On certain Diophantine systems with infinitely many parametric solutions and applications

by
Maciej Ulas (Kraków and Warszawa)

1. Introduction. Let $f(x, y)=y^{2}-x^{n}$, where n is an odd integer. In 4, we proved that for any quadruple a, b, c, d of distinct integers the set of rational parametric solutions of the system

$$
\frac{f\left(x_{1}, y_{1}\right)}{a}=\frac{f\left(x_{2}, y_{2}\right)}{b}=\frac{f\left(x_{3}, y_{3}\right)}{c}=\frac{f\left(x_{4}, y_{4}\right)}{d}
$$

is infinite. In the cited paper, this result was used to show that if $C_{i}: y^{2}=$ $x^{n}+a_{i}$, where $a_{i} \in \mathbb{Z} \backslash\{0\}$ are pairwise distinct, then there exists a polynomial $D \in \mathbb{Z}[t]$ such that the $\mathbb{Q}(t)$-rank of the Jacobian variety $\operatorname{Jac}\left(C_{i, D}\right)$ is positive, where $C_{i, D}: y^{2}=x^{n}+a_{i} D(t)$ for $i=1,2,3$, 4. Similar results were proved in [8, 9] and [3], where instead of $f(x, y)$, we considered $g(x, y)=\left(y^{2}-x^{3}\right) / x$ and $g(x, y)=\left(y^{2}-x^{5}\right) / x$ respectively. In the light of these results, it is natural to ask what can be said about a general system of the form

$$
\begin{equation*}
\frac{h\left(x_{1}, y_{1}\right)}{a_{1}}=\frac{h\left(x_{2}, y_{2}\right)}{a_{2}}=\cdots=\frac{h\left(x_{k}, y_{k}\right)}{a_{k}} \tag{1}
\end{equation*}
$$

where $h \in \mathbb{Z}[x, y]$ and k is a fixed positive integer. In general, this is a difficult question. The most interesting but difficult case is that of a homogeneous form h. It seems that the only pertinent results available concern the case where all a_{i} are equal and $\operatorname{deg} h=2,3$. In the case of $\operatorname{deg} h=2$, the problem is related to the construction of a rational number A such that the curve $C: h(x, y)=A$ is rational over \mathbb{Q}. In the case of $\operatorname{deg} h=3$, the problem is related to the construction of a rational number A such that the curve $C: h(x, y)=A$ (i.e. h is an elliptic curve with nonzero discriminant) has infinitely many solutions in rationals. In this connection, we mention the work of Choudhry and Wróblewski [1], who showed that if $h(x, y)=x^{4}-y^{4}$

[^0]then the system of equations
$$
h\left(x_{1}, y_{1}\right)=h\left(x_{2}, y_{2}\right)=h\left(x_{3}, y_{3}\right)
$$
has infinitely many nontrivial solutions in integers (a nontrivial solution is a solution that cannot be obtained from another by multiplication by a nonzero integer).

In this paper, we investigate the question of solvability of the system (1) with the additional condition $\min \left\{\operatorname{deg}_{x} h, \operatorname{deg}_{y} h\right\} \geq 3$ and h of the form $y^{n}-x^{m}$.
2. First result. In this section, we are interested in constructing rational parametric solutions of the system of Diophantine equations

$$
\begin{equation*}
\frac{y_{1}^{3}-x_{1}^{m}}{a}=\frac{y_{2}^{3}-x_{2}^{m}}{b}=\frac{y_{3}^{3}-x_{3}^{m}}{c} \tag{2}
\end{equation*}
$$

where a, b, c are pairwise distinct integers and $m \in \mathbb{N}_{+}$such that $(3, m)=1$.
Before we state the main result of this section, let us recall what the torsion part of the curve $E: y^{2}=x^{3}+q$ looks like for a fixed $q \in \mathbb{Z}[7$, p. 323]. If $q=1$, then Tors $E(\mathbb{Q}) \cong \mathbb{Z} / 6 \mathbb{Z}$. If $q \neq 1$ and q is a square in \mathbb{Z}, then Tors $E(\mathbb{Q})=\{\mathcal{O},(0, \sqrt{q}),(0,-\sqrt{q})\}$. If $q=-432$, then Tors $E(\mathbb{Q})=$ $\{\mathcal{O},(12,36),(12,-36)\}$. If $q \neq 1$ and q is a cube in \mathbb{Z}, then Tors $E(\mathbb{Q})=$ $\{\mathcal{O},(-\sqrt[3]{q}, 0)\}$. In the remaining cases, Tors $E(\mathbb{Q})=\{\mathcal{O}\}$. Therefore, if \mathcal{E} : $y^{2}=x^{3}+Q$, where $Q \in \mathbb{Z}[u, v, w] \backslash \mathbb{Z}$, is an elliptic curve defined over the field $\mathbb{Q}(u, v, w)$ and if on \mathcal{E} there exists a $\mathbb{Q}(u, v, w)$-rational point $P=(x, y)$ with $x y \neq 0$, then the order of P in the $\operatorname{group} \mathcal{E}(\mathbb{Q}(u, v, w))$ is not finite provided that \mathcal{E} is not isomorphic to an elliptic curve defined over \mathbb{Q}. Thus, in that case the curve \mathcal{E} over $\mathbb{Q}(u, v, w)$ has a positive rank.

Now we are ready to prove the following theorem.
Theorem 2.1. Let $a, b, c \in \mathbb{Z} \backslash\{0\}$ and suppose that $(3, m)=1$. Then the system (2) has infinitely many rational three-parameter solutions.

Proof. We consider the variety \mathcal{U} defined by (2). Since we are looking for parametric solutions, we are interested in nontrivial points on \mathcal{U}, i.e. points which satisfy $y_{i}^{3} \neq x_{i}^{m}$ and $x_{i} y_{i} \neq 0$, for $i=1,2,3$. Let $\alpha, \beta \in \mathbb{Z}$ be such that $m \beta-3 \alpha=1$. Note that this is the only place where we need the condition $(3, m)=1$. Put

$$
\begin{array}{lll}
x_{1}=u^{3} T^{\beta}, & x_{2}=v^{3} T^{\beta}, & x_{3}=w^{3} T^{\beta} \\
y_{1}=p T^{\alpha}, & y_{2}=q T^{\alpha}, & y_{3}=r T^{\alpha} \tag{3}
\end{array}
$$

where u, v, w are rational parameters and p, q, r, T are variables. Now, if $T=\left(b p^{3}-a q^{3}\right) /\left(b u^{3 m}-a v^{3 m}\right)$, then the first equation defining the variety \mathcal{U} is satisfied. On the other hand, if $T=\left(c q^{3}-b r^{3}\right) /\left(c v^{3 m}-b w^{3 m}\right)$, then the second equation defining \mathcal{U} is satisfied. From the above, after some necessary
simplifications, we can see that in order to find $\mathbb{Q}(u, v, w)$-rational points on our variety we must show that the Diophantine equation

$$
\begin{equation*}
A p^{3}+B q^{3}+C r^{3}=0 \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
A=b w^{3 m}-c v^{3 m}, \quad B=c u^{3 m}-a w^{3 m}, \quad C=a v^{3 m}-b u^{3 m} \tag{5}
\end{equation*}
$$

has infinitely many nontrivial $\mathbb{Q}(u, v, w)$-rational solutions. From a geometric viewpoint, equation (4) defines a cubic curve \mathcal{C} over the field $\mathbb{Q}(u, v, w)$. This is an elliptic curve with the $\mathbb{Q}(u, v, w)$-rational point $P=\left[u^{m}: v^{m}: w^{m}\right]$. Doubling the point P on the curve \mathcal{C}, we find that $2 P=\left[p^{\prime}, q^{\prime}, r^{\prime}\right]$, where

$$
\begin{align*}
p^{\prime} & =-u^{m}\left(c u^{3 m} v^{3 m}+b u^{3 m} w^{3 m}-2 a v^{3 m} w^{3 m}\right), \\
q^{\prime} & =-v^{m}\left(c u^{3 m} v^{3 m}-2 b u^{3 m} w^{3 m}+a v^{3 m} w^{3 m}\right) \tag{6}\\
r^{\prime} & =w^{m}\left(2 c u^{3 m} v^{3 m}-b u^{3 m} w^{3 m}-a v^{3 m} w^{3 m}\right)
\end{align*}
$$

In this case, the value of $T=T(u, v, w)$ is given by $T=-G\left(u^{m}, v^{m}, w^{m}\right)$, where

$$
\begin{aligned}
G(u, v, w)= & c^{3} u^{9} v^{9}+3 b c^{2} u^{9} v^{6} w^{3}+3 a c^{2} u^{6} v^{9} w^{3}+3 b^{2} c u^{9} v^{3} w^{6} \\
& -21 a b c u^{6} v^{6} w^{6}+3 a^{2} c u^{3} v^{9} w^{6}+b^{3} u^{9} w^{9}+3 a b^{2} u^{6} v^{3} w^{9} \\
& +3 a^{2} b u^{3} v^{6} w^{9}+a^{3} v^{9} w^{9}
\end{aligned}
$$

Using these quantities, we find that a solution of the system (2) has the form

$$
\begin{array}{ll}
x_{1}=u^{3} T(u, v, w)^{\beta}, & y_{1}=p^{\prime}(u, v, w) T(u, v, w)^{\alpha}, \\
x_{2}=v^{3} T(u, v, w)^{\beta}, & y_{2}=q^{\prime}(u, v, w) T(u, v, w)^{\alpha}, \\
x_{3}=w^{3} T(u, v, w)^{\beta}, & y_{3}=r^{\prime}(u, v, w) T(u, v, w)^{\alpha} .
\end{array}
$$

By a standard argument, we find that \mathcal{C} is birationally equivalent to the elliptic curve with Weierstrass equation

$$
\mathcal{E}: Z Y^{2}=X^{3}+16 A^{2} B^{2} C^{2} Z^{3}
$$

The mapping $\psi: \mathcal{E} \rightarrow \mathcal{C}$ is given by

$$
\psi(X, Y, Z)=\left(-4 A B C X Y Z,-4 A B C\left(B Y^{3}-C Z^{3}\right), A X^{3}\right)
$$

where A, B, C are given by (5).
Now we will see that the curve \mathcal{E} has positive rank over the field $\mathbb{Q}(u, v, w)$. Note that on \mathcal{E}, we have the point $S=(X, Y, 1)$, where

$$
X=-\frac{4 B C q^{\prime} r^{\prime}}{p^{2}}, \quad Y=-\frac{4 B C\left(B q^{3}-C r^{\prime 3}\right)}{p^{\prime 3}}
$$

Here $p^{\prime}, q^{\prime}, r^{\prime}$ are defined by (6). Note also that $X Y \neq 0$ in $\mathbb{Q}(u, v, w)$ and $16 A^{2} B^{2} C^{2}$ is not of the form $a^{\prime} F(u, v, w)^{6}$ for $a^{\prime} \in \mathbb{Z}, F \in \mathbb{Z}[u, v, w]$. By the remark at the beginning of this section, the point S is of infinite order in
the group $\mathcal{E}(\mathbb{Q}(u, v, w))$. This shows that the set of rational three-parameter solution of the system (2) is infinite.

REmARK 2.2 (see also [2]). If C is a curve of genus $g \geq 2$ and if there exists a morphism from C to an elliptic curve E, then $\operatorname{Jac}(C)$, the Jacobian variety of C, is isogenous to $A \times E$, where A is an Abelian variety of dimension $g-1$. In particular, if the rank of E is positive then so is the rank of $\operatorname{Jac}(C)$.

As an application of our result, we prove the following theorem.
Theorem 2.3. Let $a_{i} \in \mathbb{Z} \backslash\{0\}$, $i=1,2,3$. Suppose that $a_{i} \neq a_{j}$ for $i \neq j$, and let $m \in \mathbb{N}_{+}$be such that $(3, m)=1$. Consider the superelliptic curves defined by

$$
C_{i}: y^{3}=x^{2 m}+a_{i}, \quad i=1,2,3 .
$$

Then there exists a polynomial $D \in \mathbb{Z}[u, v, w]$ such that the Jacobian variety associated with the curve $C_{i, D}: y^{3}=x^{2 m}+a_{i} D(u, v, w)$ has a positive rank over $\mathbb{Q}(u, v, w)$ for $i=1,2,3$.

Proof. First, note that from Theorem 2.1 we can deduce the existence of a polynomial $D \in \mathbb{Z}[u, v, w]$ such that the set of $\mathbb{Q}(u, v, w)$-rational points on the curve $C_{i, D}$ is nonempty for $i=1,2,3$. (In fact, infinitely many such polynomials exist.) Second, on each curve $C_{i, D}$, we have a point $P_{i}=\left(x_{i}, y_{i}\right)$ satisfying $x_{i} y_{i} \neq 0$ for $i=1,2,3$. Moreover, one has the morphism:

$$
\varphi_{i}: C_{i, D} \ni(x, y) \mapsto\left(y, x^{m}\right) \in E_{i}: Y^{2}=X^{3}-a_{i} D(u, v, w)
$$

On the curve E_{i} we have a $\mathbb{Q}(u, v, w)$-rational point $Q_{i}=\left(y_{i}, x_{i}^{m}\right)$ for $i=$ $1,2,3$. As $-a_{i} D(u, v, w)$ is not of the form $a^{\prime} F(u, v, w)^{6}$ for $a^{\prime} \in \mathbb{Z}$ and $F \in \mathbb{Z}(u, v, w)$, we deduce that E_{i} is not birationally equivalent to an elliptic curve defined over \mathbb{Q}. As the coordinates of the point Q_{i} are nonzero, Q_{i} is of infinite order on the curve E_{i} for $i=1,2,3$. Using now Remark 2.2, we deduce that the point $P_{i}=\left(x_{i}, y_{i}\right)$ which lies on the curve $C_{i, D}$ for $i=1,2,3$ corresponds to the divisor of infinite order in the group $\operatorname{Jac}\left(C_{i, D}\right)(\mathbb{Q}(u, v, w))$. Thus the rank of $\operatorname{Jac}\left(C_{i, D}\right)(\mathbb{Q}(u, v, w))$ is positive for $i=1,2,3$.
3. A generalization of Theorem $\sqrt[2.1]{ }$. In this section we will prove the following theorem.

Theorem 3.1. Let $a, b, c \in \mathbb{Z} \backslash\{0\}$. Let $m \in \mathbb{N}_{+}$be such that $(3, m)=1$ and let $0<k<m$. Then the system

$$
\begin{equation*}
\frac{y_{1}^{3}-x_{1}^{m}}{a x_{1}^{k}}=\frac{y_{2}^{3}-x_{2}^{m}}{b x_{2}^{k}}=\frac{y_{3}^{3}-x_{3}^{m}}{c x_{3}^{k}} \tag{7}
\end{equation*}
$$

has infinitely many rational parametric solutions depending on three parameters.

Proof. The method of proof is similar to that for Theorem 2.1. We consider the variety \mathcal{V} defined by (7). We are interested in nontrivial points on \mathcal{V}, i.e. points which satisfy $y_{i}^{3} \neq x_{i}^{m}$ and $x_{i} y_{i} \neq 0$ for $i=1,2,3$. Take $\alpha, \beta \in \mathbb{Z}$ such that $m \beta-3 \alpha=1$. Put

$$
\begin{array}{lll}
x_{1}=u^{3} T^{\beta}, & x_{2}=v^{3} T^{\beta}, & x_{3}=w^{3} T^{\beta} \\
y_{1}=p u^{k} T^{\alpha}, & y_{2}=q v^{k} T^{\alpha}, & y_{3}=r w^{k} T^{\alpha} \tag{8}
\end{array}
$$

where u, v, w are rational parameters and p, q, r, T are variables.
Now, note that if $T=\left(b p^{3}-a q^{3}\right) /\left(b u^{3(m-k)}-a v^{3(m-k)}\right)$ then the first equation defining the variety \mathcal{V} is satisfied. On the other hand, if $T=$ $\left(c q^{3}-b r^{3}\right) /\left(c v^{3(m-k)}-b w^{3(m-k)}\right)$ then the second equation defining \mathcal{V} is satisfied. Consequently, to finish the proof, it is enough to show that the set of $\mathbb{Q}(u, v, w)$-rational points on the curve $\mathcal{C}^{\prime}: A^{\prime} p^{3}+B^{\prime} q^{3}+C^{\prime} r^{3}=0$, where

$$
\begin{gathered}
A^{\prime}=b w^{3(m-k)}-c v^{3(m-k)}, \quad B^{\prime}=c u^{3(m-k)}-a w^{3(m-k)}, \\
C^{\prime}=a v^{3(m-k)}-b u^{3(m-k)},
\end{gathered}
$$

is infinite. But this is obvious, as \mathcal{C}^{\prime} is obtained from the curve \mathcal{C} in the proof of Theorem 2.1, where instead of m we take $m-k$. As we have proved that \mathcal{C}, for any given nonzero m (not necessarily satisfying the condition $(3, m)=1$) has infinitely many $\mathbb{Q}(u, v, w)$-rational points, the same is true for \mathcal{C}^{\prime}.
4. Parametric solutions of the Diophantine equation $\left(y_{1}^{4}-x_{1}^{2 n}\right) / a$ $=\left(y_{2}^{4}-x_{2}^{2 n}\right) / b, n$ odd. Before stating our result, let us recall what the torsion part of the curve $E: y^{2}=x^{3}+p x$, with a fixed $p \in \mathbb{Z} \backslash\{0\}$, looks like (see [7, p. 311]). If $p=4$, then $\operatorname{Tors} E(\mathbb{Q}) \cong \mathbb{Z} / 4 \mathbb{Z}$. If $-p$ is a square in \mathbb{Z}, then Tors $E(\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and finally if p does not satisfy any of these conditions, then $\operatorname{Tors} E(\mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z}$. As an immediate consequence, we deduce that if $P \in \mathbb{Z}[t] \backslash \mathbb{Z}$ and $\mathcal{E}: y^{2}=x^{3}+P x$ is an elliptic curve defined over $\mathbb{Q}(t)$ with a $\mathbb{Q}(t)$-rational point $P=(x, y)$ satisfying $x y \neq 0$, then the order of P in the group $\mathcal{E}(\mathbb{Q}(t))$ is not finite provided that \mathcal{E} is not isomorphic to an elliptic curve defined over \mathbb{Q}. Thus, in that case the curve \mathcal{E} over $\mathbb{Q}(t)$ has a positive rank.

Now we are ready to prove the following theorem.
Theorem 4.1. Let $a, b \in \mathbb{Z} \backslash\{0\}$ and n be an odd integer. Then the Diophantine equation

$$
\begin{equation*}
\frac{y_{1}^{4}-x_{1}^{2 n}}{a}=\frac{y_{2}^{4}-x_{2}^{2 n}}{b} \tag{9}
\end{equation*}
$$

has infinitely many rational parametric solutions.
Proof. We consider the hypersurface given by (9). Note that instead of (9) we can consider the system

$$
\begin{equation*}
b\left(y_{1}^{2}-x_{1}^{N}\right)=a U\left(y_{2}^{2}-x_{2}^{N}\right), \quad U\left(y_{1}^{2}+x_{1}^{N}\right)=y_{2}^{2}+x_{2}^{N} \tag{10}
\end{equation*}
$$

where U is a parameter. In order to solve the above system, we take

$$
\begin{equation*}
x_{1}=T, \quad y_{1}=T^{(n-1) / 2}, \quad x_{2}=-t^{2} T, \quad y_{2}=q T^{(n-1) / 2} \tag{11}
\end{equation*}
$$

where t is a rational parameter and q, T are variables. From the first equation in (10), we get

$$
T=\frac{b-a q^{2} U}{b+a t^{2 n} U}
$$

and then from the second equation in 10 ,

$$
\left(b+2 a t^{2 n} U+a U^{2}\right) q^{2}=b t^{2 n}+2 b U+a t^{2 n} U^{2}
$$

Thus we get the equation of a hyperelliptic quartic curve (defined over $\mathbb{Q}(t)$) of the form

$$
\mathcal{C}_{a, b}: V^{2}=\left(b t^{2 n}+2 b U+a t^{2 n} U^{2}\right)\left(b+2 a t^{2 n} U+a U^{2}\right)
$$

where $V=q\left(b+2 a t^{2 n} U+a U^{2}\right)$. Note that $\mathcal{C}_{a, b}$ has the $\mathbb{Q}(t)$-rational point $Q_{a, b}=\left(0, b t^{n}\right)$. Treating $Q_{a, b}$ as a point at infinity on the curve $\mathcal{C}_{a, b}$ and using the method described in [6, p. 77], we see that $\mathcal{C}_{a, b}$ is birationally equivalent to the elliptic curve with the Weierstrass equation

$$
\mathcal{E}_{a, b}: Y^{2}=X^{3}+4 a b\left(a t^{4 n}-b\right)^{2} X
$$

A mapping from $\mathcal{E}_{a, b}$ to $\mathcal{C}_{a, b}$ is given by $\varphi(X, Y)=(U, V)$, where

$$
\begin{aligned}
& U=\frac{2 b\left(b^{2}-2 a b t^{4 n}+a^{2} t^{8 n}-t^{2 n} X\right)}{\left(a t^{4 n}+b\right) X-t^{n} Y} \\
& V=\frac{t^{3 n} X^{3}-\left(a t^{4 n}-b\right)^{2}\left(f_{1} X^{2}+f_{2} X+f_{3}+f_{4} Y\right)}{\left(\left(a t^{4 n}+b\right) X-t^{n} Y\right)^{2}}
\end{aligned}
$$

and

$$
\begin{array}{ll}
f_{1}=3 t^{n}, & f_{2}=4 a b t^{3 n} \\
f_{3}=4 a b t^{n}\left(a t^{4 n}-b\right)^{2}, & f_{4}=-2\left(a t^{4 n}+b\right)
\end{array}
$$

In order to show that the rank of $\mathcal{E}_{a, b}$ is positive, we notice that the point $P_{a, b}=\left(X^{2}, X Y\right)$, where

$$
X=\frac{b^{2}-6 a b t^{4 n}+a^{2} t^{8 n}}{2 t^{n}\left(b+a t^{4 n}\right)}, \quad Y=X^{2}+\frac{8 a b t^{2 n}\left(a t^{4 n}-b\right)^{2}}{\left(a t^{4 n}+b\right)^{2}}
$$

lies on our curve. As $4 a b\left(a t^{4 n}-b\right)^{2}$ is not of the form $a^{\prime} F(t)^{4}$ for $a^{\prime} \in \mathbb{Z}$ and $F \in \mathbb{Z}[t]$, we deduce that $\mathcal{E}_{a, b}$ is not birationally equivalent to an elliptic curve defined over \mathbb{Q}. Invoking now the remark from the beginning of this section we deduce that $P_{a, b}$ is of infinite order in the group $\mathcal{E}_{a, b}(\mathbb{Q}(t))$. Now it is an easy task to obtain the statement of our theorem. First, for $m=2,3, \ldots$, we calculate $m P_{a, b}$ on the curve $\mathcal{E}_{a, b}$. Next, we calculate the corresponding point (U, V) on $\mathcal{C}_{a, b}$ and from the equation $V=q\left(b+2 a t^{2 n} U+a U^{2}\right)$ we get
the value of q. Then we calculate the value of $T=T(t)$ and the values of $x_{i}, y_{i}, i=1,2$, given by 11 which give solutions of our equation.

For example, if $n=3$, then the point $P_{a, b}$ leads (after necessary simplifications) to the solution of the equation $\left(y_{1}^{4}-x_{1}^{6}\right) / a=\left(y_{2}^{4}-x_{2}^{6}\right) / b$ of the form

$$
\begin{aligned}
& x_{1}=t^{3}\left(-3 a^{2}+6 a b t^{12}+b^{2} t^{24}\right) y_{2} \\
& y_{1}=t^{2} y_{2} \\
& x_{2}=\left(-a^{2}-6 a b t^{12}+3 b^{2} t^{24}\right) y_{2} \\
& y_{2}=a^{4}-28 a^{3} b t^{12}+6 a^{2} b^{2} t^{24}-28 a b^{3} t^{36}+b^{4} t^{48}
\end{aligned}
$$

REmARK 4.2. With the use of Theorem 4.1, we can easily prove that the set of rational parametric solutions of the Diophantine equation

$$
x_{1}^{4}+x_{2}^{4}=y_{1}^{2 n}+y_{2}^{2 n}
$$

where n is an odd integer, is infinite. Indeed, just take $b=-a$ in the solution obtained in Theorem 4.1. Thus our method shows that the set of integers which are simultaneously representable as a sum of two fourth powers and two $2 m$ th powers is infinite. This result is related to the Diophantine problem called equal sums of unlike powers investigated by Lander in [5]. The method presented by Lander cannot be used in order to construct integer solutions to the above Diophantine equation.

In particular, if $n=3$, then we get the following solution of the equation $x_{1}^{4}+x_{2}^{4}=y_{1}^{6}+y_{2}^{6}$.

$$
\begin{aligned}
& x_{1}=\left(-1+6 t^{12}+3 t^{24}\right) y_{2} \\
& x_{2}=t^{3}\left(-3-6 t^{12}+t^{24}\right) y_{2} \\
& y_{1}=t^{2} y_{2} \\
& y_{2}=1+28 t^{12}+6 t^{24}+28 t^{36}+t^{48}
\end{aligned}
$$

which has not been obtained before.
From Theorem 4.1, we deduce an interesting result similar to Theorem 2.3

ThEOREM 4.3. Let $a_{1}, a_{2} \in \mathbb{Z} \backslash\{0\}$ be such that $a_{1} \neq a_{2}$ and let $m \in \mathbb{N}_{+}$ be an odd integer. Consider the superelliptic curves defined by the equations

$$
C_{i}: y^{4}=x^{2 m}+a_{i}, \quad i=1,2
$$

Then there exists a polynomial $D \in \mathbb{Z}[t]$ such that the Jacobian variety associated with the curve $C_{i, D}: y^{4}=x^{2 m}+a_{i} D(t)$ has a positive rank over $\mathbb{Q}(t)$ for $i=1,2$.

Proof. From Theorem4.1, we can deduce the existence of a polynomial (in fact, there are infinitely many such polynomials) $D \in \mathbb{Z}[t]$ such that
the set of $\mathbb{Q}(t)$-rational points on the curve $C_{i, D}: y^{4}=x^{2 m}+a_{i} D(t)$ is nonempty for $i=1,2$. Moreover, on each curve $C_{i, D}$, we get a point $P_{i}=$ $\left(x_{i}, y_{i}\right)$ satisfying $x_{i} y_{i} \neq 0$ for $i=1,2,3$. Note the existence of the following morphism:

$$
\varphi_{i}: C_{i, D} \ni(x, y) \mapsto\left(y, x^{m}\right) \in E_{i}^{\prime}: Y^{2}=X^{4}-a_{i} D(t)
$$

The curve E_{i}^{\prime} over $\mathbb{Q}(t)$ is birationally equivalent to the elliptic curve whose Weierstrass equation is

$$
E_{i}: Y^{2}=X^{3}-4 a_{i} D(t) X
$$

The mapping $\chi_{i}: E_{i} \rightarrow E_{i}^{\prime}$ is given by

$$
\chi_{i}(X, Y)=\left(\frac{Y}{2 X}, \frac{X^{2}-4 a_{i} D(t)}{4 X}\right)
$$

and its inverse is given by

$$
\chi_{i}^{-1}(X, Y)=\left(2\left(X^{2}+Y\right), 4 X\left(X^{2}+Y\right)\right)
$$

First of all, note that the curve E_{i} is not birationally equivalent to one defined over \mathbb{Q}. This follows from the fact that $-4 a_{i} D(t)$ is not of the form $a^{\prime} F(t)^{4}$ for $a^{\prime} \in \mathbb{Z}$ and $F \in \mathbb{Z}[t]$. Next, on E_{i}^{\prime}, we have a $\mathbb{Q}(t)$-rational point $Q_{i}=\left(y_{i}, x_{i}^{m}\right)$ for $i=1,2$. Thus the point $(X, Y)=\chi_{i}^{-1}\left(Q_{i}\right)$ lies on E_{i} and one can easily check that $X Y \neq 0$. From the remark at the beginning of this section we deduce that the point $\chi_{i}^{-1}\left(Q_{i}\right)$ is of infinite order on E_{i}, and the same holds for the point Q_{i} on E_{i}^{\prime}. Now, using Remark 2.2 we conclude that the rank of $\operatorname{Jac}\left(C_{i, D}\right)(\mathbb{Q}(t))$ is positive for $i=1,2$.

Acknowledgments. I am grateful to the anonymous referee for constructive suggestions to improve an earlier draft of this paper. I am also grateful to Professor A. Togbe for useful comments.

The author is a holder of a START scholarship funded by the Foundation for Polish Science (FNP).

References

[1] A. Choudhry and J. Wróblewski, Quartic diophantine chains, Acta Arith. 128 (2007), 339-348.
[2] M. Hindry and J. Silverman, Diophantine Geometry. An Introduction, Grad. Texts in Math. 201, Springer, New York, 2000.
[3] T. Jędrzejak and M. Ulas, Characterization of torsion of the Jacobian of $y^{2}=x^{5}+A x$ and some applications, Acta Arith. 144 (2010), 183-191.
[4] -, -, Higher twists of hyperelliptic curves, submitted.
[5] L. J. Lander, Equal sums of unlike powers, Fibonacci Quart. 28 (1990), 141-150.
[6] L. J. Mordell, Diophantine Equations, Academic Press, London, 1969.
[7] J. Silverman, The Arithmetic of Elliptic Curves, Grad. Texts in Math. 106, Springer, New York, 1986.
[8] M. Ulas, A note on higher twists of elliptic curves, Glasgow Math. J. 52 (2010), 371-381.
[9] -, Variations on higher twists of pairs of elliptic curves, Int. J. Number Theory 6 (2010), 1183-1189.

Maciej Ulas
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
and
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: Maciej.Ulas@im.uj.edu.pl

Received on 29.12.2009
and in revised form on 7.4.2010

[^0]: 2010 Mathematics Subject Classification: 11D25, 11D41, 11G05, 11G30.
 Key words and phrases: higher twists of superelliptic curves, rank of superelliptic jacobian, rational points.

