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On certain Diophantine systems with infinitely many
parametric solutions and applications

by

Maciej Ulas (Kraków and Warszawa)

1. Introduction. Let f(x, y) = y2 − xn, where n is an odd integer.
In [4], we proved that for any quadruple a, b, c, d of distinct integers the set
of rational parametric solutions of the system

f(x1, y1)
a

=
f(x2, y2)

b
=
f(x3, y3)

c
=
f(x4, y4)

d

is infinite. In the cited paper, this result was used to show that if Ci : y2 =
xn+ai, where ai ∈ Z\{0} are pairwise distinct, then there exists a polynomial
D ∈ Z[t] such that the Q(t)-rank of the Jacobian variety Jac(Ci,D) is positive,
where Ci,D : y2 = xn+aiD(t) for i = 1, 2, 3, 4. Similar results were proved in
[8, 9] and [3], where instead of f(x, y), we considered g(x, y) = (y2 − x3)/x
and g(x, y) = (y2 − x5)/x respectively. In the light of these results, it is
natural to ask what can be said about a general system of the form

(1)
h(x1, y1)

a1
=
h(x2, y2)

a2
= · · · = h(xk, yk)

ak
,

where h ∈ Z[x, y] and k is a fixed positive integer. In general, this is a difficult
question. The most interesting but difficult case is that of a homogeneous
form h. It seems that the only pertinent results available concern the case
where all ai are equal and deg h = 2, 3. In the case of deg h = 2, the problem
is related to the construction of a rational number A such that the curve
C : h(x, y) = A is rational over Q. In the case of deg h = 3, the problem
is related to the construction of a rational number A such that the curve
C : h(x, y) = A (i.e. h is an elliptic curve with nonzero discriminant) has
infinitely many solutions in rationals. In this connection, we mention the
work of Choudhry and Wróblewski [1], who showed that if h(x, y) = x4− y4
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then the system of equations

h(x1, y1) = h(x2, y2) = h(x3, y3)

has infinitely many nontrivial solutions in integers (a nontrivial solution is a
solution that cannot be obtained from another by multiplication by a nonzero
integer).

In this paper, we investigate the question of solvability of the system (1)
with the additional condition min{degx h,degy h} ≥ 3 and h of the form
yn − xm.

2. First result. In this section, we are interested in constructing rational
parametric solutions of the system of Diophantine equations

(2)
y3
1 − xm1
a

=
y3
2 − xm2
b

=
y3
3 − xm3
c

,

where a, b, c are pairwise distinct integers and m ∈ N+ such that (3,m) = 1.
Before we state the main result of this section, let us recall what the

torsion part of the curve E : y2 = x3 + q looks like for a fixed q ∈ Z [7,
p. 323]. If q = 1, then TorsE(Q) ∼= Z/6Z. If q 6= 1 and q is a square in Z,
then TorsE(Q) = {O, (0,√q), (0,−√q)}. If q = −432, then TorsE(Q) =
{O, (12, 36), (12,−36)}. If q 6= 1 and q is a cube in Z, then TorsE(Q) =
{O, (− 3

√
q, 0)}. In the remaining cases, TorsE(Q) = {O}. Therefore, if E :

y2 = x3 + Q, where Q ∈ Z[u, v, w] \ Z, is an elliptic curve defined over the
field Q(u, v, w) and if on E there exists a Q(u, v, w)-rational point P = (x, y)
with xy 6= 0, then the order of P in the group E(Q(u, v, w)) is not finite
provided that E is not isomorphic to an elliptic curve defined over Q. Thus,
in that case the curve E over Q(u, v, w) has a positive rank.

Now we are ready to prove the following theorem.

Theorem 2.1. Let a, b, c ∈ Z \ {0} and suppose that (3,m) = 1. Then
the system (2) has infinitely many rational three-parameter solutions.

Proof. We consider the variety U defined by (2). Since we are looking for
parametric solutions, we are interested in nontrivial points on U , i.e. points
which satisfy y3

i 6= xmi and xiyi 6= 0, for i = 1, 2, 3. Let α, β ∈ Z be such that
mβ − 3α = 1. Note that this is the only place where we need the condition
(3,m) = 1. Put

(3)
x1 = u3T β, x2 = v3T β, x3 = w3T β,

y1 = pTα, y2 = qTα, y3 = rTα,

where u, v, w are rational parameters and p, q, r, T are variables. Now, if
T = (bp3 − aq3)/(bu3m − av3m), then the first equation defining the variety
U is satisfied. On the other hand, if T = (cq3− br3)/(cv3m− bw3m), then the
second equation defining U is satisfied. From the above, after some necessary
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simplifications, we can see that in order to find Q(u, v, w)-rational points on
our variety we must show that the Diophantine equation

(4) Ap3 +Bq3 + Cr3 = 0,

where

(5) A = bw3m − cv3m, B = cu3m − aw3m, C = av3m − bu3m,

has infinitely many nontrivial Q(u, v, w)-rational solutions. From a geometric
viewpoint, equation (4) defines a cubic curve C over the field Q(u, v, w). This
is an elliptic curve with the Q(u, v, w)-rational point P = [um : vm : wm].
Doubling the point P on the curve C, we find that 2P = [p′, q′, r′], where

(6)

p′ = −um(cu3mv3m + bu3mw3m − 2av3mw3m),

q′ = −vm(cu3mv3m − 2bu3mw3m + av3mw3m),

r′ = wm(2cu3mv3m − bu3mw3m − av3mw3m).

In this case, the value of T = T (u, v, w) is given by T = −G(um, vm, wm),
where

G(u, v, w) = c3u9v9 + 3bc2u9v6w3 + 3ac2u6v9w3 + 3b2cu9v3w6

− 21abcu6v6w6 + 3a2cu3v9w6 + b3u9w9 + 3ab2u6v3w9

+ 3a2bu3v6w9 + a3v9w9.

Using these quantities, we find that a solution of the system (2) has the form

x1 = u3T (u, v, w)β, y1 = p′(u, v, w)T (u, v, w)α,

x2 = v3T (u, v, w)β, y2 = q′(u, v, w)T (u, v, w)α,

x3 = w3T (u, v, w)β, y3 = r′(u, v, w)T (u, v, w)α.

By a standard argument, we find that C is birationally equivalent to the
elliptic curve with Weierstrass equation

E : ZY 2 = X3 + 16A2B2C2Z3.

The mapping ψ : E → C is given by

ψ(X,Y, Z) = (−4ABCXY Z,−4ABC(BY 3 − CZ3), AX3),

where A,B,C are given by (5).
Now we will see that the curve E has positive rank over the field Q(u, v, w).

Note that on E , we have the point S = (X,Y, 1), where

X = −4BCq′r′

p′2
, Y = −4BC(Bq′3 − Cr′3)

p′3
.

Here p′, q′, r′ are defined by (6). Note also that XY 6= 0 in Q(u, v, w) and
16A2B2C2 is not of the form a′F (u, v, w)6 for a′ ∈ Z, F ∈ Z[u, v, w]. By the
remark at the beginning of this section, the point S is of infinite order in
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the group E(Q(u, v, w)). This shows that the set of rational three-parameter
solution of the system (2) is infinite.

Remark 2.2 (see also [2]). If C is a curve of genus g ≥ 2 and if there
exists a morphism from C to an elliptic curve E, then Jac(C), the Jacobian
variety of C, is isogenous to A×E, where A is an Abelian variety of dimension
g−1. In particular, if the rank of E is positive then so is the rank of Jac(C).

As an application of our result, we prove the following theorem.

Theorem 2.3. Let ai ∈ Z \ {0}, i = 1, 2, 3. Suppose that ai 6= aj for
i 6= j, and let m ∈ N+ be such that (3,m) = 1. Consider the superelliptic
curves defined by

Ci : y3 = x2m + ai, i = 1, 2, 3.

Then there exists a polynomial D ∈ Z[u, v, w] such that the Jacobian variety
associated with the curve Ci,D : y3 = x2m + aiD(u, v, w) has a positive rank
over Q(u, v, w) for i = 1, 2, 3.

Proof. First, note that from Theorem 2.1 we can deduce the existence of
a polynomial D ∈ Z[u, v, w] such that the set of Q(u, v, w)-rational points
on the curve Ci,D is nonempty for i = 1, 2, 3. (In fact, infinitely many such
polynomials exist.) Second, on each curve Ci,D, we have a point Pi = (xi, yi)
satisfying xiyi 6= 0 for i = 1, 2, 3. Moreover, one has the morphism:

ϕi : Ci,D 3 (x, y) 7→ (y, xm) ∈ Ei : Y 2 = X3 − aiD(u, v, w).

On the curve Ei we have a Q(u, v, w)-rational point Qi = (yi, xmi ) for i =
1, 2, 3. As −aiD(u, v, w) is not of the form a′F (u, v, w)6 for a′ ∈ Z and
F ∈ Z(u, v, w), we deduce that Ei is not birationally equivalent to an elliptic
curve defined over Q. As the coordinates of the point Qi are nonzero, Qi is
of infinite order on the curve Ei for i = 1, 2, 3. Using now Remark 2.2, we
deduce that the point Pi = (xi, yi) which lies on the curve Ci,D for i = 1, 2, 3
corresponds to the divisor of infinite order in the group Jac(Ci,D)(Q(u, v, w)).
Thus the rank of Jac(Ci,D)(Q(u, v, w)) is positive for i = 1, 2, 3.

3. A generalization of Theorem 2.1. In this section we will prove
the following theorem.

Theorem 3.1. Let a, b, c ∈ Z \ {0}. Let m ∈ N+ be such that (3,m) = 1
and let 0 < k < m. Then the system

(7)
y3
1 − xm1
axk1

=
y3
2 − xm2
bxk2

=
y3
3 − xm3
cxk3

has infinitely many rational parametric solutions depending on three param-
eters.
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Proof. The method of proof is similar to that for Theorem 2.1. We con-
sider the variety V defined by (7). We are interested in nontrivial points
on V, i.e. points which satisfy y3

i 6= xmi and xiyi 6= 0 for i = 1, 2, 3. Take
α, β ∈ Z such that mβ − 3α = 1. Put

(8)
x1 = u3T β, x2 = v3T β, x3 = w3T β,

y1 = pukTα, y2 = qvkTα, y3 = rwkTα,

where u, v, w are rational parameters and p, q, r, T are variables.
Now, note that if T = (bp3 − aq3)/(bu3(m−k) − av3(m−k)) then the first

equation defining the variety V is satisfied. On the other hand, if T =
(cq3 − br3)/(cv3(m−k) − bw3(m−k)) then the second equation defining V is
satisfied. Consequently, to finish the proof, it is enough to show that the set
of Q(u, v, w)-rational points on the curve C′: A′p3 +B′q3 +C ′r3 = 0, where

A′ = bw3(m−k) − cv3(m−k), B′ = cu3(m−k) − aw3(m−k),

C ′ = av3(m−k) − bu3(m−k),

is infinite. But this is obvious, as C′ is obtained from the curve C in the proof
of Theorem 2.1, where instead ofm we takem−k. As we have proved that C,
for any given nonzero m (not necessarily satisfying the condition (3,m) = 1)
has infinitely many Q(u, v, w)-rational points, the same is true for C′.

4. Parametric solutions of the Diophantine equation (y4
1 − x2n

1 )/a
= (y4

2 − x2n
2 )/b, n odd. Before stating our result, let us recall what the

torsion part of the curve E : y2 = x3 + px, with a fixed p ∈ Z \ {0}, looks
like (see [7, p. 311]). If p = 4, then TorsE(Q) ∼= Z/4Z. If −p is a square
in Z, then TorsE(Q) ∼= Z/2Z × Z/2Z, and finally if p does not satisfy any
of these conditions, then TorsE(Q) ∼= Z/2Z. As an immediate consequence,
we deduce that if P ∈ Z[t] \ Z and E : y2 = x3 + Px is an elliptic curve
defined over Q(t) with a Q(t)-rational point P = (x, y) satisfying xy 6= 0,
then the order of P in the group E(Q(t)) is not finite provided that E is not
isomorphic to an elliptic curve defined over Q. Thus, in that case the curve
E over Q(t) has a positive rank.

Now we are ready to prove the following theorem.

Theorem 4.1. Let a, b ∈ Z \ {0} and n be an odd integer. Then the
Diophantine equation

(9)
y4
1 − x2n

1

a
=
y4
2 − x2n

2

b
has infinitely many rational parametric solutions.

Proof. We consider the hypersurface given by (9). Note that instead of (9)
we can consider the system
(10) b(y2

1 − xN1 ) = aU(y2
2 − xN2 ), U(y2

1 + xN1 ) = y2
2 + xN2 ,
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where U is a parameter. In order to solve the above system, we take

(11) x1 = T, y1 = T (n−1)/2, x2 = −t2T, y2 = qT (n−1)/2,

where t is a rational parameter and q, T are variables. From the first equation
in (10), we get

T =
b− aq2U
b+ at2nU

,

and then from the second equation in (10),

(b+ 2at2nU + aU2)q2 = bt2n + 2bU + at2nU2.

Thus we get the equation of a hyperelliptic quartic curve (defined over Q(t))
of the form

Ca,b : V 2 = (bt2n + 2bU + at2nU2)(b+ 2at2nU + aU2),

where V = q(b+ 2at2nU + aU2). Note that Ca,b has the Q(t)-rational point
Qa,b = (0, btn). Treating Qa,b as a point at infinity on the curve Ca,b and using
the method described in [6, p. 77], we see that Ca,b is birationally equivalent
to the elliptic curve with the Weierstrass equation

Ea,b : Y 2 = X3 + 4ab(at4n − b)2X.
A mapping from Ea,b to Ca,b is given by ϕ(X,Y ) = (U, V ), where

U =
2b(b2 − 2abt4n + a2t8n − t2nX)

(at4n + b)X − tnY
,

V =
t3nX3 − (at4n − b)2(f1X

2 + f2X + f3 + f4Y )
((at4n + b)X − tnY )2

,

and

f1 = 3tn, f2 = 4abt3n,

f3 = 4abtn(at4n − b)2, f4 = −2(at4n + b).

In order to show that the rank of Ea,b is positive, we notice that the point
Pa,b = (X2, XY ), where

X =
b2 − 6abt4n + a2t8n

2tn(b+ at4n)
, Y = X2 +

8abt2n(at4n − b)2

(at4n + b)2
,

lies on our curve. As 4ab(at4n− b)2 is not of the form a′F (t)4 for a′ ∈ Z and
F ∈ Z[t], we deduce that Ea,b is not birationally equivalent to an elliptic curve
defined over Q. Invoking now the remark from the beginning of this section
we deduce that Pa,b is of infinite order in the group Ea,b(Q(t)). Now it is an
easy task to obtain the statement of our theorem. First, for m = 2, 3, . . . ,
we calculate mPa,b on the curve Ea,b. Next, we calculate the corresponding
point (U, V ) on Ca,b and from the equation V = q(b+ 2at2nU + aU2) we get
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the value of q. Then we calculate the value of T = T (t) and the values of
xi, yi, i = 1, 2, given by (11) which give solutions of our equation.

For example, if n = 3, then the point Pa,b leads (after necessary simpli-
fications) to the solution of the equation (y4

1 − x6
1)/a = (y4

2 − x6
2)/b of the

form

x1 = t3(−3a2 + 6abt12 + b2t24)y2,

y1 = t2y2,

x2 = (−a2 − 6abt12 + 3b2t24)y2,

y2 = a4 − 28a3bt12 + 6a2b2t24 − 28ab3t36 + b4t48.

Remark 4.2. With the use of Theorem 4.1, we can easily prove that the
set of rational parametric solutions of the Diophantine equation

x4
1 + x4

2 = y2n
1 + y2n

2 ,

where n is an odd integer, is infinite. Indeed, just take b = −a in the solution
obtained in Theorem 4.1. Thus our method shows that the set of integers
which are simultaneously representable as a sum of two fourth powers and
two 2mth powers is infinite. This result is related to the Diophantine problem
called equal sums of unlike powers investigated by Lander in [5]. The method
presented by Lander cannot be used in order to construct integer solutions
to the above Diophantine equation.

In particular, if n = 3, then we get the following solution of the equation
x4

1 + x4
2 = y6

1 + y6
2:

x1 = (−1 + 6t12 + 3t24)y2,

x2 = t3(−3− 6t12 + t24)y2,

y1 = t2y2,

y2 = 1 + 28t12 + 6t24 + 28t36 + t48,

which has not been obtained before.

From Theorem 4.1, we deduce an interesting result similar to Theorem
2.3.

Theorem 4.3. Let a1, a2 ∈ Z \ {0} be such that a1 6= a2 and let m ∈ N+

be an odd integer. Consider the superelliptic curves defined by the equations

Ci : y4 = x2m + ai, i = 1, 2.

Then there exists a polynomial D ∈ Z[t] such that the Jacobian variety asso-
ciated with the curve Ci,D : y4 = x2m + aiD(t) has a positive rank over Q(t)
for i = 1, 2.

Proof. From Theorem 4.1, we can deduce the existence of a polynomial
(in fact, there are infinitely many such polynomials) D ∈ Z[t] such that
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the set of Q(t)-rational points on the curve Ci,D : y4 = x2m + aiD(t) is
nonempty for i = 1, 2. Moreover, on each curve Ci,D, we get a point Pi =
(xi, yi) satisfying xiyi 6= 0 for i = 1, 2, 3. Note the existence of the following
morphism:

ϕi : Ci,D 3 (x, y) 7→ (y, xm) ∈ E′i : Y 2 = X4 − aiD(t).

The curve E′i over Q(t) is birationally equivalent to the elliptic curve whose
Weierstrass equation is

Ei : Y 2 = X3 − 4aiD(t)X.

The mapping χi : Ei → E′i is given by

χi(X,Y ) =
(
Y

2X
,
X2 − 4aiD(t)

4X

)
,

and its inverse is given by

χ−1
i (X,Y ) = (2(X2 + Y ), 4X(X2 + Y )).

First of all, note that the curve Ei is not birationally equivalent to one
defined over Q. This follows from the fact that −4aiD(t) is not of the form
a′F (t)4 for a′ ∈ Z and F ∈ Z[t]. Next, on E′i, we have a Q(t)-rational point
Qi = (yi, xmi ) for i = 1, 2. Thus the point (X,Y ) = χ−1

i (Qi) lies on Ei and
one can easily check that XY 6= 0. From the remark at the beginning of this
section we deduce that the point χ−1

i (Qi) is of infinite order on Ei, and the
same holds for the point Qi on E′i. Now, using Remark 2.2 we conclude that
the rank of Jac(Ci,D)(Q(t)) is positive for i = 1, 2.
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