On certain Diophantine systems with infinitely many parametric solutions and applications

by

MACIEJ ULAS (Kraków and Warszawa)

1. Introduction. Let \(f(x, y) = y^2 - x^n \), where \(n \) is an odd integer. In [4], we proved that for any quadruple \(a, b, c, d \) of distinct integers the set of rational parametric solutions of the system

\[
\frac{f(x_1, y_1)}{a} = \frac{f(x_2, y_2)}{b} = \frac{f(x_3, y_3)}{c} = \frac{f(x_4, y_4)}{d}
\]

is infinite. In the cited paper, this result was used to show that if \(C_i : y^2 = x^n + a_i \), where \(a_i \in \mathbb{Z} \setminus \{0\} \) are pairwise distinct, then there exists a polynomial \(D \in \mathbb{Z}[t] \) such that the \(\mathbb{Q}(t) \)-rank of the Jacobian variety \(\text{Jac}(C_i, D) \) is positive, where \(C_i, D : y^2 = x^n + a_i D(t) \) for \(i = 1, 2, 3, 4 \). Similar results were proved in [8, 9] and [3], where instead of \(f(x, y) \), we considered \(g(x, y) = (y^2 - x^3)/x \) and \(g(x, y) = (y^2 - x^5)/x \) respectively. In the light of these results, it is natural to ask what can be said about a general system of the form

\[
\frac{h(x_1, y_1)}{a_1} = \frac{h(x_2, y_2)}{a_2} = \cdots = \frac{h(x_k, y_k)}{a_k},
\]

where \(h \in \mathbb{Z}[x, y] \) and \(k \) is a fixed positive integer. In general, this is a difficult question. The most interesting but difficult case is that of a homogeneous form \(h \). It seems that the only pertinent results available concern the case where all \(a_i \) are equal and \(\deg h = 2, 3 \). In the case of \(\deg h = 2 \), the problem is related to the construction of a rational number \(A \) such that the curve \(C : h(x, y) = A \) is rational over \(\mathbb{Q} \). In the case of \(\deg h = 3 \), the problem is related to the construction of a rational number \(A \) such that the curve \(C : h(x, y) = A \) (i.e. \(h \) is an elliptic curve with nonzero discriminant) has infinitely many solutions in rationals. In this connection, we mention the work of Choudhry and Wróblewski [1], who showed that if \(h(x, y) = x^4 - y^4 \)

2010 Mathematics Subject Classification: 11D25, 11D41, 11G05, 11G30.
Key words and phrases: higher twists of superelliptic curves, rank of superelliptic jacobian, rational points.

DOI: 10.4064/aa145-3-7
then the system of equations
\[h(x_1, y_1) = h(x_2, y_2) = h(x_3, y_3) \]
has infinitely many nontrivial solutions in integers (a nontrivial solution is a solution that cannot be obtained from another by multiplication by a nonzero integer).

In this paper, we investigate the question of solvability of the system \(^{(1)}\) with the additional condition \(\min\{\deg_x h, \deg_y h\} \geq 3\) and \(h\) of the form \(y^n - x^m\).

2. First result. In this section, we are interested in constructing rational parametric solutions of the system of Diophantine equations
\[
\begin{align*}
\frac{y_1^3 - x_1^m}{a} &= \frac{y_2^3 - x_2^m}{b} = \frac{y_3^3 - x_3^m}{c},
\end{align*}
\]
where \(a, b, c\) are pairwise distinct integers and \(m \in \mathbb{N}_+\) such that \((3, m) = 1\).

Before we state the main result of this section, let us recall what the torsion part of the curve \(E : y^2 = x^3 + q\) looks like for a fixed \(q \in \mathbb{Z}\) \(^{[7]}\). If \(q = 1\), then \(\text{Tors } E(\mathbb{Q}) \cong \mathbb{Z}/6\mathbb{Z}\). If \(q \neq 1\) and \(q\) is a square in \(\mathbb{Z}\), then \(\text{Tors } E(\mathbb{Q}) = \{O, (0, \sqrt{q}), (0, -\sqrt{q})\}\). If \(q = -432\), then \(\text{Tors } E(\mathbb{Q}) = \{O, (12, 36), (12, -36)\}\). If \(q \neq 1\) and \(q\) is a cube in \(\mathbb{Z}\), then \(\text{Tors } E(\mathbb{Q}) = \{O, (-\sqrt[3]{q}, 0)\}\). In the remaining cases, \(\text{Tors } E(\mathbb{Q}) = \{O\}\). Therefore, if \(E : y^2 = x^3 + Q\), where \(Q \in \mathbb{Z}[u, v, w] \setminus \mathbb{Z}\), is an elliptic curve defined over the field \(\mathbb{Q}(u, v, w)\) and if on \(E\) there exists a \(\mathbb{Q}(u, v, w)\)-rational point \(P = (x, y)\) with \(xy \neq 0\), then the order of \(P\) in the group \(E(\mathbb{Q}(u, v, w))\) is not finite provided that \(E\) is not isomorphic to an elliptic curve defined over \(\mathbb{Q}\). Thus, in that case the curve \(E\) over \(\mathbb{Q}(u, v, w)\) has a positive rank.

Now we are ready to prove the following theorem.

Theorem 2.1. Let \(a, b, c \in \mathbb{Z} \setminus \{0\}\) and suppose that \((3, m) = 1\). Then the system \(^{(2)}\) has infinitely many rational three-parameter solutions.

Proof. We consider the variety \(U\) defined by \(^{(2)}\). Since we are looking for parametric solutions, we are interested in nontrivial points on \(U\), i.e. points which satisfy \(y_i^3 \neq x_i^m\) and \(x_iy_i \neq 0\), for \(i = 1, 2, 3\). Let \(\alpha, \beta \in \mathbb{Z}\) be such that \(m\beta - 3\alpha = 1\). Note that this is the only place where we need the condition \((3, m) = 1\). Put
\[
\begin{align*}
x_1 &= u^3T^\beta, & x_2 &= v^3T^\beta, & x_3 &= w^3T^\beta, \\
y_1 &= pT^\alpha, & y_2 &= qT^\alpha, & y_3 &= rT^\alpha,
\end{align*}
\]
where \(u, v, w\) are rational parameters and \(p, q, r, T\) are variables. Now, if \(T = (bp^3 - aq^3)/(bu^3m - av^3m)\), then the first equation defining the variety \(U\) is satisfied. On the other hand, if \(T = (cq^3 - br^3)/(cv^3m - bw^3m)\), then the second equation defining \(U\) is satisfied. From the above, after some necessary
simplifications, we can see that in order to find $\mathbb{Q}(u, v, w)$-rational points on our variety we must show that the Diophantine equation

\begin{equation}
Ap^3 + Bq^3 + Cr^3 = 0,
\end{equation}

where

\begin{equation}
A = bw^{3m} - cv^{3m}, \quad B = cu^{3m} - aw^{3m}, \quad C = av^{3m} - bu^{3m},
\end{equation}

has infinitely many nontrivial $\mathbb{Q}(u, v, w)$-rational solutions. From a geometric viewpoint, equation (4) defines a cubic curve C over the field $\mathbb{Q}(u, v, w)$. This is an elliptic curve with the $\mathbb{Q}(u, v, w)$-rational point $P = [u^m : v^m : w^m]$. Doubling the point P on the curve C, we find that $2P = [p', q', r']$, where

\begin{align*}
p' &= -u^m(cu^{3m}v^{3m} + bu^{3m}w^{3m} - 2av^{3m}w^{3m}), \\
q' &= -v^m(cu^{3m}v^{3m} - 2bu^{3m}w^{3m} + av^{3m}w^{3m}), \\
r' &= w^m(2cu^{3m}v^{3m} - bu^{3m}w^{3m} - av^{3m}w^{3m}).
\end{align*}

In this case, the value of $T = T(u, v, w)$ is given by $T = -G(u^m, v^m, w^m)$, where

\begin{align*}
G(u, v, w) &= c^3u^9v^9 + 3bc^2u^9v^6w^3 + 3ac^2u^6v^9w^3 + 3b^2cu^9v^3w^6 \\
&\quad - 21abcu^6v^6w^6 + 3a^2cu^3v^9w^6 + b^3u^9w^9 + 3ab^2u^6v^3w^9 \\
&\quad + 3a^2bu^3v^6w^9 + a^3v^9w^9.
\end{align*}

Using these quantities, we find that a solution of the system (2) has the form

\begin{align*}
x_1 &= u^3T(u, v, w)\alpha, \\
x_2 &= v^3T(u, v, w)\alpha, \\
x_3 &= w^3T(u, v, w)\alpha.
\end{align*}

By a standard argument, we find that C is birationally equivalent to the elliptic curve with Weierstrass equation

\begin{equation}
\end{equation}

The mapping $\psi : E \to C$ is given by

\begin{align*}
\psi(X, Y, Z) &= (-4ABCXYZ, -4ABC(BY^3 - CZ^3), AX^3),
\end{align*}

where A, B, C are given by (5).

Now we will see that the curve E has positive rank over the field $\mathbb{Q}(u, v, w)$. Note that on E, we have the point $S = (X, Y, 1)$, where

\begin{align*}
X &= -\frac{4BCq'r'}{p'^2}, \\
Y &= -\frac{4BC(Bq'^3 - Cr'^3)}{p'^3}.
\end{align*}

Here p', q', r' are defined by (6). Note also that $XY \neq 0$ in $\mathbb{Q}(u, v, w)$ and $16A^2B^2C^2$ is not of the form $a' F(u, v, w)^6$ for $a' \in \mathbb{Z}, F \in \mathbb{Z}[u, v, w]$. By the remark at the beginning of this section, the point S is of infinite order in
the group $E(\mathbb{Q}(u, v, w))$. This shows that the set of rational three-parameter solution of the system \[2\] is infinite. ■

Remark 2.2 (see also \[2\]). If C is a curve of genus $g \geq 2$ and if there exists a morphism from C to an elliptic curve E, then $\text{Jac}(C)$, the Jacobian variety of C, is isogenous to $A \times E$, where A is an abelian variety of dimension $g - 1$. In particular, if the rank of E is positive then so is the rank of $\text{Jac}(C)$.

As an application of our result, we prove the following theorem.

Theorem 2.3. Let $a_i \in \mathbb{Z} \setminus \{0\}$, $i = 1, 2, 3$. Suppose that $a_i \neq a_j$ for $i \neq j$, and let $m \in \mathbb{N}^+$ be such that $(3, m) = 1$. Consider the superelliptic curves defined by

$$C_i : y^3 = x^{2m} + a_i, \quad i = 1, 2, 3.$$

Then there exists a polynomial $D \in \mathbb{Z}[u, v, w]$ such that the Jacobian variety associated with the curve $C_{i,D}: y^3 = x^{2m} + a_i D(u, v, w)$ has a positive rank over $\mathbb{Q}(u, v, w)$ for $i = 1, 2, 3$.

Proof. First, note that from Theorem 2.1 we can deduce the existence of a polynomial $D \in \mathbb{Z}[u, v, w]$ such that the set of $\mathbb{Q}(u, v, w)$-rational points on the curve $C_{i,D}$ is nonempty for $i = 1, 2, 3$. (In fact, infinitely many such polynomials exist.) Second, on each curve $C_{i,D}$, we have a point $P_i = (x_i, y_i)$ satisfying $x_i y_i \neq 0$ for $i = 1, 2, 3$. Moreover, one has the morphism:

$$\varphi_i : C_{i,D} \ni (x, y) \mapsto (y, x^m) \in E_i : Y^2 = X^3 - a_i D(u, v, w).$$

On the curve E_i, we have a $\mathbb{Q}(u, v, w)$-rational point $Q_i = (y_i, x_i^m)$ for $i = 1, 2, 3$. As $-a_i D(u, v, w)$ is not of the form $a' F(u, v, w)^6$ for $a' \in \mathbb{Z}$ and $F \in \mathbb{Z}(u, v, w)$, we deduce that E_i is not birationally equivalent to an elliptic curve defined over \mathbb{Q}. As the coordinates of the point Q_i are nonzero, Q_i is of infinite order on the curve E_i for $i = 1, 2, 3$. Using now Remark 2.2, we deduce that the point $P_i = (x_i, y_i)$ which lies on the curve $C_{i,D}$ for $i = 1, 2, 3$ corresponds to the divisor of infinite order in the group $\text{Jac}(C_{i,D})(\mathbb{Q}(u, v, w))$. Thus the rank of $\text{Jac}(C_{i,D})(\mathbb{Q}(u, v, w))$ is positive for $i = 1, 2, 3$. ■

3. A generalization of Theorem 2.1. In this section we will prove the following theorem.

Theorem 3.1. Let $a, b, c \in \mathbb{Z} \setminus \{0\}$. Let $m \in \mathbb{N}^+$ be such that $(3, m) = 1$ and let $0 < k < m$. Then the system

$$y_1^3 - x_1^m = \frac{y_2^3 - x_2^m}{ax_1^k} = \frac{y_3^3 - x_3^m}{bx_2^k} = \frac{y_3^3 - x_3^m}{cx_3^k}$$

has infinitely many rational parametric solutions depending on three parameters.
Proof. The method of proof is similar to that for Theorem 2.1. We consider the variety \(V \) defined by (7). We are interested in nontrivial points on \(V \), i.e., points which satisfy \(y_i^n \neq x_i^m \) and \(x_iy_i \neq 0 \) for \(i = 1, 2, 3 \). Take \(\alpha, \beta \in \mathbb{Z} \) such that \(m\beta - 3\alpha = 1 \). Put
\[
\begin{align*}
x_1 &= u^3T^\beta, \\
x_2 &= v^3T^\beta, \\
x_3 &= w^3T^\beta, \\
y_1 &= pu^3T^\alpha, \\
y_2 &= qv^3T^\alpha, \\
y_3 &= rw^3T^\alpha,
\end{align*}
\]
where \(u, v, w \) are rational parameters and \(p, q, r, T \) are variables.

Now, note that if \(T = (bp^3 - aq^3)/(bu^3(m-k) - av^3(m-k)) \) then the first equation defining the variety \(V \) is satisfied. On the other hand, if \(T = (cq^3 - br^3)/(cv^3(m-k) - bw^3(m-k)) \) then the second equation defining \(V \) is satisfied. Consequently, to finish the proof, it is enough to show that the set of \(\mathbb{Q}(u, v, w) \)-rational points on the curve \(C' : A'p^3 + B'q^3 + C'r^3 = 0 \), where
\[
\begin{align*}
A' &= bw^3(m-k) - cv^3(m-k), \\
B' &= cu^3(m-k) - aw^3(m-k), \\
C' &= av^3(m-k) - bu^3(m-k),
\end{align*}
\]
is infinite. But this is obvious, as \(C' \) is obtained from the curve \(C \) in the proof of Theorem 2.1 where instead of \(m \) we take \(m-k \). As we have proved that \(C \), for any given nonzero \(m \) (not necessarily satisfying the condition \((3, m) = 1 \)) has infinitely many \(\mathbb{Q}(u, v, w) \)-rational points, the same is true for \(C' \). ■

4. Parametric solutions of the Diophantine equation \((y_1^n - x_1^{2n})/a = (y_2^n - x_2^{2n})/b \), \(n \) odd. Before stating our result, let us recall what the torsion part of the curve \(E : y^2 = x^3 + px \), with a fixed \(p \in \mathbb{Z} \setminus \{0\} \), looks like (see [7, p. 311]). If \(p = 4 \), then \(\text{Tors}(\mathbb{Q}) \cong \mathbb{Z}/4\mathbb{Z} \). If \(-p\) is a square in \(\mathbb{Z} \), then \(\text{Tors}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), and finally if \(p \) does not satisfy any of these conditions, then \(\text{Tors}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \). As an immediate consequence, we deduce that if \(P \in \mathbb{Z}[t] \setminus \mathbb{Z} \) and \(\mathcal{E} : y^2 = x^3 + Px \) is an elliptic curve defined over \(\mathbb{Q}(t) \) with a \(\mathbb{Q}(t) \)-rational point \(P = (x, y) \) satisfying \(xy \neq 0 \), then the order of \(P \) in the group \(\mathcal{E}(\mathbb{Q}(t)) \) is not finite provided that \(\mathcal{E} \) is not isomorphic to an elliptic curve defined over \(\mathbb{Q} \). Thus, in that case the curve \(\mathcal{E} \) over \(\mathbb{Q}(t) \) has a positive rank.

Now we are ready to prove the following theorem.

Theorem 4.1. Let \(a, b \in \mathbb{Z} \setminus \{0\} \) and \(n \) be an odd integer. Then the Diophantine equation
\[
\frac{y_1^n - x_1^{2n}}{a} = \frac{y_2^n - x_2^{2n}}{b}
\]
has infinitely many rational parametric solutions.

Proof. We consider the hypersurface given by (9). Note that instead of (9) we can consider the system
\[
b(y_1^n - x_1^n) = aU(y_2^n - x_2^n), \quad U(y_1^n + x_1^n) = y_2^n + x_2^n,
\]
Thus we get the equation of a hyperelliptic quartic curve (defined over F) of the form

$$x_1 = T, \quad y_1 = T^{(n-1)/2}, \quad x_2 = -t^2T, \quad y_2 = qT^{(n-1)/2},$$

where t is a rational parameter and q, T are variables. From the first equation in (10), we get

$$T = \frac{b - aq^2U}{b + at^{2n}U},$$

and then from the second equation in (10),

$$(b + 2at^{2n}U + aU^2)q^2 = bt^{2n} + 2bU + at^{2n}U^2.$$

Thus we get the equation of a hyperelliptic quartic curve (defined over $\mathbb{Q}(t)$) of the form

$$C_{a,b} : V^2 = (bt^{2n} + 2bU + at^{2n}U^2)(b + 2at^{2n}U + aU^2),$$

where $V = q(b + 2at^{2n}U + aU^2)$. Note that $C_{a,b}$ has the $\mathbb{Q}(t)$-rational point $Q_{a,b} = (0, bt^n)$. Treating $Q_{a,b}$ as a point at infinity on the curve $C_{a,b}$ and using the method described in [6, p. 77], we see that $C_{a,b}$ is birationally equivalent to the elliptic curve with the Weierstrass equation

$$E_{a,b} : Y^2 = X^3 + 4ab(at^{4n} - b)^2X.$$

A mapping from $E_{a,b}$ to $C_{a,b}$ is given by $\varphi(X, Y) = (U, V)$, where

$$U = \frac{2b(b^2 - 2abt^{4n} + a^2t^{8n} - t^{2n}X)}{(at^{4n} + b)X - t^nY},$$

$$V = \frac{t^{3n}X^3 - (at^{4n} - b)^2(f_1X^2 + f_2X + f_3 + f_4Y)}{((at^{4n} + b)X - t^nY)^2},$$

and

$$f_1 = 3t^n, \quad f_2 = 4abt^{3n}, \quad f_3 = 4abt^n(at^{4n} - b)^2, \quad f_4 = -2(at^{4n} + b).$$

In order to show that the rank of $E_{a,b}$ is positive, we notice that the point $P_{a,b} = (X^2, XY)$, where

$$X = \frac{b^2 - 6abt^{4n} + a^2t^{8n}}{2t^n(b + at^{4n})}, \quad Y = X^2 + \frac{8abt^{2n}(at^{4n} - b)^2}{(at^{4n} + b)^2},$$

lies on our curve. As $4ab(at^{4n} - b)^2$ is not of the form $a't^4F(t)^4$ for $a' \in \mathbb{Z}$ and $F \in \mathbb{Z}[t]$, we deduce that $E_{a,b}$ is not birationally equivalent to an elliptic curve defined over \mathbb{Q}. Invoking now the remark from the beginning of this section we deduce that $P_{a,b}$ is of infinite order in the group $E_{a,b}(\mathbb{Q}(t))$. Now it is an easy task to obtain the statement of our theorem. First, for $m = 2, 3, \ldots$, we calculate $mP_{a,b}$ on the curve $E_{a,b}$. Next, we calculate the corresponding point (U, V) on $C_{a,b}$ and from the equation $V = q(b + 2at^{2n}U + aU^2)$ we get
the value of q. Then we calculate the value of $T = T(t)$ and the values of x_i, y_i, $i = 1, 2$, given by (11) which give solutions of our equation.

For example, if $n = 3$, then the point $P_{a,b}$ leads (after necessary simplifications) to the solution of the equation $(y_4^4 - x_6^6)/a = (y_2^4 - x_2^6)/b$ of the form

$$
x_1 = t^3(-3a^2 + 6abt^{12} + b^2t^{24})y_2,
$$
$$
y_1 = t^2y_2,
$$
$$
x_2 = (-a^2 - 6abt^{12} + 3b^2t^{24})y_2,
$$
$$
y_2 = a^4 - 28a^3bt^{12} + 6a^2b^2t^{24} - 28ab^3t^{36} + b^4t^{48}. \quad \blacksquare
$$

Remark 4.2. With the use of Theorem 4.1, we can easily prove that the set of rational parametric solutions of the Diophantine equation

$$
x_1^4 + x_2^4 = y_1^{2n} + y_2^{2n},
$$

where n is an odd integer, is infinite. Indeed, just take $b = -a$ in the solution obtained in Theorem 4.1. Thus our method shows that the set of integers which are simultaneously representable as a sum of two fourth powers and two $2m$th powers is infinite. This result is related to the Diophantine problem called equal sums of unlike powers investigated by Lander in [5]. The method presented by Lander cannot be used in order to construct integer solutions to the above Diophantine equation.

In particular, if $n = 3$, then we get the following solution of the equation $x_1^4 + x_2^4 = y_1^6 + y_2^6$:

$$
x_1 = (-1 + 6t^{12} + 3t^{24})y_2,
$$
$$
x_2 = t^3(-3 - 6t^{12} + t^{24})y_2,
$$
$$
y_1 = t^2y_2,
$$
$$
y_2 = 1 + 28t^{12} + 6t^{24} + 28t^{36} + t^{48},
$$

which has not been obtained before.

From Theorem 4.1 we deduce an interesting result similar to Theorem 2.3.

Theorem 4.3. Let $a_1, a_2 \in \mathbb{Z} \setminus \{0\}$ be such that $a_1 \neq a_2$ and let $m \in \mathbb{N}_+$ be an odd integer. Consider the superelliptic curves defined by the equations

$$
C_i : y^4 = x^{2m} + a_i, \quad i = 1, 2.
$$

Then there exists a polynomial $D \in \mathbb{Z}[t]$ such that the Jacobian variety associated with the curve $C_{i,D} : y^4 = x^{2m} + a_iD(t)$ has a positive rank over $\mathbb{Q}(t)$ for $i = 1, 2$.

Proof. From Theorem 4.1 we can deduce the existence of a polynomial (in fact, there are infinitely many such polynomials) $D \in \mathbb{Z}[t]$ such that
the set of $\mathbb{Q}(t)$-rational points on the curve $C_{i,D}: y^4 = x^{2m} + a_i D(t)$ is nonempty for $i = 1, 2$. Moreover, on each curve $C_{i,D}$, we get a point $P_i = (x_i, y_i)$ satisfying $x_i y_i \neq 0$ for $i = 1, 2, 3$. Note the existence of the following morphism:

$$\varphi_i: C_{i,D} \ni (x, y) \mapsto (y, x^m) \in E'_i: Y^2 = X^4 - a_i D(t).$$

The curve E'_i over $\mathbb{Q}(t)$ is birationally equivalent to the elliptic curve whose Weierstrass equation is

$$E_i: Y^2 = X^3 - 4a_i D(t)X.$$

The mapping $\chi_i: E_i \to E'_i$ is given by

$$\chi_i(X, Y) = \left(\frac{Y}{2X}, \frac{X^2 - 4a_i D(t)}{4X}\right),$$

and its inverse is given by

$$\chi_i^{-1}(X, Y) = (2(X^2 + Y), 4X(X^2 + Y)).$$

First of all, note that the curve E_i is not birationally equivalent to one defined over \mathbb{Q}. This follows from the fact that $-4a_i D(t)$ is not of the form $a'F(t)^4$ for $a' \in \mathbb{Z}$ and $F \in \mathbb{Z}[t]$. Next, on E'_i, we have a $\mathbb{Q}(t)$-rational point $Q_i = (y_i, x_i^m)$ for $i = 1, 2$. Thus the point $(X, Y) = \chi_i^{-1}(Q_i)$ lies on E_i and one can easily check that $XY \neq 0$. From the remark at the beginning of this section we deduce that the point $\chi_i^{-1}(Q_i)$ is of infinite order on E_i, and the same holds for the point Q_i on E'_i. Now, using Remark 2.2 we conclude that the rank of $\text{Jac}(C_{i,D})(\mathbb{Q}(t))$ is positive for $i = 1, 2$. ■

Acknowledgments. I am grateful to the anonymous referee for constructive suggestions to improve an earlier draft of this paper. I am also grateful to Professor A. Togbe for useful comments.

The author is a holder of a START scholarship funded by the Foundation for Polish Science (FNP).

References

Diophantine systems with infinitely many solutions

Maciej Ulas
Institute of Mathematics
Jagiellonian University
Łojasiewicza 6
30-348 Kraków, Poland
and
Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8
00-956 Warszawa, Poland
E-mail: Maciej.Ulas@im.uj.edu.pl

Received on 29.12.2009
and in revised form on 7.4.2010 (6248)