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A notion of diaphony based on p-adic arithmetic

by

Peter Hellekalek (Salzburg)

1. Introduction. Diaphony is a concept to measure the irregularity
of the distribution of sequences on the s-dimensional torus [0, 1[s, similar
to discrepancy. It is rooted in Fourier analysis and involves weighted Weyl
sums relative to a given function system.

The now classical instance of diaphony is based on the trigonometric
function system and was introduced by Zinterhof [13], see also Kuipers and
Niederreiter [6, Exercise 5.27, p. 162]. The instance of dyadic diaphony,
which is based on the Walsh functions in base 2, was introduced by Helleka-
lek and Leeb [5]. This approach has been transcribed to the case of integer
bases b ≥ 2 and also extended in a series of papers by Grozdanov et al. [2, 1].

There exists an intrinsic relation between the function system that is
chosen and the type of constructions of (finite) low-discrepancy sequences
that can be analyzed with the associated Weyl sums. Different types of
sequences require different types of exponential sums to study their equidis-
tribution properties, by means of discrepancy and other figures of merit.
Hence, by varying the function system, one is able to “synchronize” the
type of Weyl sums with the type of sequences under study. Such suitable
“matches” are, for example, the trigonometric functions and good lattice
points (see Niederreiter [8, Ch. 5] and Sloan and Joe [12]), and the Walsh
functions and digital nets and sequences (see Niederreiter [8, Ch. 4], Larcher
[7, Sec. 2], Niederreiter and Pirsic [9], Skriganov [11], and Hellekalek [3] for
details).

In this paper, we continue the study begun in Hellekalek [4] to provide
the necessary tools for the construction and analysis of new types of low-
discrepancy point sets and sequences based on p-adic arithmetic.

Our results are based on the introduction of a p-adic function system Γp

on the s-dimensional torus, p = (p1, . . . , ps), that is closely related to the
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product of the dual groups Ẑpi of the pi-adic integers Zpi . Here, we allow not
necessarily distinct prime bases pi in each coordinate. We prove a version of
Weyl’s criterion for Γp, from which the uniform distribution of the Halton
sequence in base p follows as a simple corollary. Further, we define a new
version of diaphony, the p-adic diaphony, prove its essential properties, show
an Erdős–Turán–Koksma-type inequality, and compute the p-adic diaphony
of regular grids.

2. The function system Γp. Throughout this paper, p denotes a
prime, and p = (p1, . . . , ps) denotes a vector of s primes pi, 1 ≤ i ≤ s,
not necessarily distinct. N stands for the positive integers, and we put
N0 = N ∪ {0}.

If ω = (xn)n≥0 is a—possibly finite—sequence on the torus [0, 1[s with
at least N elements, and if f : [0, 1[s → C, we define

SN (f, ω) =
1
N

N−1∑
n=0

f(xn).

For a nonnegative integer a, let a =
∑

j≥0 ajp
j , aj ∈ {0, 1, . . . , p − 1},

be the unique p-adic representation of a in base p. With the exception of at
most finitely many indices j, the digits aj are zero.

Every real number x ∈ [0, 1[ has a p-adic representation of the form
x =

∑
j≥0 xjp

−j−1, xj ∈ {0, 1, . . . , p − 1}. If x is a p-adic rational, which
means that x = ap−g with a and g integers, 0 ≤ a < pg, g ∈ N, and if x 6= 0,
then there are two such representations.

The p-adic representation of x is uniquely determined under the condi-
tion that xj 6= p− 1 for infinitely many j. In the following, we will call this
particular representation the regular (p-adic) representation of x.

Let Zp denote the compact group of p-adic integers. We refer the reader
to the monograph of Robert [10] for details. An element z of Zp will be
written as z =

∑
j≥0 zj p

j , with digits zj ∈ {0, 1, . . . , p− 1}.

Remark 2.1. The set of integers Z is embedded in Zp. If z ∈ N0, then
at most finitely many digits zj are different from zero. If z ∈ Z, z < 0,
then at most finitely many digits zj are different from p − 1. In particular,
−1 =

∑
j≥0(p− 1) pj .

Definition 2.2. An element z ∈ Zp will be called regular if infinitely
many digits zj are different from p− 1. Otherwise, z is called irregular.

Remark 2.3. It is easy to see that the set of irregular elements of Zp
coincides with the set {−1,−2, . . .} of negative integers and that N0 is con-
tained in the set of regular elements of Zp.
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Definition 2.4. We define the p-adic Monna map ϕp by

ϕp : Zp → [0, 1[, ϕp

(∑
j≥0

zjp
j
)

=
∑
j≥0

zjp
−j−1 (mod 1).

Remark 2.5. The restriction of ϕp to N0 is often called the radical-
inverse function. The Monna map is surjective, but not injective. Further-
more, ϕp gives a bijection between the subset N of Zp of positive integers
and the set {ap−g : 0 < a < pg, g ∈ N, (a, pg) = (a, p) = 1} of all reduced
p-adic fractions.

The Monna map may be inverted in the following sense.

Definition 2.6. We define the pseudoinverse ϕ+
p of the p-adic Monna

map ϕp by

ϕ+
p : [0, 1[→ Zp, ϕ+

p

(∑
j≥0

xjp
−j−1

)
=
∑
j≥0

xjp
j ,

where
∑

j≥0 xjp
−j−1 stands for the regular p-adic representation of the ele-

ment x ∈ [0, 1[.

Remark 2.7. The image of the torus [0, 1[ under ϕ+
p is the set of regular

elements of Zp. Furthermore, we have the identity x = ϕp(ϕ+
p (x)) for all

x ∈ [0, 1[, but, in general, z 6= ϕ+
p (ϕp(z)) for z ∈ Zp. For example, if z = −1,

then ϕ+
p (ϕp(−1)) = ϕ+

p (0) = 0 6= −1.

The dual group Ẑp of Zp is given by Ẑp = {χk : k ∈ N0}, where

χk : Zp → {c ∈ C : |c| = 1}, χk

(∑
j≥0

zjp
j
)

= e2πiϕp(k)(z0+z1p+··· );

see Hellekalek [4]. If infinitely many digits zi are different from zero, we will
interpret the value of χk as an infinite product of complex numbers. All
factors of this product except at most finitely many will be equal to one,
and hence the value of χk is well-defined.

We now “lift” the characters χk to the torus. As in Hellekalek [4], the
following function system will be the main tool in our analysis.

Definition 2.8. For a nonnegative integer k, let

γk : [0, 1[→ {c ∈ C : |c| = 1}, γk(x) = χk(ϕ+
p (x)).

Let Γp = {γk : k ∈ N0}. It is easy to show that
�

[0,1[

γk(x) dx = 0, ∀k ∈ N.

There is an obvious generalization of the preceding notions to the higher-
dimensional case. In the following, let p = (p1, . . . , ps) be a vector of s
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not necessarily distinct primes pi, let x = (x1, . . . , xs) ∈ [0, 1[s, and let
k = (k1, . . . , ks) ∈ Ns

0. We define

ϕp(k) = (ϕp1(k1), . . . , ϕps(ks)),

ϕ+
p (x) = (ϕ+

p1(x1), . . . , ϕ+
ps

(xs)),

γk(x) =
s∏
i=1

γki
(xi), where γki

∈ Γpi , 1 ≤ i ≤ s,

Γp = {γk : k ∈ Ns
0}.

It is elementary to show that the family of functions Γp is an orthonormal
system in L2([0, 1[s). We will see below that it is even an orthonormal basis.

3. The results. For an integrable function f on [0, 1[s, the kth Fourier
coefficient of f with respect to the function system Γp is defined as

f̂(k) =
�

[0,1[s

f(x)γk(x) dx.

For g = (g1, . . . , gs) ∈ Ns
0, we define the following summation domains:

∆p(g) = {k = (k1, . . . , ks) ∈ Ns
0 : 0 ≤ ki < pgi

i , 1 ≤ i ≤ s},
∆∗p(g) = ∆p(g) \ {0}.

We will use the standard convention that empty sums have the value zero.
Further, we define the following weight functions. For an integer vector

k = (k1, . . . , ks) ∈ Ns
0, let

ρpi(ki) =
{

1 if k = 0,
p
−2(ti−1)
i if pti−1

i ≤ ki < ptii , ti ∈ N,

ρp(k) =
s∏
i=1

ρpi(ki).

Lemma 3.1. Let p and g be as above. Then:

(i) The sum σp over all weights ρp(k) is given by

σp =
∑
k∈Ns

0

ρp(k) =
s∏
i=1

(pi + 1).

(ii) For the truncated sum σp(g),

σp(g) =
∑

k∈∆p(g)

ρp(k) =
s∏
i=1

(pi + 1− p−gi+1
i ).

Proof. The claim is easily established by elementary calculations.



Diaphony based on p-adic arithmetic 277

The following function will allow for a compact notation. For k ∈ N0,
with p-adic representation k = k0 + k1p+ · · · , we define

vp(k) =
{

0 if k = 0,
1 + max{j : kj 6= 0} if k ≥ 1.

If k ∈ Ns
0, then let vp(k) = (vp1(k1), . . . , vps(ks)).

Definition 3.2. A p-adic elementary interval, or p-adic elint for short,
is a subinterval Ic,g of [0, 1[s of the form

Ic,g =
s∏
i=1

[ϕpi(ci), ϕpi(ci) + p−gi
i [,

where the parameters are subject to the conditions g = (g1, . . . , gs) ∈ Ns
0,

c = (c1, . . . , cs) ∈ Ns
0, and 0 ≤ ci < pgi

i , 1 ≤ i ≤ s.
Remark 3.3. In the “classical” form, the p-adic elint Ic,g is written as

Ic,g =
∏s
i=1[aip

−gi
i , (ai + 1)p−gi

i [, where ϕpi(ci) = aip
−gi
i , with ai ∈ N0,

0 ≤ ai < pgi
i , 1 ≤ i ≤ s.

Let λ denote the Lebesgue measure on [0, 1[s. The following lemma shows
that, in the language of Fourier analysis, the characteristic function 1I of a
p-adic elint I is a Γp-polynomial.

Lemma 3.4. Let Ic,g be a p-adic elint, and let f = 1Ic,g −λ(Ic,g). Then:

(i) For all k ∈ Ns
0 \∆∗p(g),

f̂(k) = 0.

(ii) The following identity holds pointwise:

(1) f(x) =
∑

k∈∆∗
p(g)

1̂Ic,g(k)γk(x), ∀x ∈ [0, 1[s.

Proof. The proof of this lemma is completely analogous to the proof of
Lemma 3.5 in Hellekalek [4], and hence will be omitted.

Lemma 3.5. For every k 6= 0, γk is a step function given by

γk(x) =
∑

c∈∆p(vp(k))

e2πi〈ϕp(k),c〉1Ic,vp(k)
(x), ∀x ∈ [0, 1[s,

where 〈ϕp(k), c〉 denotes the inner product of the two vectors ϕp(k) and c.

Proof. Let g = vp(k). The family of p-adic elints {Ic,g : c ∈ ∆p(g)} is a
partition of [0, 1[s. From the definition of the function γk it follows that γk
is constant on each Ic,g with value e2πi〈ϕp(k),c〉. This establishes our claim.

Remark 3.6. Lemmas 3.4 and 3.5 generalize results of Hellekalek [4],
where the interested reader will find further details on this topic.
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Definition 3.7. The sum SN (γk, ω) will be called the kth Weyl sum
associated with the sequence ω and the function system Γp.

In the following corollary, we establish an interesting relation between the
Weyl sums SN (γk, ω) and the so-called local discrepancies SN (1I −λ(I), ω),
for p-adic elints I.

Corollary 3.8. Let ω be a sequence in [0, 1[s. Then:

(i) For every p-adic elint Ic,g,

(2) SN (1Ic,g − λ(Ic,g), ω) =
∑

k∈∆∗
p(g)

1̂Ic,g(k)SN (γk, ω).

(ii) For every nontrivial function γk (i.e., k 6= 0),

(3) SN (γk, ω) =
∑

c∈∆p(g)

e2πi〈ϕp(k),c〉SN (1Ic,g − λ(Ic,g), ω),

where g is defined as g = vp(k).

Proof. This is easy to see. Identity (2) follows directly from Lemma 3.4.
To verify identity (3), we note that

∑
c∈∆p(g) e

2πi〈ϕp(k),c〉λ(Ic,g) = 0, which
is elementary to prove. Lemma 3.5 then implies the result.

Lemma 3.9. A sequence ω is uniformly distributed in [0, 1[s if and only if

lim
N→∞

SN (1I − λ(I), ω) = 0

for all p-adic elints I in [0, 1[s.

Proof. If ω is uniformly distributed then, by definition, we deduce that
limN→∞ SN (1J − λ(J), ω) = 0 for all subintervals J of [0, 1[s. In particular,
this property holds for p-adic elints.

On the other hand, let us assume limN→∞ SN (1I − λ(I), ω) = 0 for all
p-adic elints I. Let J be an arbitrary interval in [0, 1[s. We have to show
that limN→∞ SN (1J − λ(J), ω) = 0.

Consider the following approximation argument, adapted from the proof
of Theorem 3.6 in Hellekalek [4]. Let g = (g1, . . . , gs) ∈ Ns be arbitrarily
chosen. We consider the partition of [0, 1[s given by the family of p-adic
elints Ig = {Ic,g : c ∈ ∆p(g)}. Define J as the union of those elints I ∈ Ig
that are contained in J , J =

⋃
I : I⊆J I. Further, let J denote the union of

all elints I ∈ Ig with nonempty intersection with J , J =
⋃
I : I∩J 6=∅ I. Then

J ⊆ J ⊆ J , where J may be void. It is elementary to see that

|SN (1J − λs(J), ω)| ≤ λ(J)− λ(J)

+ max{|SN (1J − λ(J), ω)|, |SN (1J − λ(J), ω)|}.
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In every coordinate i, the side lengths of J and J differ at most by 2p−gi
i .

Hence, by an application of Lemma 3.9 of Niederreiter [8], we obtain the
bound λ(J)− λ(J) ≤ sδ, where δ = max1≤i≤s 2p−gi

i .
The sets J and J are finite disjoint unions of elints I ∈ Ig. As a con-

sequence, SN (1J − λ(J), ω) is a finite sum of terms SN (1I − λ(I), ω), with
appropriate elints I ∈ Ig. The same is true for SN (1J − λ(J), ω). From the
underlying assumption it follows that

lim sup
N→∞

|SN (1J − λ(J), ω)| ≤ sδ.

The parameter g was arbitrary. Hence, δ can be made arbitrarily small. This
implies that limN→∞ SN (1J − λ(J), ω) exists and is equal to zero.

Corollary 3.10. The set of finite linear combinations of elements of
Γp is dense in the set of functions 1J , J an arbitrary subinterval of [0, 1[s,
in the Hilbert space L2([0, 1[s).

Proof. This follows from identity (1) and from the proof of Lemma 3.9
above. Hence, Γp is not only an ONS, but even an ONB of L2([0, 1[s).

In [4, Theorem 3.8], Weyl’s criterion was proved in the special case p =
(p, . . . , p). We generalize this result as follows and give a slightly different
proof.

Theorem 3.11 (Weyl’s criterion for Γp). Let ω be a sequence in [0, 1[s.
Then ω is uniformly distributed in [0, 1[s if and only if

(4) lim
N→∞

SN (γk, ω) = 0, ∀k 6= 0.

Proof. Let ω be uniformly distributed in [0, 1[s. Then, by Lemma 3.9,
limN→∞ SN (1I − λ(I), ω) = 0 for any p-adic elint I. In identity (3) of
Corollary 3.8, the summation domain ∆p(g) is finite. Hence, the uniform
distribution of ω implies relation (4).

For the inverse direction, let us assume relation (4). In identity (2) of
Corollary 3.8, the summation domain ∆∗p(g) is finite. As a consequence,
relation (4) implies limN→∞ SN (1I − λs(I), ω) = 0 for any p-adic elint I.
From Lemma 3.9, the uniform distribution of ω follows.

Corollary 3.12. Let ω = (xn)n≥0, xn = (ϕp1(n), . . . , ϕps(n)), be the
Halton sequence in base p = (p1, . . . , ps), with different primes pi. Then ω
is uniformly distributed in [0, 1[s.

Proof. This is easily seen by Weyl’s criterion for Γp. We have γk(xn) =∏s
j=1 e

2πiϕpj (kj)n. Hence, for every k 6= 0,

|SN (γk, ω)| = 1
N

∣∣∣∣e2πi〈ϕp(k),1〉N − 1
e2πi〈ϕp(k),1〉 − 1

∣∣∣∣ ≤ 1
N

1
|sinπ〈ϕp(k),1〉|

,
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where 1 = (1, . . . , 1), and thus, 〈ϕp(k),1〉 = ϕp1(k1) + · · · + ϕps(ks). It is
easily seen that the condition pi 6= pj for i 6= j implies 〈ϕp(k),1〉 6∈ Z.
Hence, limN→∞ SN (γk, ω) = 0.

We now introduce the p-adic diaphony, which is defined as the following
sum of weighted Weyl sums for Γp.

Definition 3.13. Let p = (p1, . . . , ps), where all pi are prime, not nec-
essarily distinct. The p-adic diaphony FN (ω) of the first N elements of a
sequence ω = (xn)n≥0 in [0, 1[s is defined by

FN (ω) =
(

1
σp − 1

∑
k 6=0

ρp(k) |SN (γk, ω)|2
)1/2

,

where σp =
∏s
i=1(pi + 1).

In the following theorem, we prove that FN is a measure of uniform
distribution of sequences in [0, 1[s.

Theorem 3.14. Let ω be a sequence in [0, 1[s. Then, for the p-adic
diaphony FN :

(i) FN is normalized: 0 ≤ FN (ω) ≤ 1.
(ii) ω is uniformly distributed in [0, 1[s if and only if limN→∞ FN (ω)=0.

Proof. For every k, |SN (γk, ω)| ≤ 1. Thus, Lemma 3.1 implies (i).
In (ii), let limN→∞ FN (ω) = 0. As a consequence, limN→∞ SN (γk, ω) = 0

for all k 6= 0. Theorem 3.11, Weyl’s criterion, implies the uniform distribu-
tion of ω.

On the other hand, let ω be uniformly distributed in [0, 1[s. Let g =
(g1, . . . , gs) ∈ Ns be arbitrary. Then we have the following upper bound:

F 2
N (ω) ≤ 1

σp − 1

∑
k∈∆∗

p(g)

ρp(k)|SN (γk, ω)|2 +
1

σp − 1

∑
k∈Ns

0\∆p(g)

ρp(k).

This yields the inequality

F 2
N (ω) ≤ 1

σp − 1

∑
k∈∆∗

p(g)

ρp(k)|SN (γk, ω)|2 +
σp − σp(g)
σp − 1

.(5)

From the uniform distribution of ω it follows, by an application of Weyl’s
criterion, that limN→∞ SN (γk, ω) = 0 for all k 6= 0. The summation domain
∆∗p(g) is finite, hence

lim sup
N→∞

F 2
N (ω) ≤ σp − σp(g)

σp − 1
.

The difference σp−σp(g) can be made arbitrarily small, by increasing every
component gi of the vector g. This implies the existence of limN→∞ F

2
N (ω).

Further, limN→∞ F
2
N (ω) = 0, which establishes claim (ii).
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From inequality (5), we derive the inequality of Erdős–Turán–Koksma
for the p-adic diaphony:

Corollary 3.15.

F 2
N (ω) ≤ 1

σp − 1

∑
k∈∆∗

p(g)

ρp(k)|SN (γk, ω)|2 +
σp

σp − 1
sw,

where w = maxi(pi + 1)−1p−gi+1
i .

Proof. This is due to the fact that, by applying Lemma 3.9 of Nieder-
reiter [8],

1− σp(g)
σp

= 1−
s∏
i=1

(1− (pi + 1)−1p−gi+1
i ) ≤ 1− (1− w)s,

which is easily seen to be bounded by sw.

The next result shows that the diaphony of a regular p-adic grid consist-
ing of N = pgs points has an order of magnitude of N−1/s, up to a power of
logN .

Theorem 3.16. Let p = (p, . . . , p), where p is a prime, let g ∈ N, and
let ω denote the regular p-adic grid with mesh width p−g in every coordinate,

ω = ((a1p
−g, . . . , asp

−g))p
g−1,...,pg−1
a1=0,...,as=0.

Then, with N = pgs denoting the number of elements of ω:

(i) The p-adic diaphony FN (ω) is given by the identity

((p+ 1)s − 1)F 2
N (ω) = (1 +Σ)s − 1,

where Σ =
∑

k≥pg ρp(k)|Spg(γk, (ap−g)
pg−1
a=0 )|2.

(ii) There exist positive constants C1 and C2, explicitly computable and
depending only on the dimension s and on the base p, such that

C1
1

N1/s
≤ FN (ω) ≤ C2

√
logpN
N1/s

,

where logpN denotes the logarithm of N to the base p.

Remark 3.17. The number p−1/2Σ1/2 is the p-adic diaphony of the
one-dimensional sequence (ap−g)p

g−1
a=0 . This follows from identity (6) below.

Proof of Theorem 3.16. It is easy to see that

SN (γk, ω) =
1
N

∑
a∈∆p(g)

e2πi〈ϕp(k),a〉
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with g = (g, . . . , g). Because of the independence of the coordinates, we may
write

SN (γk, ω) =
s∏
j=1

1
pg

pg−1∑
aj=0

e2πiϕp(kj)aj .

For the one-dimensional sum p−g
∑pg−1

a=0 e2πiϕp(k)a = Spg(γk, (ap−g)
pg−1
a=0 ), we

get

(6)
1
pg

pg−1∑
a=0

e2πiϕp(k)a =


1 if k = 0,
0 if 1 ≤ k < pg,
1
pg

sin(πϕp(k)pg)
sin(πϕp(k))

eπiϕp(k)pg

eπiϕp(k)
if k ≥ pg.

The domain Ns
0 \ {0} can be split into disjoint subsets A and V (t),

0 ≤ t ≤ s − 1, where A = {k ∈ Ns
0 : ∃i, 1 ≤ i ≤ s, such that 1 ≤ ki < pg},

and V (t) is defined as the set of all k ∈ Ns
0 such that exactly t coordinates

of the vector k are zero and the remaining s − t coordinates are larger or
equal to pg,

Ns
0 \ {0} = A ∪

s−1⋃
t=0

V (t).

We note that σp = (p+ 1)s. Hence, we obtain the following formula for the
p-adic diaphony:

((p+ 1)s − 1)F 2
N (ω) =

s−1∑
t=0

∑
k∈V (t)

ρp(k)|SN (γk, ω)|2

=
s−1∑
t=0

(
s

t

)
Σs−t = (1 +Σ)s − 1,

where
Σ =

∑
k≥pg

ρp(k)|Spg(γk, (ap−g)
pg−1
a=0 )|2.

This proves part (i) of the theorem.
For the lower bound for FN (ω), we note that ((p+ 1)s− 1)F 2

N (ω) ≥ sΣ.
We will show that Σ ≥ 4π−2p−2g = 4π−2N−2/s.

If we consider only the first term in Σ, for k = pg, then we obtain the
bound

Σ ≥ ρp(pg)|Spg(γpg , (ap−g)p
g−1
a=0 )|2.

We have ρp(pg) = 1/p2g and ϕp(pg) = 1/pg+1. Further, for any x, 0 ≤ x ≤ 1,
we have 2〈〈x〉〉 ≤ sinπx ≤ π〈〈x〉〉, where 〈〈x〉〉 denotes the distance of x to the
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nearest integer. As a consequence of identity (6), we obtain

|Spg(γk, (ap−g)
pg−1
a=0 )| = 1

pg
sin(π/p)

sin(π/pg+1)
≥ 2
π
.

Hence, Σ ≥ 4π−2p−2g, and we may take C1 = 2π−1
√
s/((p+ 1)s − 1).

For the upper bound for FN (ω), we note that ((p + 1)s − 1)F 2
N (ω) ≤

s2s−1Σ. In Σ, we partition the summation domain {k ≥ pg} into the two
disjoint subsets D = {pg ≤ k < p2g+1} and E = {k ≥ p2g+1}.

From Lemma 3.1, it follows that∑
k∈E

ρp(k)|Spg(γk, (ap−g)
pg−1
a=0 )|2 ≤

∑
k≥p2g+1

ρp(k) =
1
p2g

.

In order to compute ρp(k) and ϕp(k), we split the summation over D as
follows:∑

k∈D
ρp(k)|Spg(γk, (ap−g)

pg−1
a=0 )|2

=
2g+1∑
t=g+1

p−1∑
b=1

(b+1)pt−1−1∑
k=bpt−1

1
p2t−2

(
1
pg

sin(πϕp(k)pg)
sin(πϕp(k))

)2

≤ 1
p2g

2g+1∑
t=g+1

1
p2t−2

p−1∑
b=1

(b+1)pt−1−1∑
k=bpt−1

1
4〈〈ϕp(k)〉〉2

.

If k runs from bpt−1 up to (b+ 1)pt−1 − 1, then ϕp(k) runs through all the
numbers a/pt−1 + b/pt, 0 ≤ a ≤ pt−1 − 1, in some order. For this reason,

(b+1)pt−1−1∑
k=bpt−1

1
〈〈ϕp(k)〉〉2

=
pt−1−1∑
a=0

1
〈〈a/pt−1 + b/pt〉〉2

.

It is an elementary, but somewhat tedious task to estimate the last sum by
3p2t(1/b2 + 1/(p− b)2). This yields the estimate∑

k∈D
ρp(k)|Spg(γk, (ap−g)

pg−1
a=0 )|2 ≤ 6p2 g

p2g
.

Altogether, we obtain the bound

F 2
N (ω) ≤ 2s−1(6p2 + 1)

(p+ 1)s − 1
sg

p2g
.

This finishes the proof.
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