, . . . , k1,v1−2, . . . , ks,0, . . . , ks,vs−2)

>︸ ︷︷ ︸
length (v1−1)+···+(vs−1)

.

Then the linear system of equations (20) can be written as

A~k = ~f(22)

and hence

Σ(v1, . . . , vs) =
∑

~k∈F(v1−1)+···+(vs−1)
2

A~k=~f

1 = |{~k ∈ F(v1−1)+···+(vs−1)
2 : A~k = ~f}|.

By the definition of the matrix A and since C1,αmi×mi , . . . , Cs,αmi×mi are
the generating matrices of an (order 1) digital (t,mi, s)-net over F2 we have

rank(A)

{
= (v1−1) + · · ·+ (vs−1) if (v1−1) + · · ·+ (vs−1) ≤ mi − t,
≥ mi − t otherwise.

Let L denote the linear space of solutions of the homogeneous system A~k = ~0
and let dim(L) denote the dimension of L. Then it follows that

dim(L)

{
= 0 if v1 + · · ·+ vs ≤ mi − t+ s,

≤ v1 + · · ·+ vs −mi + t− s otherwise.
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Hence if v1 + · · ·+ vs ≤ mi− t+ s we find that the system (22) has at most
one solution and if v1 + · · · + vs > mi − t + s then the system (22) has at
most 2v1+···+vs−mi+t−s solutions, i.e.,

Σ(v1, . . . , vs) ≤
{

1 if v1 + · · ·+ vs ≤ mi − t+ s,

2v1+···+vs−mi+t−s if v1 + · · ·+ vs > mi − t+ s.

Recall that v1 + · · ·+ vs = µ(k).

In the following let
(
n
k

)
denote the binomial coefficient, where we set(

n
k

)
= 0 if k > n. Thus

|{k ∈ D∗i : kj > 0 for j = 1, . . . , s and µ(k) = z1}|

=


(
z1 + s− 1

s− 1

)
if z1 ≤ mi − t+ s,(

z1 + s− 1

s− 1

)
2z1−mi+t−s if z1 > mi − t+ s.

In general, for ∅ 6= u ⊆ {1, . . . , s} we have

|{k ∈ D∗i : kj > 0 for j ∈ u, kj = 0 otherwise, and µ(k) = z1}|

=


(
z1 + |u| − 1

|u| − 1

)
if z1 ≤ mi − t+ |u|,(

z1 + |u| − 1

|u| − 1

)
2z1−mi+t−|u| if z1 > mi − t+ |u|.

Thus, in general, for z1 ≥ mi − t+ 1 we have

|{k ∈ D∗i : µ(k) = z1}| �s

(
z1 + s− 1

s− 1

)
2z1−mi+t−1.

Lemma 3.5. Let R
(1)
i,i′(k, z − z1) and R

(2)
i,i′(l, z1) be defined as in Lem-

ma 3.3. Then for k ∈ D∗i we have

|R(1)
i,i′(k, z − z1)| ≤

(
2(z − z1)− 2mi′ + t+ s

s

)(
3(z − z1)− 3mi′ + t+ s

s

)
,

and for l ∈ D∗i′ we have

|R(2)
i,i′(l, z1)| ≤

(
2z1 − 2mi + t+ s

s

)(
3z1 − 3mi + t+ s

s

)
.

Proof. Again it suffices to show the first estimate, the second estimate
follows by the same arguments. For the proof we first need to analyze for
which (k, l) ∈ Di × Di′ the factors r(k, l) are different from 0. To do so we
consider a number of cases.
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Recall that r(k, l) =
∏s
j=1 r(kj , lj). For r(kj , lj) 6= 0 it follows that in

some sense kj and lj cannot be too different. Let us elaborate this in more
detail: Assume that r(kj , lj) 6= 0. Now Lemma 2.2 implies that in order for
r(kj , lj) not to be 0 we must have 0 ≤ |ṽj − w̃j | ≤ 2. Further we must have:

(i) |ṽj − w̃j | = 0 ⇒ aj,2 = bj,2, . . . , aj,ṽj = bj,ṽj ,
(ii) |ṽj − w̃j | = 1 ⇒ kj = 0 or lj = 0,

(iii) |ṽj − w̃j | = 2 ⇒ if ṽj = w̃j + 2 then aj,3 = bj,1, . . . , aj,ṽj = bj,w̃j ,
if w̃j = ṽj + 2 then bj,3 = aj,1, . . . , bj,w̃j = aj,ṽj .

If |ṽj − w̃j | > 2 we always have r(kj , lj) = 0.

For given (k, l) ∈ Ji,i′(z) we define the following sets for −2 ≤ τ ≤ 2:

ατ = {j ∈ {1, . . . , s} : ṽj = w̃j + τ}.

Note that ατ ∩ατ ′ = ∅ for τ 6= τ ′ and
⋃2
τ=−2 ατ = {1, . . . , s} by Lemma 2.2.

We observe that:

(1) For j ∈ α2 we have lj,i = kj,i for 0 ≤ i < aj,2 − 1.
(2) For j ∈ α1 we have lj = 0 and kj = 2aj,1−1.
(3) For j ∈ α0 we have kj,i = lj,i for 0 ≤ i < min{aj,1, bj,1} − 1.
(4) For j ∈ α−1 we have lj = 2bj,1−1 and kj = 0.
(5) For j ∈ α−2 we have lj,i = kj,i for 0 ≤ i < bj,2 − 1.

Thus, in all cases, kj,i = lj,i for 0 ≤ i < min{aj,2 − 1, bj,2 − 1}. We now set

hj,i = kj,i = lj,i for all 1 ≤ j ≤ s and 0 ≤ i < min{aj,2 − 1, bj,2 − 1},
and for uj = min{aj,2 − 1, bj,2 − 1} we set

hj = hj,0 + hj,12 + · · ·+ hj,uj−12
uj−1 for 1 ≤ j ≤ s

if uj > 0 and hj = 0 otherwise. Thus we only need to consider the cases
where

kj = hj + b2aj,2−1c+ b2aj,1−1c, lj = hj + b2bj,2−1c+ b2bj,1−1c
for 1 ≤ j ≤ s.

We now prove a bound on |R(1)
i,i′(k, z − z1)|. Let ~cj,u denote the uth row

of the matrix Cj,αmi′×mi′ .

Let k ∈ D∗i be fixed and µ(kj) = aj,1 for 1 ≤ j ≤ s. We have |ṽj−w̃j | ≤ 2
and l ∈ D∗i′ implies that

~c >1,1h1,0 + · · ·+ ~c >1,b1,2−1h1,b1,2−2 + ~c >1,b1,2 + ~c >1,b1,1

+ ~c >2,1h2,0 + · · ·+ ~c >2,b2,2−1h2,b2,2−2 + ~c >2,b2,2 + ~c >2,b2,1
...

+ ~c >s,1hs,0 + · · ·+ ~c >s,bs,2−1hs,bs,2−2 + ~c >s,bs,2 + ~c >s,bs,1 = ~0.
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If bj,1 or bj,2 is zero, we set ~c >j,0 = ~0. Note that we consider k to be fixed,
thus the hj,i’s are also fixed. For j ∈ α1 ∪ α2 the values bj,1, bj,2 are fixed
by kj as shown in cases (1) and (2) above. For j ∈ α0 ∪ α−1 the values bj,2
are fixed by the choice of kj but bj,1 is not; see cases (3) and (4). For j ∈ α−2
neither bj,1 nor bj,2 is fixed. Thus it follows that∑

j∈α0

~c >j,bj,1 +
∑
j∈α−1

~c >j,bj,1 +
∑
j∈α−2

(~c >j,bj,2 + ~c >j,bj,1)

=
s∑
j=1

bj,2−2∑
r=0

~c >j,r+1hj,r +
∑

j∈α1∪α2

~c >j,bj,2 =: ~c >,

where the vector ~c> is fixed by k, since the hi,j and bj,1, bj,2 are fixed by k
for j ∈ α1 ∪ α2. Since µ(lj) = bj,1 for 1 ≤ j ≤ s we have b1,1 + · · · + bs,1 =
z − z1 =: z2.

Since hj is fixed by kj for 1 ≤ j ≤ s, it follows that for each given vector
(bj,i)1≤i≤2,1≤j≤s, where bj,1 > bj,2 and where b1,1+· · ·+bs,1 = z2, at most one

such solution exists. Thus |R(1)
i,i′(k, z2)| is bounded by the number of possible

choices of (bj,i)1≤i≤2,1≤j≤s, for which we prove a bound in the following.

The order 2 and order 1 digital (t,mi, s)-net property and l ∈ D∗i′ imply
that

b1,1 + b1,2 + b2,1 + b2,2 + · · ·+ bs,1 + bs,2 > 2mi′ − t,
z2 = b1,1 + b2,1 + · · ·+ bs,1 > mi′ − t.

Thus we have

b1,2 + · · ·+ bs,2 ≥ 2mi′ − t− z2 + 1.

Let bj,1 = δj + bj,2, thus δj ≥ 0 (where δj = 0 if lj = 0). Then

z2 = b1,1 + · · ·+ bs,1 = δ1 + · · ·+ δs + b1,2 + · · ·+ bs,2

≥ δ1 + · · ·+ δs + 2mi′ − t− z2 + 1.

and therefore

δ1 + · · ·+ δs ≤ 2z2 − 2mi′ + t.

Thus, for given b1,2, . . . , bs,2, the number of possible choices of b1,1, . . . , bs,1
with b1,1 + · · · + bs,1 = z2 is bounded by the number of possible choices of
δ1, . . . , δs, which itself is bounded from above by

2z2−2mi′+t∑
r=0

(
r + s− 1

s− 1

)
=

(
2z2 − 2mi′ + t+ s

s

)
.

Now consider the number of possible choices of (bj,2)1≤j≤s. If j ∈⋃2
τ=−1 ατ , then bj,2 is fixed since kj is fixed, and if j ∈ α−2, then bj,1 >

bj,2 > bj,3 = aj,1. Note that bj,3 is fixed since kj is fixed for all 1 ≤ j ≤ s. By
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the order 3, order 2 and order 1 digital net property and l ∈ D∗i′ we have

b1,1 + b1,2 + b1,3 + · · ·+ bs,1 + bs,2 + bs,3 > 3mi′ − t,
b1,1 + b1,2 + · · ·+ bs,1 + bs,2 > 2mi′ − t,

z2 = b1,1 + · · ·+ bs,1 > mi′ − t.
Let z′2 = b1,2 + b2,2 + · · ·+ bs,2 < z2. Then

b1,3 + · · ·+ bs,3 > 3mi′ − t− z2 − z′2 > 3mi′ − t− 2z2.

Let bj,2 = δ′j + bj,3. Then δ′j ≥ 0. Then we have

z2 > b1,2 + · · ·+ bs,2 = δ′1 + · · ·+ δ′s + b1,3 + · · ·+ bs,3

≥ δ′1 + · · ·+ δ′s + 3mi′ − t− 2z2 + 1

and therefore

δ′1 + · · ·+ δ′s ≤ 3z2 − 3mi′ + t− 1.

Since b1,3, . . . , bs,3 are fixed, the number of admissible b1,2, . . . , bs,2 is
bounded from above by the number of possible choices of δ′1, . . . , δ

′
s, which

in turn is bounded by

3z2−3mi′+t∑
r=0

(
r + s− 1

s− 1

)
=

(
3z2 − 3mi′ + t+ s

s

)
.

Since the number of possible choices of (bj,i)1≤i≤2,1≤j≤s is bounded by
the product of the number of possible choices of b1,1, . . . , bs,1 and the number
of possible choices of b1,2, . . . , bs,2, we deduce

|R(1)
i,i′(k, z2)| ≤

(
2z2 − 2mi′ + t+ s

s

)(
3z2 − 3mi′ + t+ s

s

)
.

Thus the statement of the lemma follows.

Before we combine Lemmas 3.4 and 3.5 to obtain a bound on |Ji,i′(z)|,
we show in the next lemma that for ‘small’ z the set Ji,i′(z) is empty. In the
proof we need to assume that α ≥ 5.

Lemma 3.6. Let α ≥ 5. Then Ji,i′(z) = ∅ if z < 1
4 max{5mi + 3mi′ ,

3mi + 5mi′} − t+ 3
4 .

Proof. We use the notation from the proof of Lemma 3.5.
Assume that (k, l) ∈ Ji,i′(z). Consider again the five cases from that

proof. The following hold:

(1) For j ∈ α2 we have aj,i+2 = bj,i for i = 1, . . . , w̃j and w̃j = ṽj − 2.
(2) For j ∈ α1 we have aj,i+1 = bj,i = 0 for i = 1, . . . , w̃j and w̃j = ṽj−1.
(3) For j ∈ α0 we have aj,i+1 = bj,i+1 for i = 1, . . . , w̃j and w̃j = ṽj .
(4) For j ∈ α−1 we have aj,i = bj,i+1 = 0 for i = 1, . . . , ṽj and ṽj = w̃j−1.
(5) For j ∈ α−2 we have aj,i = bj,i+2 for i = 1, . . . , ṽj and ṽj = w̃j − 2.
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Since aj,i > aj,i+1 we therefore have bj,3 ≥ aj,5 for 1 ≤ j ≤ s. By the
order 5 digital (t,m, s)-net property we have

a1,1 + a1,2 + a1,3 + a1,4 + a1,5 + · · ·+ as,1 + as,2 + as,3 + as,4 + as,5

> 5mi − t

and

z1 = a1,1 + · · ·+ as,1 ≥ a1,2 + · · ·+ as,2

≥ a1,3 + · · ·+ as,3 ≥ a1,4 + · · ·+ as,4

Thus, since bj,i > bj,i+1, we obtain

z−z1 = z2 = b1,1+· · ·+bs,1 ≥ b1,3+· · ·+bs,3 ≥ a1,5+· · ·+as,5 ≥ 5mi−t−4z1.

From the proof of Lemma 3.2 we have z − z1 ≥ mi′ − t+ 1, therefore

z ≥ 5mi − t− 3z1 ≥ 5mi − t+ 3(mi′ − t+ 1− z),

which implies

z ≥ 5mi + 3mi′

4
− t+

3

4
.

Analogously we have

z ≥ 3mi + 5mi′

4
− t+

3

4
.

Thus we have Ji,i′(z) = ∅ if z < 1
4 max{5mi + 3mi′ , 3mi + 5mi′} − t+ 3

4 .

In the following we obtain a bound on |Ji,i′(z)| for z ≥ mi+mi′−2t+2.
In Lemma 3.6 we considered z < 1

4 max{5mi + 3mi′ , 3mi + 5mi′}− t+ 3
4 . At

the beginning of this section we showed that t ≥ 3. Since 1
4 max{5mi+3mi′ ,

3mi + 5mi′}− t+ 3
4 ≥ mi +mi′ − 2t+ 2 for t ≥ 3, Lemmas 3.6 and 3.7 yield

a bound on |Ji,i′(z)| for all z ≥ 0.

Lemma 3.7. For all κ ≥ 0 we have

|Ji,i′(mi +mi′ − 2t+ 2 + κ)|

≤ 2κ/2+2

dκ/2e∑
z′1=0

(
z′1 +mi − t+ s

s− 1

)

×
(

2(κ− z′1) + s+ 2− t
s

)(
3(κ− z′1) + s+ 3− 2t

s

)
.
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Proof. Combining Lemmas 3.3–3.5 we obtain

|Ji,i′(z)|

≤
z−mi′+t−1∑
z1=mi−t+1

min

{
2z1−mi+t−1

(
z1 + s− 1

s− 1

)(
2z − 2z1 − 2mi′ + t+ s

s

)
×
(

3z − 3z1 − 3mi′ + t+ s

s

)
,

2z−z1−mi′+t−1
(
z − z1 + s− 1

s− 1

)(
2z1 − 2mi + t+ s

s

)
×
(

3z1 − 3mi + t+ s

s

)}
.

To simplify this bound further we first use the change of variable z =
mi +mi′ − 2t+ 2 + κ for κ ≥ 0. Then we have

|Ji,i′(mi +mi′ − 2t+ 2 + κ)|

≤
κ∑

z′1=0

min

{
2z
′
1

(
z′1 +mi − t+ s

s− 1

)(
2(κ− z′1) + s+ 2− t

s

)

×
(

3(κ− z′1) + s+ 3− 2t

s

)
,

2κ−z
′
1

(
κ− z′1 +mi′ − t+ s

s− 1

)(
2z′1 + s+ 2− t

s

)(
3z′1 + s+ 3− 2t

s

)}
.

Let

B(z′1, z
′
2) = 2z

′
1

(
z′1 +mi − t+ s

s− 1

)(
2z′2 + s+ 2− t

s

)(
3z′2 + s+ 3− 2t

s

)
.

Then we obtain

(23) |Ji,i′(mi+mi′−2t+2+κ)| ≤
κ∑

z′1=0

min{B(z′1, κ−z′1), B(κ−z′1, z′1)}

≤ 2

dκ/2e∑
z′1=0

min{B(z′1, κ− z′1), B(κ− z′1, z′1)} ≤ 2

dκ/2e∑
z′1=0

B(z′1, κ− z′1)

≤ 2κ/2+2

dκ/2e∑
z′1=0

(
z′1 +mi − t+ s

s− 1

)(
2(κ− z′1) + s+ 2− t

s

)
×
(

3(κ− z′1) + s+ 3− 2t

s

)
.
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The following lemma now implies Theorem 1.1. Since the proof makes
use of Lemma 3.6 we need to assume that α ≥ 5.

Lemma 3.8. Let α ≥ 5. Let N = 2m1 + · · · + 2mr ≥ 2 with m1 > · · · >
mr ≥ 0. Then

L22,N (Ss)�s
(logN)s−1

N2
r.

Proof. Assume that i ≤ i′. Note that for κ < b(mi−mi′)/4+ t−5/4c we
have Ji,i′(mi +mi′ − 2t+ 2 +κ) = ∅ by Lemma 3.6. Now we use Lemma 3.7
to deduce for the innermost sum in Lemma 3.1 that

∞∑
z=mi+mi′−2t+2

|Ji,i′(z)|
2z

�s
1

2mi+mi′

∞∑
κ=b(mi−mi′ )/4+t−5/4c

|Ji,i′(mi +mi′ − 2t+ 2 + κ)|
2κ

�s
1

2mi+mi′

∞∑
κ=b(mi−mi′ )/4+t−5/4c

22

2κ/2

dκ/2e∑
z′1=0

(
z′1 +mi − t+ s

s− 1

)

×
(

2(κ− z′1) + s+ 2− t
s

)(
3(κ− z′1) + s+ 3− 2t

s

)
.

Since t depends only on the dimension s but not on mi,mi′ , we can simplify
the above expression to obtain

∞∑
z=mi+mi′−2t+2

|Ji,i′(z)|
2z

�s
1

2mi+mi′

∞∑
κ=b(mi−mi′ )/4c

1

2κ/2

dκ/2e∑
z′1=0

(
z′1 +mi

s− 1

)(
2(κ− z′1)

s

)(
3(κ− z′1)

s

)
.

We estimate the binomial coefficients using 0 ≤ z′1 ≤ κ to obtain(
z′1 +mi

s− 1

)
�s (mi + 1)s−1(z′1 + 1)s−1 �s (logN)s−1(κ+ 1)s−1

and (
2(κ− z′1)

s

)(
3(κ− z′1)

s

)
�s (κ+ 1)2s.

Thus we have
∞∑

z=mi+mi′−2t+2

|Ji,i′(z)|
2z

�s
(logN)s−1

2mi+mi′

∞∑
κ=b(mi−mi′ )/4c

(κ+ 1)3s

2κ/2
.
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Inserting this bound into Lemma 3.1 we obtain

L22,N (Ss)�s
(logN)s−1

N2

∑
1≤i≤i′≤r

∞∑
κ=b(mi−mi′ )/4c

(κ+ 1)3s

2κ/2
.

Using the fact that for i ≤ i′ we have mi ≥ mi′ we deduce for any fixed
1 ≤ i ≤ r that

r∑
i′=i

∞∑
κ=b(mi−mi′ )/4c

(κ+ 1)3s

2κ/2
�s

r∑
i′=i

∞∑
κ=b(mi−mi′ )/4c

1

2κ/4

�
r∑
i′=i

1

2(mi−mi′ )/16
≤
∞∑
q=0

1

2q/16
� 1.

Thus we obtain ∑
1≤i≤i′≤r

∞∑
κ=b(mi−mi′ )/4c

(κ+ 1)3s

2κ/2
�s r

and therefore

L22,N (Ss)�s
(logN)s−1

N2
r,

where r = S(N) denotes the number of non-zero digits in the binary expan-
sion of N .

4. The proof of Corollary 1.3. We first prove a bound on the L2
discrepancy of order 3 digital nets.

4.1. A bound on the L2 discrepancy of order 3 digital nets

Theorem 4.1. Let s,m ∈ N. For every (digitally shifted) order 3 digital
(t,m, s)-net P2m,s over F2 we have

L2,2m(P2m,s)�s
m(s−1)/2

2m−t
.

Proof. The proof of Theorem 4.1 can be obtained by specializing the
proof of Theorem 1.1 to the case where r = 1. In the following we describe
the necessary changes in the proof of Theorem 1.1 to obtain the result. The
reason for requiring only α = 3 instead of α ≥ 5 is that we do not make use
of Lemma 3.6 in this proof.

Let C1, . . . , Cs ∈ F3m×m
2 be the generating matrices of P2ms and recall

the definition

D = {k ∈ Ns0 : C>1
~k1 + · · ·+ C>s

~ks ≡ 0 (mod 2)}
and D∗ = D \ {0}. We can use the same argument as in the proof of Theo-
rem 1.1 where r = 1. Take J = Ji,i′ and J (z) = Ji,i′(z) from the proof of
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Theorem 1.1 with i = i′ and mi = m, i.e., by (14) and (15) we have

J = {(k, l) ∈ D∗ ×D∗ : r(k, l) 6= 0}.
J (z) = {(k, l) ∈ J : µ(k) + µ(l) = z}.

By the same arguments as in the proof of Theorem 1.1 (see (17)), we
have

L22,2m(P2m,s) =
∣∣∣ ∑
k,l∈D∗

r(k, l) walk(σ) wall(σ)
∣∣∣

≤
∑

k,l∈D∗
|r(k, l)| =

∑
(k,l)∈J

|r(k, l)|

and for (k, l) ∈ J we have

|r(k, l)| ≤ 1

3s2µ(k)+µ(l)
.

Thus (cf. (18))

L22,2m(P)�s

∑
(k,l)∈J

1

2µ(k)+µ(l)
.

It follows from the (order 1) digital (t,m, s)-net property and k ∈ D∗
that µ(k) > m − t, and from l ∈ D∗ it also follows that µ(l) > m − t and
hence µ(k) + µ(l) ≥ 2(m− t+ 1). Therefore (cf. Lemma 3.1)

(24) L22,2m(P)�s

∞∑
z=2(m−t+1)

|J (z)|
2z

.

From Lemma 3.7, we find for z = 2m− 2t+ 2 + κ with κ ≥ 0 that

|J (2m− 2t+ 2 + κ)|

≤ 2κ/2+2

dκ/2e∑
z′1=0

(
z′1 +m− t+ s

s− 1

)

×
(

2(κ− z′1) + s+ 2− t
s

)(
3(κ− z′1) + s+ 3− 2t

s

)
.

Inserting this result into (24) we obtain

L22,2m(P2m,s)�s
1

22m−2t+2

∞∑
κ=0

|J (2m− 2t+ 2 + κ)|
2κ

≤ 1

22m−2t

∞∑
κ=0

1

2κ/2

dκ/2e∑
z′1=0

(
z′1 +m− t+ s

s− 1

)

×
(

2(κ− z′1) + s+ 2− t
s

)(
3(κ− z′1) + s+ 3− 2t

s

)



Optimal L2 discrepancy bounds 95

≤ 1

22m−2t

∞∑
κ=0

κ/2 + 1

2κ/2
(κ+ 1 +m− t+ s)s−1

(s− 1)!

× (2κ+ s+ 2− t)s

s!

(3κ+ s+ 3− 2t)s

s!
.

Since the sum over κ is now from 0 to ∞, we do not need to use
Lemma 3.6. Thus also the assumption that α ≥ 5 is not needed and α = 3
is sufficient.

Using the fact that t depends only on the dimension s, we therefore
obtain

L22,2m(P2m,s)�s
ms−1

22m−2t

∞∑
κ=0

κ3s

2κ/2
�s

ms−1

22m−2t
.

Thus the result follows by taking the square root.

4.2. The proof of Corollary 1.3. This proof uses Theorem 4.1 and
an idea from [7].

Proof. For an integerN ≥ 2 we choosem ∈ N such that 2m−1 < N ≤ 2m.
Let P2m,s be an order 3 digital (t,m, s)-net over F2 with the property that
the first component of P2m,s is a (0,m, 1)-net over F2. Note that such nets
exist for every m and can be obtained in the following way: Take the digital
sequence introduced in Section 1.2 in dimension 3s− 1. Concatenate to the
nth element the component n2−m for n = 0, 1, . . . , 2m − 1, so that the new
points are of the form (n2−m, yn,1, yn,2, . . . , yn,3s−1), where (yn,1, . . . , yn,3s−1)
is the nth point of the sequence. Then the set consisting of the points
(n2−m, yn,1, yn,2) for 0 ≤ n < 2m is a digital (0,m, 3)-net. Apply the digit
interlacing composition to the point set

{(n2−m, yn,1, yn,2, . . . , yn,3s−1) : n = 0, 1, . . . , 2m − 1}.
We can now use [13, Proposition 1], which states the following: Let

C1, . . . , Cαs be the generating matrices of a digital (t,m, s)-net and let

C
(α)
1 , . . . , C

(α)
s be the matrices obtained by applying the interlacing con-

struction to C1, . . . , Cαs. Then C
(α)
1 , . . . , C

(α)
s are generating matrices of an

order 3 digital (t,m, s)-net. In particular, it follows that the first component
of the order 3 digital net obtained this way is a digital (0,m, 1)-net.

We now proceed as in [7]. According to Theorem 4.1 we have

(25) L2,2m(P2m,s)�s
m(s−1)/2

2m
.

As shown above, the first component of P2m,s is a digital (0,m, 1)-net
over F2. Hence the subset

P̃N,s := P2m,s ∩
([

0,
N

2m

)
× [0, 1)s−1

)
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contains exactly N points. We define the point set

PN,s :=

{(
2m

N
x1, x2, . . . , xs

)
: (x1, x2, . . . , xs) ∈ P̃N,s

}
.

Then we have (with y = (y1, . . . , ys))

(NL2,N (PN,s))2 =
�

[0,1]s

|A([0,y), N,PN,s))−Nλs([0,y))|2 dy

=

1�

0

· · ·
1�

0

∣∣∣∣A([0, y1N2−m)×
s∏
i=2

[0, yi), N, P̃N,s
)

− 2m
N

2m
y1 . . . ys

∣∣∣∣2 dy1 · · · dys
=

2m

N

N/2m�

0

1�

0

· · ·
1�

0

|A([0,y), N, P̃N,s)− 2mλs([0,y))|2 dy

=
2m

N

N/2m�

0

1�

0

· · ·
1�

0

|A([0,y), 2m,P2m,s)− 2mλs([0,y))|2 dy

≤ 2m

N
(2mL2,2m(P2m,s))2.

With (25) we get

(NL2,N (PN,s))2 �s
2m

N
ms−1 �s (logN)s−1.

Taking the square root and dividing by N we finally obtain

L2,N (PN,s)�s
(logN)(s−1)/2

N
.

Acknowledgments. H. Niederreiter also independently suggested re-
cently that higher order nets may achieve the optimal rate of convergence
of the L2 discrepancy.
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